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Abstract

We show an Alexandrov-Bakelman-Pucci (ABP) estimate for a PDE with anisotropic Lapla-

cian in two dimensions in unbounded domains, where the drift vector varies in a segment of

the positive quadrant . The unbounded domains are assumed to be bounded below in the x-

direction, as well as in the y-direction. The constant in the upper estimate of the ABP-estimate,

which depends in the usual theorems for bounded domains on the diameter of this domain, de-

pends in our case on the small parameter ε, appearing in the anisotropic Laplacian. The result

is motivated by certain problems of singular perturbation in stochastic control theory, and our

methods are probabilistic.

1 Introduction

Let us start with the motivation for this paper. In singular perturbation theory one considers

boundary value problems, where the differential operator depends on a small parameter, say ε. One

usually constructs a so called formal approximation for the solution of the problem, using techniques

as matched asymptotic expansion (see e.g. [5] or [16]). Plugging this formal approximation in the

PDE, yields a residuum, which is small in a certain norm. The aim is then to show that the formal

approximation is indeed close to the full solution of the problem. A special case of these problems

are equations where an anisotropic Laplacian appears.

The application we have in mind comes from stochastic control theory. Restricting to the two-

dimensional situation, the problem is the following. The wealth of two companies is given by a two-

dimensional Brownian motion, where the volatility of the second company is small in comparison to

the first one. Moreover, a controller (in the model of [15] this is the government by an appropriate

tax policy) can influence the drift of the companies in a way, s.t. the total drift adds up to a certain

positive constant. Let us remark that it is mathematically equivalent to consider two companies
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supporting each other by transfer payments. The goal is to maximize the probability that both

companies survive.

Now, in [9] we were able to construct a formal solution of the corresponding Hamilton-Jacobi-

Bellman equation with the methods of singular perturbation theory, s.t. the difference of the full

solution and the formal approximation, say w(x, y), fulfills a boundary value problem on the positive

quadrant, involving an anisotropic Laplacian and with a residual inhomogeneity, say f(x, y), which

has an Lp-norm, p ∈ [1,∞), of order O(ε2). In order to be sure that our approximation is a proper

one in the whole positive quadrant, we would need a result, which ensures a small L∞-norm of w.

Such results are usually provided by so called Alexandrov-Bakelman-Pucci (ABP) estimates.

Indeed, ABP-estimates give an upper bound for the solution of a certain boundary value problem

in the L∞-norm in terms of the Lp norm of the inhomogeneity of the PDE (assuming homogeneous

boundary conditions, which we shall do). Now, for problems with bounded domains, say G, the

problem is well understood, see e.g. [7], and it is known that the constant, say C, in the upper

estimate C||f ||Lp depends on the diameter of the domain.

For unbounded domains the situation is more complicated. E.g., even restricting to domains

which are bounded, say below, in one direction the weak maximum principle (MP) - and hence an

ABP-estimate - is not necessarily valid. Indeed, consider

wx +
1

2
∆w = 0,

w(0, y) = 0, y ∈ R,

G = R+ ×R,

which has the solution w = 1 − e−2x. Restricting further to domains bounded below in both

directions is still not sufficient to guarantee the MP, as the example from [15] shows: The function

w(x, y) = 1− e−2 min(x,y) − 2 min(x, y)e−x−y is a C2-solution of the system

wx1{y>x} + wy1{y≤x} +
1

2
∆w = 0,

G = R+ ×R+,

w/∂G = 0.

Hence, we need a further restriction, and we choose the boundary behavior of our function w(x, y)

for x→∞, y →∞, as this is motivated by our application.

Summing up, we shall consider problems on G ⊂ R+ × R+, with anisotropic Laplacian and a

drift vector, varying in a segment of the positive quadrant, as well as a “boundary condition” at

(∞,∞).

Concerning the existing literature, let us mention the paper of [2], where the author shows an

ABP-estimate for unbounded domains, satisfying a condition called (G), which, roughly speaking,

assumes “enough boundary near every point of the domain”; see Remark 2.1 of [2] for some examples

satisfying this condition. Cones like R+ ×R+ do not satisfy his condition.

A. Vitolo weakens condition (G) in [18] to a condition (wG), s.t., e.g., cones do fulfill condition

(wG). But on the other hand, he has to assume a decrease of the order O(1/x) for the norm of the

drift vector, as ||x|| → ∞, whereas in [2] only boundedness of the drift vector is assumed.

2 The main result

Let us start with some notation. Let G be an unbounded domain in R2, satisfying and exterior cone

condition, see e.g. [7]. Moreover, we assume that the domain G is bounded below in the x-direction,
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as well as in the y-direction, i.e. w.l.o.g. we assume

G ⊂ R+ ×R+. (1)

Furthermore, we introduce an anisotropic Laplacian by ∆(ε) := ∂2

∂x2 + ε2 ∂2

∂y2 , where ε > 0 is assumed

to be small. We shall study the following system

Lw + f := a1(x, y)wx(x, y) + a2(x, y)wy(x, y) +
1

2
∆(ε)w(x, y) + f(x, y) = 0,

w/∂G = 0, (2)

lim
x→∞,y→∞

w(x, y) = 0.

For the drift vector we assume ka1 + a2 = ρ, with constants k, ρ > 0, ai ≥ 0 (hence bounded) and

measurable, which means the the drift vector may vary on a line segment of the positive quadrant.

In the application, mentioned in the Introduction, one would have k = ρ = 1. We are interested in

the case of small ε, hence we shall provide the explicit dependence of constants on ε, but we put the

dependence on k and ρ in generic positive constants, which may vary from place to place, i.e., we

shall write C(k, ρ) or simply C.

For the inhomogeneity f(x, y) we assume f ∈ L1(G) ∩ L2(G) ∩ L∞(G). Our main result is

Theorem 2.1 The system (2) has a unique solution w ∈W 2,2
loc (G) ∩ C(G), which fulfills

||w||L∞(G) ≤
C(ρ, k)

ε

(√
ε(− ln ε)||f ||L2(G) + ||f ||L1(G)

)
.

We shall prove the theorem by a series of auxiliary results and start with the definition of the system

Lw(R) + f(x, y) = 0,

w
(R)

/∂G(R) = 0, (3)

with G(R) := G ∩ (0, R)2, and where the ai and the inhomogeneity f stem from (2) (restricted to

the set G(R)).

For this system we find

Lemma 2.1 The system (3) has a unique solution w(R) ∈W 2,2
loc (G(R)) ∩ C(G(R)), which allows the

representation

w(R)(x, y) = E

[∫ τ(R)

0

f(Zt) dt

]
,

where τ (R) := inf{t > 0|Zt /∈ G(R)}, with Zt := (Xt, Yt),

Xt = x+

∫ t

0

a1(Xs, Ys) ds+W
(1)
t ,

Yt = y +

∫ t

0

a2(Xs, Ys) ds+ εW
(2)
t ,

and W (1),W (2) independent standard Brownian motions.

Proof. We first note that G(R) satisfies an exterior cone condition, since G does so. Hence, we can

apply Theorem 9.30 of [7], to get a unique solution w(R) ∈W 2,2
loc (G(R)) ∩ C(G(R)).

On the other hand, Theorem 2.10.2 of [13] gives the desired representation, if we apply the

Theorem there once for v, and once for −v (in the notation there!). tu

Remark 2.1 For convenience we assume f ≥ 0, prove Theorem 2.1 first in this case and close the

proof with the general case.

Moreover, we define f(x, y) in the complement of G to be zero. Slightly abusing notation, we

denote the function defined now on R2 again by f .
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Defining now

W (x, y) := E

[∫ ∞
0

f(Zt) dt

]
, (4)

we get as an easy consequence of our representation formula and the nonnegativity of f

Corollary 2.1

w(R1)(x, y) ≤ w(R2)(x, y) ≤W (x, y),

for (x, y) ∈ G(R1), and for R1 ≤ R2.

Our next lemma gives an upper bound for the function W , by replacing the function f by an

appropriate simple function, i.e. we have

Lemma 2.2 Let R2 = ∪i∈Z2Qi, with

Qi := [x+ (2j − 1)∆, x+ (2j + 1)∆)× [y + (2k − 1)∆, y + (2k + 1)∆).

Here i = (j, k), with j, k ∈ Z and ∆ > 0. Finally, let f i := ess sup(x,y)∈Qif(x, y). Then we have

W (x, y) ≤
∑
i∈Z2

f iE

[∫ ∞
0

1Qi(Xs, Ys) ds

]
,

where 1 denotes the indicator function.

Proof.

E

[∫ ∞
0

f(Xs, Ys) ds

]
≤ E

[∫ ∞
0

∑
i∈Z2

f i1Qi(Xs, Ys) ds

]
=
∑
i∈Z2

f iE

[∫ ∞
0

1Qi(Xs, Ys) ds

]
tu

In order to get a more convenient process in one direction, we now introduce new processes:

Xt := (kXt + Yt) /
√
ε2 + k2 = x+ ρt+B

(1)
t ,

Y t := (−εXt + kYt/ε) /
√
ε2 + k2 = y +

∫ t

0

v(Xs, Y s) ds+B
(2)
t , (5)

where B
(1)
t and B

(2)
t are independent standard Brownian motions, and where

ρ = ρ/
√
ε2 + k2,

v(Xs, Y s) ∈
[
−ρε
k
,
ρk

ε

]
,

holds. This can be verified by direct calculation. Our next lemma estimates the time spend in the

small squares (we first consider the one around the origin) appearing in the previous lemma, by our

new processes. I.e., we have

Lemma 2.3

J(x, y, a1) := E

[∫ ∞
0

1[−∆,∆)×[−∆,∆)(Xs, Ys) ds

]
≤

∫ ∞
0

P

(
−C(k)∆ ≤ Xt < C(k)∆,−C(k)∆

ε
≤ Y t <

C(k)∆

ε

)
dt,

for some positive constant C(k).

Proof. Using the “backwards transformation”

Xt =
k√

ε2 + k2

(
Xt −

ε

k
Y t

)
,

Yt =
1√

ε2 + k2

(
ε2Xt + εkY t

)
,
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we express our target functional by our new variables and get

J(x, y, v) =

∫ ∞
0

P

(
−∆ ≤ kXt − εY t√

ε2 + k2
< ∆,−∆

ε
≤ εXt + kY t√

ε2 + k2
<

∆

ε

)
dt

=

∫ ∞
0

P

(
−∆
√
ε2 + k2 + kXt

ε
< Y t ≤

∆
√
ε2 + k2 + kXt

ε
,

−∆
√
ε2 + k2

εk
− ε

k
Xt ≤ Y t <

∆
√
ε2 + k2

εk
− ε

k
Xt

)
dt

≤
∫ ∞

0

P

(
−C(k)∆ ≤ Xt < C(k)∆,−C(k)

ε
∆ ≤ Y t <

C(k)

ε
∆

)
dt,

where the last inequality follows by simple geometric considerations. tu
We restrict now to the time interval [0, 1] and formulate a proposition, which we shall prove in

the next section, mainly by considerations about the one-dimensional process in y-direction. In order

to do this, we have to introduce some new processes, which are just a shift in the y-direction.

X
(1)
t = x(1) + ρ(1)t+B

(1)
t ,

Y
(1)
t = y(1) +

∫ t

0

v(1)
s ds+B

(2)
t ,

ρ(1) :=
ρ√

k2 + ε2
= ρ,

v(1)(X
(1)
t , Y

(1)
t ) ∈ [0,M ],M > max(ρ(1), 2).

Note that as we are finally interested in small values of ε, which provides large values of M , we

assume - for convenience - M > max(ρ(1), 2). For this processes we get

Proposition 2.1 One has

a) E

[∫ 1

0

1[−∆,∆)(X
(1)
s )1[−∆̃,∆̃)(Y

(1)
s ) ds

]
≤ C(ρ, k)∆∆̃

(∣∣∣ln(max(|x(1)|, |y(1)|) ∧ 1
)∣∣∣+ lnM

)
,

b) E

[∫ 1

0

1[−∆,∆)(X
(1)
s )1[−∆̃,∆̃)(Y

(1)
s ) ds

]
≤ C(ρ, k)∆∆̃e−

(x(1))2

32 (lnM), |x(1)| > 4ρ(1),

c) E

[∫ 1

0

1[−∆,∆)(X
(1)
s )1[−∆̃,∆̃)(Y

(1)
s ) ds

]
≤ C(ρ, k)∆∆̃e−

(y(1))2

32 (lnM), |y(1)| > 4M,

d) E

[∫ 1

0

1[−∆,∆)(X
(1)
s )1[−∆̃,∆̃)(Y

(1)
s ) ds

]
≤ C(ρ, k)∆∆̃e−

(x(1))2+(y(1))2

32 (lnM),

for |x(1)| > 4ρ(1), |y(1)| > 4M .

We now go back to the processes (Xt, Y t) and show a similar result as the previous one by an

application of Girsanov’s theorem. In the rest of this section we shall use ∆̃ := ∆/ε

Corollary 2.2

J (1)(x, y, v) := E

[∫ 1

0

1[−∆,∆)(Xs)1[−∆̃,∆̃)(Y s) ds

]
≤ C(ρ, k)∆∆̃ (|ln (max(|x|, |y|) ∧ 1)| − ln ε) ,

J (1)(x, y, v) ≤ C(ρ, k)∆∆̃(− ln ε)e−
(x)2

32 , |x| > 4ρ.

Proof. We first note that, if we define B̃t := B
(2)
t − ρε

k t, (B
(1)
t , B̃t) is by Girsanov’s theorem a

two-dimensional Q-Brownian motion, where Zt = dQ
dP , with 1/Zt = e−

ρε
k B̃t−

ρ2ε2

2k2
t. Moreover, we
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have v(1) = v + ρε
k ∈ [0, ρkε + ρε

k =: M ], and x = x(1), y = y(1). Hence,∫ 1

0

P

(
−∆ ≤ x+ ρt+B

(1)
t < ∆,−∆̃ ≤ y +

∫ t

0

vs ds+B
(2)
t < ∆̃

)
dt

=

∫ 1

0

P

(
−∆ ≤ x+ ρt+B

(1)
t < ∆,−∆̃ ≤ y +

∫ t

0

v(1)
s ds+ B̃t < ∆̃

)
dt

=

∫ 1

0

EQ

[
1

Zt
1{−∆≤x+ρt+B

(1)
t <∆,−∆̃≤y+

∫ t
0
v
(1)
s ds+B̃t<∆̃}

]
dt

=

∫ 1

0

EQ

[
e−

ρε
k B̃t−

ρ2ε2

2k2
t 1{−∆≤x+ρt+B

(1)
t <∆,−∆̃≤y+

∫ t
0
v
(1)
s ds+B̃t<∆̃}

]
dt

≤ C(ρ, k)

∫ 1

0

EQ

[
1{−∆≤x+ρt+B

(1)
t <∆,−∆̃≤y+

∫ t
0
v
(1)
s ds+B̃t<∆̃}

]
e
yρε
k dt,

where we have used in the last inequality the fact that

−ρε
k
B̃t ≤

2Mρε

k
+
yρε

k

holds on the set where the indicator function is nonzero, for ∆ small enough. Applying Proposition

2.1, in particular c) to get control over the e
yρε
k term, concludes the proof. tu

We extend this result to the full time interval and assert the validity of

Lemma 2.4

J (∞)(x, y, v) := E

[∫ ∞
0

1[−∆,∆)(Xs)1[−∆̃,∆̃)(Y s) ds

]
≤ C(ρ, k)∆∆̃ (|ln (max(|x|, |y|) ∧ 1)| − ln ε) .

Proof. Since for
∫ 1

0
we have already the previous corollary, we concentrate on the rest of the time

interval and get

E

[∫ ∞
1

1[−∆,∆)(Xs)1[−∆̃,∆̃)(Y s) ds

]
=

∞∑
n=1

E

[∫ n+1

n

1[−∆,∆)(Xs)1[−∆̃,∆̃)(Y s) ds

]
. (6)

Fixing now n, we define

E

[∫ n+1

n

1[−∆,∆)(Xt)1[−∆̃,∆̃)(Y t) dt

]
=

∫ ∞
−∞

P
(
Xn ∈ dz

)
E

[∫ n+1

n

1[−∆,∆)(Xt)1[−∆̃,∆̃)(Y t) dt|Xn = z

]
=

∫
|z|>4ρ

+

∫
|z|≤4ρ

=: J1(n) + J2(n). (7)

For J1(n) we have by Corollary 2.2

J1(n) ≤ C(ρ, k)∆∆̃(− ln ε)

∫
|z|>4ρ

P
(
Xn ∈ dz

)
e−

z2

32

= C(ρ, k)∆∆̃(− ln ε)

∫
|z|>4ρ

1√
2πn

e−
(z−x−nρ)2

2n e−
z2

32 dz ≤ C(ρ, k)∆∆̃(− ln ε)√
n

e−
(nρ+x)2

2n+32 ,

where the last inequality holds by a trivial estimate of the error functions, resulting from the integral.

Hence, we get for the sum

∞∑
n=1

J1(n) ≤ C(ρ, k)∆∆̃(− ln ε)

∞∑
n=1

1√
n
e−

(nρ+x)2

2n+32 ≤ C(ρ, k)∆∆̃(− ln ε)

∞∑
n=1

1√
n
e−

n2ρ2

34n −
2nxρ
34n −

x2

34n

= C(ρ, k)∆∆̃(− ln ε)e−
2xρ
34

∞∑
n=1

1√
n
e−

n2ρ2

34n −
x2

34n =: C(ρ, k)∆∆̃(− ln ε)e−
2xρ
34

∞∑
n=1

f(n).
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One can check that the function f(z) has one maximum, say at z = z∗, so we find

∞∑
n=1

J1(n) ≤ C(ρ, k)∆∆̃(− ln ε)e−
2xρ
34

(∫ ∞
1

1√
z
e−

zρ2

34 −
x2

34z dz + f(z∗)

)
.

We observe that f(z∗)e−
2xρ
34 ≤ 1 holds and that the integral, which can be calculated explicitly, is

bounded above by C(ρ, k)e−
ρ2+x2

34 . Hence, we find

∞∑
n=1

J1(n) ≤ C(ρ, k)∆∆̃(− ln ε). (8)

Considering now J2(n), we get, similarly as for J1, by an application of Corollary 2.2 and the

Cauchy-Schwarz inequality

J2(n) ≤
∫ 4ρ

−4ρ

C(ρ, k)∆∆̃
e−

(z−x−nρ)2
2n

√
2πn

(
− ln ε+

∣∣ln (max(|Y n|, |z|) ∧ 1
)∣∣) dz

≤ C(ρ, k)∆∆̃

∫ 4ρ

−4ρ

1√
n
e−

(z−x−nρ)2
2n (− ln ε+ |ln (|z| ∧ 1)|) dz

≤ C(ρ, k)∆∆̃(− ln ε)C(ρ)

√∫ 4ρ

−4ρ

1

n
e−

(z−x−nρ)2
n dz

≤ C(ρ, k)∆∆̃(− ln ε)

√
8ρ

1

n
e8ρ2+2|x|ρ− x

2+n2ρ2−8ρ|x|
n .

Hence,
∞∑
n=1

J2(n) ≤ C(ρ, k)∆∆̃(− ln ε)e|x|ρ
∞∑
n=1

1√
n
e−

x2+n2ρ2−8ρ|x|
2n . (9)

We now distinguish two cases:

Case 1. x2 ≤ 8ρ|x| ⇔ |x| ≤ 8ρ.

Here, one obviously has
∞∑
n=1

J2(n) ≤ C(ρ, k)∆∆̃(− ln ε). (10)

On the other hand we have

Case 2. x > 8ρ⇒ A := |x|2 − 8ρ|x| > 0.

We first consider the sum on the r.h.s. of (9) and find

∞∑
n=1

1√
n
e−

A+n2ρ2

2n ≤ e−
√
Aρ +

∫ ∞
1

e−
A+z2ρ2

2z dz

= e−
√
Aρ +

√
π

2

1

ρ

(
e
√
Aρerfc

(
ρ+
√
A√

2

)
+e−

√
Aρerfc

(
ρ−
√
A√

2

))
= ≤ C(ρ)e−

√
Aρ.

This yields

∞∑
n=1

J2(n) ≤ C(ρ, k)∆∆̃(− ln ε)eρ(|x|−
√
A) = C(ρ, k)∆∆̃(− ln ε)e

ρ|x|
(

1−
√

1− 8ρ
x

)
≤ C(ρ, k)∆∆̃(− ln ε).

(11)

Finally, (6),(7),(8),(10),(11) and Corollary 2.2 prove our assertion. tu
Lemma 2.3, 2.4, using the Euclidean norm instead of the maximum norm in R2 (which gives

just an additional constant), expressing the r.h.s. again by the (x, y) variable as well as translation

invariance provide
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Corollary 2.3

E

[∫ ∞
0

1[z−∆,z+∆)×[w−∆,w+∆)(Xs, Ys) ds

]
≤ C(ρ, k)

ε
∆2

(∣∣∣∣∣ln
(√

(x− z)2 +
(y − w)2

ε2
∧ 1

)∣∣∣∣∣− ln ε

)

Combining now Lemma 2.2 with the previous corollary, and the limit ∆→ 0, yields

Corollary 2.4

W (x, y) = E

[∫ ∞
0

f(Zt) dt

]
≤ C(ρ, k)

ε

∫
R2

f(z, w)

(∣∣∣∣∣ln
(√

(x− z)2 +
(y − w)2

ε2
∧ 1

)∣∣∣∣∣− ln ε

)
dz dw.

Remark 2.2 The two previous corollaries mean that, if a fundamental solution for our operator

exists, it has an upper bound with a logarithmic singularity at the pole and bounded at infinity. Let

us mention that there exist a lot of results on the existence and estimation of fundamental solutions

of elliptic PDE’s, see e.g. [14], [8] or [6]. But most of them are concerned with operators in

divergence form, or operators with only second order terms. A notable exception are the articles [3],

for dimension n ≥ 3, and [4] for n = 2 (see the introduction of [3] for a comprehensive overview on

this topic). There also non homogeneous operators are considered. Nevertheless, our operator does

not belong to the class considered in [4], since the condition on the divergence of the lower order term

(equation (5) there) is not fulfilled in our case.

So, to the best of our knowledge, there does not exist a result in the literature, which would be

applicable in our case.

We now arrive at the final estimate for W (x, y), i.e.

Proposition 2.2

W (x, y) ≤ C(ρ, k)

ε

(
||f ||L1(G) +

√
ε(− ln ε)||f ||L2(G)

)
.

Proof. Defining H := {(z, w)|(z − x)2 + (w−y)2

ε2 ≤ 1} and splitting the integral, one has∫
R2

f(z, w)

(∣∣∣∣∣ln
(√

(x− z)2 +
(y − w)2

ε2
∧ 1

)∣∣∣∣∣− ln ε

)
dz dw =

∫
H

+

∫
Hc
. (12)

Now, for the second integral one clearly gets∫
Hc
f(z, w)

(∣∣∣∣∣ln
(√

(x− z)2 +
(y − w)2

ε2
∧ 1

)∣∣∣∣∣− ln ε

)
dz dw = (− ln ε)||f ||L1(Hc), (13)

whereas for the first one, Cauchy-Schwarz yields∫
H

f(z, w)

(∣∣∣∣∣ln
(√

(x− z)2 +
(y − w)2

ε2
∧ 1

)∣∣∣∣∣− ln ε

)
dz dw ≤

||f ||L2(H)

∣∣∣∣∣
∣∣∣∣∣
(∣∣∣∣∣ln

(√
(x− z)2 +

(y − w)2

ε2

)∣∣∣∣∣− ln ε

)∣∣∣∣∣
∣∣∣∣∣
L2(H)

. (14)

Finally, by a change of integration variables r := z−x, s := (w−y)/ε, the last L2-norm is easily seen

to be smaller than C
√
ε(− ln ε), which concludes by (12)-(14) and Corollary 2.4 our proof. tu

Finally, we give the proof of our main result, namely

Proof of Theorem 2.1

Let

w(x, y) := lim
Rn→∞

w(Rn), (15)

8



see Corollary 2.1. Clearly, we have w/∂G = 0, and we shall now show that w is a W 2,2
loc (G)-solution

of

Lw + f = 0. (16)

Let H be an arbitrary bounded domain, s.t. H ⊂ G. Moreover, let n0 be large enough, s.t.

H ⊂ G(Rn) holds, for n ≥ n0. By Theorem 9.30 of [7], one has w(Rn) ∈ W 2,2
loc

(
G(Rn)

)
, and the

a-priori estimate of Theorem 9.11 of [7] yields that ||w(Rn)||W 2,2(H) is bounded for n ≥ n0. Hence,

Sobolev’s imbedding theorem gives that the convergence in (15) is uniform, and w(x, y) is continuous

in H.

Now, let v be the W 2,2
loc (H)-solution of

Lv + f = 0, on H,

v = w, on ∂H.

We conclude

|v − w| = lim
n→∞

|v − w(Rn)| = lim
n→∞

sup
∂H
|v − w(Rn)| = 0,

by the maximum principle. Hence, w = v, and (16) is proved, since H was arbitrary.

We now prove

lim
x→∞,y→∞

w(x, y) = 0. (17)

We shall show this limit relation for W (x, y) = E
[∫∞

0
f(Zt) dt

]
, which is sufficient because of Corol-

lary 2.1.

So let R > 0 be arbitrary, and BR denotes a sphere with radius R, centered at the origin.

Moreover, assume
√
x2 + y2 > R, and denote τR := inf{t| |Zt| = R}. We have

P(τR <∞)→ 0,

for x → ∞, y → ∞, because of our assumption on the drift of the process Zt. We now split the

function W into three parts, i.e.

W (x, y) = E

[∫ ∞
0

f(Zt) dt1{τR=∞}

]
+ E

[∫ τR

0

f(Zt) dt1{τR<∞}

]
+ E

[∫ ∞
τR

f(Zt) dt1{τR<∞}

]
=: I1 + I2 + I3.

For I1 we find, using the definition f̂ := f1{BcR} and Proposition (2.2),

I1 ≤
C(ρ, k)

ε

(
||f̂ ||L1(G) +

√
ε(− ln ε)||f̂ ||L2(G)

)
.

The same estimate holds clearly for I2. Let dF (s) be the hitting distribution of ZτR on ∂BR, hence,∫
∂BR

dF (s) = P(τR <∞). This provides for I3

I3 =

∫
∂BR

dF (s)Es

[∫ ∞
0

f(Zt) dt

]
≤
∫
∂BR

dF (s)

(
C(ρ, k)

ε

(
||f ||L1(G) +

√
ε(− ln ε)||f ||L2(G)

))
= P(τR <∞)

(
C(ρ, k)

ε

(
||f ||L1(G) +

√
ε(− ln ε)||f ||L2(G)

))
.

Therefore,

lim sup
x→∞,y→∞

(I1 + I2 + I3) ≤ C(ρ, k)

ε

(
||f̂ ||L1(G) +

√
ε(− ln ε)||f̂ ||L2(G)

)
.

Using now our integrability condition of f , gives, after R→∞, lim supx→∞,y→∞(I1 + I2 + I3) = 0.

This finally provides limx→∞,y→∞W (x, y) = 0, hence limx→∞,y→∞ w(x, y) = 0.
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Hence, so far we have constructed a W 2,2
loc solution of the system

Lw + f = 0,

w/∂G = 0,

lim
x→∞,y→∞

w(x, y) = 0.

The final task is to prove uniqueness. So let w1, w2 be two solutions, and denote D := w1−w2. This

yields

LD = 0,

D/∂G = 0,

lim
x→∞,y→∞

D(x, y) = 0. (18)

Let τn be the exit time of G(Rn) and τ the exit time of G, s.t. we have limn→∞ τn = τ a.s..

As in the proof of Lemma 2.1, we get by Ito-Krylov’s formula (since D fulfills the homogeneous

PDE) E [D(Xτn∧t, Yτn∧t] = D(x, y). Since D is bounded, because the wi are so, we find by n→∞

E [D(Xτ∧t, Yτ∧t] = D(x, y). (19)

Now, one easily checks by Ito’s Lemma (see also Proposition 3.1 [10]) that −e−
2ρ
k X

τ
t is a local

supermartingale, bounded above and below (here enters our assumption on the set G!). Therefore,

this process is a true supermartingale, hence limt→∞−e−
2ρ
k X

τ
t exists a.s., and limt→∞Xτ

t exists a.s.

as well. Clearly, on the set {τ =∞} this limit can not be finite, and we get

lim
t→∞

Xt =∞,

lim
t→∞

Yt =∞, (20)

on {τ =∞}, since the same considerations hold for the process Yt as well. All together, D/∂G = 0,

the third equation of (18) and (20) gives, after t→∞ in (19), D(x, y) = 0, which finishes the proof

for f ≥ 0. For the general case we just have to use the decomposition f = f+ − f−, as well as the

linearity of the basic PDE. tu

3 A one dimensional optimal control problem

The main purpose of this section is to prove Proposition 2.1. In order to do this, we shall solve an

one dimensional optimal control problem, which we formulate now. Let

Y (1)
s = y(1) +

∫ s

t

v(1) ds+B
(2)
s−t, s ≥ t,

J(t, y(1), v(1)) = Ey(1)

[∫ 1

t

1A(s)1[−∆,∆)(Y
(1)
s ) ds

]
→ max, (21)

where we want to maximize over all progressively measurable processes v
(1)
s with values in [0,M ],

M > 0. Moreover, A denotes the set A = ∪k∈I(a2k, a2k+1) ⊂ [0, 1], where I = {0, 1, 2, ..m} or

I = N0, and where ai < ai+1.

For this target functional J we define the following value function

Definition 3.1 We set

V (t, y(1)) := sup
v(1)

J(t, y(1), v(1)).

10



Obviously, V (1, y(1)) = 0 holds. We shall estimate this value function by a series of lemmas, where

the first one provides some properties of the value function V , for fixed t.

Lemma 3.1 For fixed t ∈ [0, 1) we have:

a) V (t, y(1)) is strictly monotone increasing for y(1) ∈ (−∞,−∆].

b) V (t, y(1)) is strictly monotone decreasing for y(1) ∈ [∆,∞).

c) V (t, y(1)) is concave for y(1) ∈ (−∆,∆).

Proof. We first note that, for fixed y(1), V (t, y(1)) is monotone non increasing in t, since this holds

obviously for J and fixed strategy v(1).

Let now y
(1)
1 < y

(1)
2 ≤ −∆.

Denote by Y
(1),y(1)

s our process Y
(1)
s , starting at time t at the value y(1). Furthermore, let τ be the

stopping time τ := inf{s > t|Y (1),y(1)

s = y
(1)
2 } ∧ 1. By the dynamic programming principle (DPP),

as it is formulated, e.g., in (3.20) of [17], we find

V (t, y
(1)
1 ) = sup

v(1)
E

[∫ τ

t

1A(s)1[−∆,∆)(Y
(1),y(1)

s ) ds+ V (τ, Y (1),y(1)

τ )

]
= E

[
V (τ, Y (1),y(1)

τ )
]

= E
[
V (τ, Y (1),y(1)

τ )1{τ<1}

]
= E

[
V (τ, y

(1)
2 )1{τ<1}

]
≤ E

[
V (t, y

(1)
2 )1{τ<1}

]
< V (t, y

(1)
2 )

Here we have used our assumption on the y
(1)
i in the second equality, the boundary condition at

time t = 1 at the third one, and finally, in the last but one inequality our monotonicity property in

t. This shows a), and the point b) can be proved analogously.

We come to the proof of concavity. Let us first note that we have

0 ≤ V (t, y)− V (s, y) ≤ λ ([s, t] ∩A) , (22)

for s < t and λ denoting the Lebesgue measure. Indeed, no strategy can generate an occupation time

larger than the r.h.s. of (22). Let now y(1) ∈ (−∆,∆) and η > 0 small enough, s.t. (y(1)−η, y(1)+η) ⊂
(−∆,∆). Moreover, let τ denote the stopping time τ = inf{s > t|Y (1),y(1)

s /∈ (y(1) − η, y(1) + η)} ∧ 1.

In the following we use again the DPP and the notation Y
(1),y(1),0
s for our process Y

(1),y(1)

s , employing

11



the strategy v(1) ≡ 0, as well as p := P(τ = 1).

V (t, y(1))

= sup
v(1)

E

[∫ τ

t

1A(s)1[−∆,∆)(Y
(1),y(1)

s ) ds+ V (τ, Y (1),y(1)

τ )

]
= sup

v(1)
E

[
1{τ=1}

∫ τ

t

1A(s)1[−∆,∆)(Y
(1),y(1)

s ) ds+

1{τ<1}

(∫ τ

t

1A(s)1[−∆,∆)(Y
(1),y(1)

s ) ds+ V (τ, Y (1),y(1)

τ )

)]
≥ sup

v(1)

(
p
V (t, y(1) + η) + V (t, y(1) − η)

2
+

E

[
λ ([t, τ ] ∩A) 1{τ<1} + V (τ, Y (1),y(1)

τ )1
{Y (1),y(1)

τ =y(1)+η}
+ V (τ, Y (1),y(1)

τ )1
{Y (1),y(1)

τ =y(1)−η}

])
≥ sup

v(1)

(
p
V (t, y(1) + η) + V (t, y(1) − η)

2
+

E

[
V (t, Y (1),y(1)

τ )1
{Y (1),y(1)

τ =y(1)+η}
+ V (t, Y (1),y(1)

τ )1
{Y (1),y(1)

τ =y(1)−η}

])
≥ p

V (t, y(1) + η) + V (t, y(1) − η)

2
+

E

[
V (t, Y (1),y(1),0

τ )1
{Y (1),y(1),0
τ =y(1)+η}

+ V (t, Y (1),y(1),0
τ )1

{Y (1),y(1),0
τ =y(1)−η}

]
= p

V (t, y(1) + η) + V (t, y(1) − η)

2
+ V (t, y(1) + η)

1− p
2

+ V (t, y(1) − η)
1− p

2

=
V (t, y(1) + η) + V (t, y(1) − η)

2
.

Here we have used in in the last but one inequality the relation (22), and in the last but one equality

the fact that, with v(1) ≡ 0, the probability of hitting the upper barrier is the same as for the lower

one. Hence, for fixed t, V (t, y(1)) is midpoint concave, which implies, since it is measurable, that it

is concave. This finishes the proof of our Lemma. tu
In order to solve the extremal problem (21), we shall apply a result from [19] and find

Lemma 3.2 The extremal problem (21) is solved by

v(1),∗(t, y(1)) = M1{(t, y(1))|y(1) ≤ φ(t)},

for some measurable function φ(t), with values in [−∆,∆], i.e. one has V (t, y(1)) = J(t, y(1), v(1),∗).

Proof. The proof is simply an application of Theorem 5.2) of [19]. Indeed, one easily checks that

his assumptions formulated in §5.3 are fulfilled, and that the optimal strategy constructed in §5.3.3b)
coincides with our assertion, applying just our Lemma 3.1. tu

In our next auxiliary result we shall replace the function φ of the previous Lemma by a step

function, and we will show that the corresponding strategy approximates the optimal one arbitrary

well. We have

Lemma 3.3 For all η > 0 exists an n ∈ N and a strategy

v̂(t, y(1)) = M1{(t,y(1))|y(1)≤γ(t)},

where γ(t) := 1(ti−1,ti](t)γi, i = 1, 2, ..., n with γi 6= γi+1, γi ∈ [−∆,∆] and 0 = t0 < t1 < t2 < ... <

tn = 1, s.t. ∣∣∣J(0, y(1), v(1),∗)− J(0, y(1), v̂)
∣∣∣ ≤ η,

holds uniformly in y(1).
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Proof. Since the step functions are dense in Lp(0, 1), p ≥ 1, we have:

Given a ν > 0, there exists an n(p) and a step function γ(t) ∈ [−∆,∆], s.t. ||γ(t)− φ(t)||Lp(0,1) < ν

holds. This implies for the difference of the strategies v(1),∗ and v̂

||v(1),∗ − v̂||Lq,r :=

(∫ 1

0

(∫
R

∣∣∣v(1),∗(s, y(1))− v̂(s, y(1))
∣∣∣q dy(1)

) r
q

ds

) 1
r

= M

(∫ 1

0

|φ(s)− γ(s)|
r
q ds

) 1
r

= M ||φ− γ||1/q
Lr/q

< ν1/q, (23)

for an n(r/q), where we have used in the first equality the fact that the strategies v(1),∗, v̂ are {0,M}-
valued. Set now in Proposition 1 of [12], σ ≡ 1, d = 1, b = v(1),∗, bε = v̂, f = 1(−∆,∆), µ = 0, p = 2

and p′ = 3, as well as in Lemma 1 there i = 2 and r, q, s.t. 1/(2q) + 1/r < 1/(p ∨ i) = 1/2, e.g.

r=q=4. This yields ∣∣∣E [1[−∆,∆)(Y
(1),y(1),v(1),∗

t )− 1[−∆,∆)(Y
(1),y(1),v̂
t )

]∣∣∣
≤ C(2, 3)||v(1),∗ − v̂||Y,2,2E

[
|1[−∆,∆)(y

(1) +B
(2)
t )|3

]1/3
≤ C(2, 3)C3||v(1),∗ − v̂||L4,4 ≤ C(2, 3)C3ν

1/4,

where we have used Proposition 1 in the first inequality, Lemma 1 for the second one and finally our

inequality (23). Now, C3 depends by Lemma 1 on p, q, r, i and t. But checking the proof of Lemma

1, we see that this “constant” C3 is increasing in t, hence, we just take its value for t = 1, to get

a generic constant independent of t. Finally, the constant C(2, 3), stemming from Proposition 1,

depends on p, p′, λ = 1,Λ = 1 and t. Checking the proof, we see that this t−dependence comes from

the difference of the stochastic exponential of v̂ and v(1),∗, measured in the Lp-norm. Lemma 11

there shows that this constant is again growing in t, s.t. we just take again its value for t = 1.

This implies - taking ν small enough -∣∣∣E [1[−∆,∆)(Y
(1),y(1),v(1),∗

t )− 1[−∆,∆)(Y
(1),y(1),v̂
t )

]∣∣∣ ≤ η,
uniformly in t, y(1), hence ∣∣∣J(0, y(1), v(1),∗)− J(0, y(1), v̂)

∣∣∣ ≤ η,
as claimed. tu

We introduce now the shortcut Ŷt := Y
(1),y(1),v̂
t and the new process

Ỹt := Ŷt − γi+1, t ∈ (ti, ti+1], i = 0, 1, 2, ..., n− 1,

as well as Ỹ0 := Ŷ0 = y(1) = y(1) − γ0. (It will be convenient to set γ0 = 0.)

Remark 3.1 Note that the drift of Ỹt is given by M1(−∞,0](Ỹt), but the process jumps at the times ti.

The jump heights at the ti are given by γi−γi+1, i.e. we have Ỹti+−Ỹti = γi−γi+1, i = 0, 1, 2, ..., n−1.

One obviously has

Lemma 3.4

sup
t∈[0,1]

∣∣∣Ŷt − Ỹt∣∣∣ ≤ ∆,

uniformly in y(1).

Finally we define the process

Y̌t := y(1) +

∫ t

0

M1(−∞,0](Y̌s) ds+B
(2)
t ,

which has the same drift as Ỹt, but has no jumps. Our next lemma concerns the difference between

these two processes, i.e. we claim for Dt := Ỹt − Y̌t
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Lemma 3.5

sup
t∈[0,1]

|Dt| ≤ 3∆,

uniformly in y(1).

Proof. We first note that one has Dt0− = 0 and Dt0+ = −γ1. We have

Fact 1: If −γ1 < 0, Ỹt0+ < Y̌t0+ = Y̌t0 , the drift of Ỹt is at least as large as that of Y̌t, hence, in the

interval (t0, t1], |Ỹt − Ȳt| is decreasing, but (Ỹt − Y̌t) keeps its sign. The same is true for −γ1 > 0. If

Dt reaches the value zero in the interval (t0, t1), it remains there until the next jump.

As this holds as well for the consecutive intervals, Fact 1 implies

sup
t∈[0,1]

|Dt| ≤ max
i

max {|Dti | , |Dti+|} . (24)

Denote now

s0 := Dt0− = 0,

s1 := Dt0+ = γ0 − γ1 = −γ1,

s2 := Dt1− ∈ [0,−γ1], or ∈ [−γ1, 0] ,depending on the sign of γ1,

s3 := Dt1+ = Dt1− + (γ1 − γ2),

...

and define the di by s0 = d0, s1 = s0 +d1, s2 = s1 +d2, s3 = s2 +d3,..., hence, the d′s with odd index

are the jumps γr − γr+1. Clearly, by Fact 1, the sk can change the sign only by dk’s with odd index.

We now claim

sup
k
|sk| ≤ 3∆, (25)

and prove only supk sk ≤ 3∆, as the proof of the remaining inequality works analogously.

We argue by contradiction. So assume that there exists a k0, s.t. sk0 > 3∆. Let now τ :=

sup{l < k0|sl ≤ 0}. By Fact 1 and the definition of the di’s, τ has to be even, i.e. τ = 2m. This

implies

dτ+1 + dτ+2 + ...+ dk0 ≥ 3∆.

As the d′s with even index on the l.h.s. are non positive, this gives

dτ+1 + dτ+3 + ...+ dλ ≥ 3∆,

where λ is the largest odd index less or equal to k0. Hence,

(γr − γr+1) + (γr+1 − γr+2) + ...+ (γs − γs+1) ≥ 3∆,

for some natural numbers r, s, clearly a contradiction, proving (25) and our Lemma. tu
Lemma 3.4 and Lemma 3.5 provide now

Lemma 3.6

sup
t∈[0,1]

∣∣∣Ŷt − Y̌t∣∣∣ ≤ 4∆,

uniformly in y(1).

The process Y̌t is a Brownian motion with two-valued drift, the transition density pt(x, y) of which

is known in terms of multiple integrals. We exploit this knowledge to give an estimate of pt(0, 0).

i.e.
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Lemma 3.7 We have

pt(0, 0) ≤ 2√
t
, t ∈ [0, 1].

Proof. By [11], 6.5.12 and Problem 3.5.8, one has

pt(0, 0) = 2

∫ ∞
0

∫ t

0

e2bθ1
|b|√

2π(t− τ)3
e−

(b+M(t−τ))2
2(t−τ)

|b|√
2πτ3

e−
b2

2τ db dτ.

Introducing the new integration variables s = τ/t, a = b−Mt(1− s)s, one gets - after some calcula-

tions -

pt(0, 0) =
1

πt2

∫ 1

0

ds

∫ ∞
−Mt(1−s)s

(a+Mt(1− s)s)2√
s3(1− s)3

e−
a2

2t(1−s)s−
M2t(1−s)2

2 da.

The inner integral can be calculated explicitly, and the result is

pt(0, 0) =

∫ 1

0

(J11 + J12 + J21 + J22 + J3) ds. (26)

We now estimate the integrals and start with J1 and J2. We have

|J11| =
√
tM2

√
2π

(s− s2)e−
M2t(1−s)2

2 erf

(
M
√
ts
√

1− s√
2

)
,

|J12| =
√
tM2

√
2π

(s− s2)e−
M2t(1−s)2

2 ,

hence |J11|+ |J12| ≤ 2J12. We now introduce now g(α) :=
∫ 1

0
(s− s2)e−α(1−s)2 ds, and get∫ 1

0

|J12(s)| ds =

√
2

πt
g(
M2t

2
)
M2t

2
.

One easily checks that αg(α) ≤ 1/2, for all non negative α. All together, we arrive at∫ 1

0

|J11(s)|+ |J12(s)| ds ≤
√

2

πt
. (27)

Similarly, one has ∫ 1

0

|J22(s)| ds =

√
1

2πt

∫ 1

0

e−
M2t(1−s)2

2 ds ≤
√

1

2πt
.

As |J21(s)| = |J22(s)| |erf(·)|, one arrives at∫ 1

0

|J21(s)|+ |J22(s)| ds ≤
√

2

πt
. (28)

We finally find for J3∫ 1

0

|J3(s)| ds =
M

π

∫ 1

0

√
s(1− s)e−M

2t
2 (1−s) ds ≤ M

π

∫ 1

0

√
1− se−M

2t
2 (1−s) ds

=:
1

π

√
2

t
M

√
t

2
h(M

√
t

2
) ≤ 1√

2tπ
. (29)

Here we have used the fact that one has for the function h, defined in the last equality, αh(α) ≤ 1/2,

for positive α, which one can easily check. Combining (26)-(29), concludes the proof. tu
We now use the previous Lemma to estimate the occupation time for the square [−∆,∆]2 of the

two dimensional process (X̌t, Y̌t), where we identify X̌t ≡ Xt, with Xt defined in (5).

Proposition 3.1 For ∆ small enough, say ∆ < ∆0(M,x(1), y(1)), we have

E

[∫ 1

0

1[−∆,∆)(X̌s)1[−∆,∆)(Y̌s) ds

]
≤ C(ρ)∆2

(
lnM − ln

(
max(|x(1)|, |y(1)|)

))
.
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Proof. Denoting the transition densities of X̌ and Y̌ by pX̌ , resp. pY̌ , one finds

lim
∆→0

1

4∆2
E

[∫ 1

0

ds1[−∆,∆)(X̌s)1[−∆,∆)(Y̌s)

]
= lim

∆→0

1

4∆2

∫ 1

0

dsP(−∆ ≤ X̌s < ∆)P(−∆ ≤ Y̌s < ∆)

= lim
∆→0

1

4∆2

∫ 1

0

ds

∫ ∆

−∆

∫ ∆

−∆

dz1dz2 p
X̌
s (x(1), z1)pY̌s (y(1), z2)

=

∫ 1

0

ds lim
∆→0

1

4∆2

∫ ∆

−∆

∫ ∆

−∆

dz1dz2 p
X̌
s (x(1), z1)pY̌s (y(1), z2)

=

∫ 1

0

ds pX̌s (x(1), 0)pY̌s (y(1), 0)

=: κ(1)(x(1), y(1)) < κ∞(x(1), y(1)) :=

∫ 1

0

ds pX̌s (x(1), 0)pY̌s (y(1), 0).

Note that the interchange of the limit and integration is allowed, since we have by the seminal

paper of [1], Theorem 7 (and the remark on page 609 that his condition H is satisfied for uniformly

parabolic operators with bounded coefficients), estimates for the the fundamental solutions, which

are nothing else but the product of the transition densities, which provide an integrable majorant.

Employing now Lemma 4.1, we find

E

[∫ 1

0

1[−∆,∆)(X̌s)1[−∆,∆)(Y̌s) ds

]
≤ C(ρ)∆2

(
lnM − ln

(
max(|x(1)|, |y(1)|)

))
,

for ∆ small enough, say ∆ < ∆0(M,x(1), y(1)), and |x(1)|, |y(1)| ≤ 1.

For (x(1), y(1)) /∈ Q1 := [−1, 1]2, let τ := inf{t|(X̌, Y̌ )t ∈ Q1}. We find

E

[∫ 1

0

1[−∆,∆)(X̌s)1[−∆,∆)(Y̌s) ds

]
= E

[
1{τ<1}

∫ 1

τ

1[−∆,∆)(X̌s)1[−∆,∆)(Y̌s) ds

]
=

∫
∂Q1

dF (z)E

[
1{τ<1}

∫ 1

τ

1[−∆,∆)(X̌s)1[−∆,∆)(Y̌s) ds

]
≤ sup

z∈∂Q1

E

[∫ 1

0

1[−∆,∆)(X̌s)1[−∆,∆)(Y̌s) ds
∣∣(X̌, Y̌ )0 = z

]
,

where dF (z) is the (incomplete) distribution of (X̌, Y̌ )τ on ∂Q1. This completes the proof, using

the result from the case |x(1)|, |y(1)| ≤ 1. tu
Finally, we prove the main auxiliary result of section 2, namely, we give the proof of Proposition

2.1 Note that we replace the ”local variable“ ∆, which we have used in section 3, by ∆̃ of section 2.

Moreover, we use the identity X
(1)
t ≡ X̌t.

Proof of Proposition 2.1. We first note that

E

[∫ 1

0

1[−∆,∆)(X
(1)
s )1[−∆̃,∆̃)(Y

(1)
s ) ds

]
≤ E

[∫ 1

0

1[−∆,∆)(X̌s)1[−∆̃,∆̃)(Y
∗,A(X̌)
s ) ds

]
,

where Y ∗,A(X̌) stands for solution process of the extremal problem in Lemma 3.2, and where we set

A(X̌) := {t|X̌t ∈ [−∆,∆)}. We estimate further

E

[∫ 1

0

1[−∆,∆)(X̌s)1[−∆̃,∆̃)(Y
∗,A(X̌)
s ) ds

]
≤ E

[∫ 1

0

1[−∆,∆)(X̌s)1[−∆̃,∆̃)(Ŷ
A(X̌)
s ) ds

]
+ η

≤ E

[∫ 1

0

1[−∆,∆)(X̌s)1[−5∆̃,5∆̃)(Y̌s) ds

]
+ η

≤ C(ρ)∆∆̃
(
− ln

(
max(|x(1)|, |y(1)|) ∧ 1

)
+ lnM

)
.
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Observe that the first inequality follows by Lemma 3.3, and that η can be chosen independently of

the set A, which follows easily by the last paragraph of its proof. Moreover, the second inequality

uses Lemma 3.6 and the last one Proposition 3.1, which concludes the proof of a).

For the point b), we define τ := inf{t||X(1)
t | = |x(1)|/3} and get by the strong Markov property

E

[∫ 1

0

1[−∆,∆)(X
(1)
t )1[−∆̃,∆̃)(Y

(1)
t ) dt

]
= E

[∫ 1

τ

1[−∆,∆)(X
(1)
t )1[−∆̃,∆̃)(Y

(1)
t ) dt

∣∣∣ |X(1)
τ | = |x(1)|/3

]
P(τ < 1)

≤ C(ρ)∆∆̃(lnM)P(τ < 1).

Here we have used in the last inequality the result of point a). Moreover, our assumption |x(1)| > 4ρ1,

as well as the known distribution of the running maximum of a Brownian motion, see e.g. [11], (2.8.4),

yield the crude upper estimate erfc(|x(1)|/(4
√

2)) ≤ exp(−(x(1))2/32) for P(τ < 1), which concludes

the proof of b).

The proof of c) and d) works analogously to b). tu

4 Appendix

Lemma 4.1 We have

κ∞(x(1), y(1)) :=

∫ 1

0

ds pX̌s (x(1), 0)pY̌s (y(1), 0) ≤ C(ρ)
(

lnM − ln
(

max(|x(1)|, |y(1)|)
))

,

for |x(1)|, |y(1)| ≤ 1.

Proof. Let us first note that it suffices to give the prove for the case y(1) ≤ 0, since, due to the

structure of the drift of Y̌ , the estimate will hold for the case y(1) > 0 a fortiori. So we restrict to

y(1) ≤ 0.

Let dF (r) be the distribution of the hitting time of a standard Brownian motion with drift M to

the level |y(1)|. We have for the one dimensional transition density

pY̌s (y(1), 0) =

∫ s

0

pY̌s−r(0, 0)dF (r) ≤ 2

∫ s

0

1√
s− r

|y(1)|√
2πr3

e−
(|y(1)|−Mr)2

2r dr,

where we have used Lemma 3.7 for the last inequality and the well known distribution dF (r). Hence,

we find for κ∞ the estimate

κ∞(x(1), y(1)) ≤ 2

∫ ∞
0

ds√
2πs

e−
(x(1)+ρs)2

2s

∫ s

0

1√
s− r

|y(1)|√
2πr3

e−
(|y(1)|−Mr)2

2r dr

= C|y(1)|
∫ ∞

0

dr
e−

(|y(1)|−Mr)2
2r

r3/2

∫ ∞
r

ds
1√

s(s− r)
e−

(x(1)+ρs)2

2s . (30)

The inner integral can be estimated by - remember |x(1)| ≤ 1 -

C(ρ)

∫ ∞
r

ds
1√

s(s− r)
e−

(x(1))2

2s − ρ
2

2 s

We now distinguish two cases.

Case 1: r ≥ 1.

Here we find

C(ρ)

∫ ∞
r

ds
1√

s(s− r)
e−

(x(1))2

2s − ρ
2

2 s ≤ C(ρ)

∫ ∞
r

ds
1√

(s− r)
e−

ρ2

2 s ≤ C(ρ). (31)
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Case 2: r < 1.

We split the integration area into two parts, i.e. we define C(ρ)
∫∞
r

= C(ρ)
∫ 2r

r
+C(ρ)

∫∞
2r

=: I1 +I2.

For I1 we find

I1 = C(ρ)

∫ 2r

r

ds√
s(s− r)

e−
(x(1))2

2s − ρ
2

2 s ≤ C(ρ)

∫ 2r

r

ds√
s(s− r)

= C(ρ)

∫ 2

1

dw√
w(w − 1)

≤ C(ρ).

(32)

For I2 we have, using s ≥ 2r and the fact that C(ρ) may vary,

I2 = C(ρ)

∫ ∞
2r

ds√
s(s− r)

e−
(x(1))2

2s − ρ
2

2 s ≤ C(ρ)

∫ ∞
2r

ds
e−

(x(1))2

2s − ρ
2

2 s

s
.

= C(ρ)

∫ 3

2r

ds
e−

(x(1))2

2s − ρ
2

2 s

s
+ C(ρ)

∫ ∞
3

ds
e−

(x(1))2

2s − ρ
2

2 s

s
≤ C(ρ)(1− ln(r)). (33)

We also find the different estimate for I2

I2 ≤ C(ρ)

∫ ∞
0

ds
e−

(x(1))2

s − ρ
2

2 s

s
= C(ρ)K0(

√
2|x(1)|ρ) ≤ C(ρ)(1− ln |x(1)|).

Combining these two estimates yields

I2 ≤ C(ρ)
(

1− ln(r ∨ |x(1)|)
)
,

and all together for the inner integral, and for r > 0,

C(ρ)

∫ ∞
r

ds
1√

s(s− r)
e−

(x(1))2

2s − ρ
2

2 s ≤ C(ρ)
(

1− ln((r ∨ |x(1)|) ∧ 1)
)
. (34)

This gives for κ∞ the upper estimate

κ∞(x(1), y(1)) ≤ C(ρ)|y(1)|

∫ 1

0

(
1− ln(r ∨ |x(1)|)

) e− (|y(1)|−Mr)2
2r

r3/2
dr +

∫ ∞
1

e−
(|y(1)|−Mr)2

2r

r3/2
dr


=: K11 +K12 +K13 +K2 (35)

For K2 we have

K2 ≤ C(ρ)|y(1)|
∫ ∞

0

e−
(|y(1)|−Mr)2

2r

r3/2
dr ≤ C(ρ), (36)

as the last integral is equal to
√

2π/|y(1)|. Analogously, one finds

K11 ≤ C(ρ). (37)

The remaining terms are

K12 = C(ρ)|y(1)|e|y
(1)|M (− ln(|x(1)|))

∫ |x(1)|

0

e−
(y(1))2

2r −M2

2 r

r3/2
dr

K13 = C(ρ)|y(1)|e|y
(1)|M

∫ 1

|x(1)|
(− ln r)

e−
(y(1))2

2r −M2

2 r

r3/2
dr. (38)

We start with the estimate for K12 and distinguish two cases:

Case 1: |x(1)| ≥ |y
(1)|3
2M .

Here we have

K12 ≤ C(ρ)|y(1)|e|y
(1)|M (− ln(|x(1)|))

∫ ∞
0

e−
(y(1))2

2r −M2

2 r

r3/2
dr ≤ C(ρ)

(
lnM − ln(max(|x(1)|, |y(1)|))

)
,

(39)
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where we have used that |y(1)| e|y(1)|M
∫∞

0
e−

(y(1))2

2r
−M

2

2
r

r3/2
dr =

√
2π, and the fact that in Case 1 one

checks easily − ln |x(1)| ≤ C
(
lnM − ln(max(|x(1)|, |y(1)|))

)
.

Case 2: |x(1)| < |y(1)|3
2M .

We start with the observation that one can calculate K12 explicitly:

K12 = C(ρ)(−ln|x(1)|)

(
erfc

(
M |x(1)|+ |y(1)|√

|2x(1)|

)
e2|y(1)|M + erfc

(
−M |x(1)|+ |y(1)|√

|2x(1)|

))
=: K121 +K122. (40)

For K121, we get

K121 ≤ C(ρ)(− ln |x(1)|) exp(−M
2|x(1)|
2

− (y(1))2|
2|x(1)|

)e|y
(1)|M

√
|x(1)|
|y(1)|

≤ C(ρ)(− ln |x(1)|)
√
|x(1)|
|y(1)|

= C(ρ)(− ln |x(1)|)|x(1)|1/6 |x
(1)|1/3

|y(1)|
≤ C(ρ). (41)

Here we have used the inequality erfc(z) ≤ e−z2/z for positive z in the first inequality, the inequality

a2 + b2 ≥ 2ab for positive a, b in the second one, and finally our assumption in Case 2.

For K122, we have

K122 ≤ C(ρ)(− ln |x(1)|)erfc(
|y(1)|

2
√

2|x(1)|
) ≤ C(ρ)(− ln |x(1)|) exp(− (y(1))2

8|x(1)|
)

≤ C(ρ)(− ln |x(1)|) exp(− 1

8|x(1)|1/3
) ≤ C(ρ). (42)

We have used |y(1)|−|x(1)|M ≥ |y(1)|/2, coming from our assumption in case 2, in the first inequality,

erfc(z) ≤ e−z2 in the second one, and again our assumption in case 2 for the third one.

Combining (41) and (42), provides

K12 ≤ C(ρ). (43)

Concerning K13, we again distinguish between two cases.

Case 1: |x(1)| ≥ |y(1)|3/2.

We find

K13 ≤ C(ρ)|y(1)| e|y
(1)|M (− ln |x(1)|)

∫ 1

|x(1)|

e−
(y(1))2

2r −M2

2 r

r3/2
dr ≤ C(ρ)

(
− ln(max(|x(1)|, |y(1)|))

)
, (44)

where we replaced the integral by an integral over (0,∞), which can be calculated explicitly, for the

second inequality. Moreover, we estimated (− ln |x(1)|) by C
(
− ln(max(|x(1)|, |y(1)|))

)
, which is true

in Case 1.

Case 2: |x(1)| < |y(1)|3/2⇔ |(y(1))2/(2|x(1)|) > 1/|y(1)|.
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Here one gets

K13 = C(ρ)e|y
(1)|M

∫ (y(1))2/(2|x(1)|)

(y(1))2/2

e−w−
(y(1))2M2

4w

w1/2

(
− ln(y(1))2 + ln(2w)

)
dw

≤ C(ρ)e|y
(1)|M

∫ ∞
0

e−w−
(y(1))2M2

4w

w1/2

(
− ln(y(1))2)

)
dw

+ C(ρ)e|y
(1)|M

∫ ∞
1/2

e−w−
(y(1))2M2

4w

w1/2
ln(2w) dw

≤ C(ρ)
(
− ln(max(|x(1)|, |y(1)|))

)
+ C(ρ)e|y

(1)|M
∫ M/|y(1)|

1/2

e−w−
(y(1))2M2

4w

w1/2
ln(2w) dw

+ C(ρ)e|y
(1)|M

∫ ∞
M/|y(1)|

e−w−
(y(1))2M2

4w

w1/2
ln(2w) dw

=: C(ρ)
(
− ln(max(|x(1)|, |y(1)|))

)
+ L1 + L2. (45)

We have used in the second inequality the fact that the integral over (0,∞) is explicitly known and

our assumption in Case 2. For L1, one easily gets

L1 ≤ C(ρ)
(

lnM − ln |y(1)|
)
. (46)

For L2, we have

L2 ≤ C(ρ)e|y
(1)|M

∫ ∞
M/|y(1)|

e−w

w1/2
ln(2w) dw

= C(ρ)e|y
(1)|M

∫ ∞
0

e−z−M/|y(1)|

(z +M/|y(1)|)1/2
ln

(
2z +

2M

|y(1)|

)
dz

≤ C

∫ ∞
0

e−z

(z)1/2
ln

(
2z +

2M

|y(1)|

)
dz ≤ C(ρ)

(
lnM − ln(max(|x(1)|, |y(1)|))

)
, (47)

where we have splitted the integral into
∫ 1

0
and

∫∞
1

and used the fact that we are in Case 2 for the

last equality. (45)-(47) provide

K13 ≤ C(ρ)
(

lnM − ln(max(|x(1)|, |y(1)|))
)
. (48)

(35),(36),(37),(39),(43) and (48) prove our Lemma. tu
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