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LECTURE NOTES ON THE YAMADA–WATANABE CONDITION

FOR THE PATHWISE UNIQUENESS OF SOLUTIONS OF

CERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS

SÜHAN ALTAY AND UWE SCHMOCK

Abstract. In these lecture notes we discuss the Yamada–Watanabe condition
for the pathwise uniqueness of the solution of certain stochastic differential

equations. This condition is weaker than the usual Lipschitz condition, the

proof is based on Bihari’s inequality. An important application in mathemat-
ical finance is the Cox–Ingersoll–Ross model.
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1. Introduction and basic definitions

These lecture notes explain the Yamada–Watanabe condition, which relaxes the
Lipschitz condition for the pathwise uniqueness of solutions of stochastic differential
equations (SDEs) of the type

dXt = b(t,Xt) dt+ σ(t,Xt) dWt , t ≥ 0.

Hence, this condition can be used to show the strong uniqueness of solutions of a
SDE with certain non-Lipschitz coefficients. The main references for this part are
[3], [4], [9] and [10].

In mathematical finance, this is of particular interest for the Cox–Ingersoll–Ross
model (CIR model for short), which describes the stochastic evolution of interest
rates (rt)t≥0 by the SDE

drt = α(µ− rt) dt+ σ
√
rt dWt, t ≥ 0,

with r0 ≥ 0, where α, µ with αµ ≥ 0 and σ denote real constants. The Yamada–
Watanabe condition also gives the strong uniqueness of the solution of the SDE
defining the squared Bessel process of ‘dimension’ δ ∈ [0,∞), cf. [7, Ch. XI, §1,
Def. (1.1)], which can be used to express the interest rate process in the CIR model.

The work on these lecture notes was financially supported by the Christian Doppler Research
Association (CDG). The authors gratefully acknowledge the fruitful collaboration and support

by the Bank Austria and the Austrian Federal Financing Agency (ÖBFA) through CDG and the
CD-Laboratory for Portfolio Risk Management (PRisMa Lab) http://www.prismalab.at/.
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Before stating the main theorem, we start with some definitions necessary for
the sequel.

Definition 1.1. Given two jointly Borel measurable functions b: [0,∞)×Rn → Rn
and σ: [0,∞)×Rn → Rn×d and a probability measure µ on (Rn,Bn), a solution of
the stochastic differential equation

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, t ≥ 0, (1.2)

with initial distribution µ is a pair (W,X) of continuous adapted processes defined
on a filtered probability space (Ω,F ,F,P) with F = (Ft)t≥0 such that

(a) W = (Wt)t≥0 is a standard (F,P)-Brownian motion with values in Rd,
(b) the initial value X0 has distribution µ,
(c) the integrals implicitly given by (1.2) are well defined, i.e., for all t ≥ 0,

i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, the corresponding component functions
of b and σ satisfy∫ t

0

σ2
ij(s,Xs) ds

a.s.
< ∞ and

∫ t

0

|bi(s,Xs)| ds
a.s.
< ∞,

(d) for every i ∈ {1, 2, . . . , n}, the i-th component process of

X =
(
(X

(1)
t , . . . , X

(n)
t )>

)
t≥0

satisfies, up to indistinguishability,

X
(i)
t = X

(i)
0 +

∫ t

0

bi(s,Xs) ds+

d∑
j=1

∫ t

0

σij(s,Xs) dW
j
s , t ≥ 0. (1.3)

Definition 1.4. We say that there is pathwise uniqueness for the SDE (1.2) with

initial distribution µ, if whenever (W,X) and (W̃ , X̃) are two solutions of (1.2)

defined on the same filtered probability space withW = W̃ (same Brownian motion)

and X0
a.s.
= X̃0 (same F0-measurable initial condition with distribution µ), then

X and X̃ are indistinguishable, that is, there exists a set N ∈ σ(
⋃
t≥0 Ft) with

P[N ] = 0 such that {Xt 6= X̃t} ⊂ N for all t ∈ [0,∞).

The next example shows that pathwise uniqueness may depend on the initial
distribution µ.

Example 1.5. Fix α ∈ (0, 1) and consider the (deterministic) one-dimensional
SDE

dXt =
(X+

t )α

1− α
dt, t ≥ 0,

where x+ := max{x, 0} denotes the positive part of x ∈ R. If µ assigns probability
one to the interval (0,∞), then Xt := (X1−α

0 + t)1/(1−α) for t ≥ 0 with L(X0) = µ
is the unique solution (up to a P-null set) as defined above, because for every ω ∈ Ω
with X0(ω) > 0, the solution has non-negative derivative everywhere and therefore
stays inside the interval [X0(ω),∞) and the α-power function is Lipschitz contin-
uous in ( 1

2X0(ω),∞), hence standard uniqueness results for initial value problems
apply, c.f. [8, Theorem 2.5]. If µ is the Dirac measure in 0, then for every F-stopping
time τ : Ω→ [0,∞), the process

Xt :=
(
max{t− τ, 0}

)1/(1−α)
, t ≥ 0,

is a solution.
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2. Yamada–Watanabe condition for SDEs

In this section, we give the main result, which combines the one- and multi-
dimensional case. However, we mention that the Yamada–Watanabe condition is
essentially a one-dimensional result (see Remarks 2 and 3 in [10]). For the one-
dimension setting, there is also an approach to pathwise uniqueness using local
times, see [7, Ch. IX, §3].

The following theorem is the main result of these lectures notes; for its proof
we assume that the filtration is right-continuous. We use | · | for the n-dimensional
Euclidean norm and ‖ · ‖F for the Frobenius matrix norm, see Remark 2.20 below.

Theorem 2.1. Consider the stochastic differential equation (1.2). Assume that
there exist a constant γ > 0 and functions κ, %: [0, γ]→ [0,∞) satisfying κ(0) = 0,

|b(t, x)− b(t, y)| ≤ κ(|x− y|), (2.2)

and
‖σ(t, x)− σ(t, y)‖F ≤ %(|x− y|) (2.3)

for all t ∈ [0,∞) and x, y ∈ Rn with |x − y| ≤ γ. Furthermore, assume that %
is non-decreasing, %(u) > 0 for all u ∈ (0, γ] and its square satisfies the Osgood
condition1, i.e., ∫ γ

0

du

%2(u)
=∞. (2.4)

In addition, assume that there exists a non-decreasing, concave and continuous
function G: [0, γ]→ [0,∞) with G(0) = 0, strictly positive on (0, γ], such that

G(u) ≥ κ(u) +
n− 1

2u
%2(u) ∀u ∈ (0, γ] (2.5)

and it also satisfies the Osgood condition∫ γ

0

du

G(u)
=∞. (2.6)

Then the pathwise uniqueness of solutions of (1.2) holds for every initial distribu-
tion µ.

Remark 2.7. Note that for n = 1 with the choice G(u) = κ(u) for u ∈ [0, γ], the
conditions on G are actually conditions on κ, in particular (2.6) reduces to the
Osgood condition ∫ γ

0

du

κ(u)
=∞. (2.8)

For n ≥ 2 and vanishing drift b, we can choose κ to be the zero function. With the
choice G(u) = n−1

2u %
2(u) for u ∈ [0, γ], the condition (2.6) is equivalent to∫ γ

0

u

%2(u)
du =∞, (2.9)

which is substantially more restrictive than (2.4).

Example 2.10. For the continuous concave function κ satisfying the Osgood con-
dition (2.8), typical examples are κ(u) = Cu with a constant C > 0 as well as

κ(u) =

{
0 for u = 0,

Cu log 1
u for u ∈ (0, γ],

(2.11)

1Named after William Fogg Osgood, cf. [5, p. 344]

http://en.wikipedia.org/wiki/William_Fogg_Osgood
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with γ := e−2, which has unbounded slope close to the origin. The example (2.11)
satisfies (2.8), because for δ ∈ (0, γ]∫ γ

δ

du

u log 1
u

= log log
1

δ
− log log

1

γ
→∞ as δ ↘ 0.

For the function % satisfying (2.4), one can always take %(u) =
√
κ(u) for u ∈

[0, γ], where κ satisfies (2.8), and also %(u) = Cuα with exponent α ≥ 1/2 is

possible. If κ satisfies (2.8), then %(u) :=
√
uκ(u) for u ∈ [0, γ] satisfies (2.9) and

G(u) := κ(u) + n−1
2u %

2(u) for u ∈ [0, γ] satisfies (2.6) for every n ∈ N. Note that
the Lipschitz-continuous case corresponding to %(u) = κ(u) = Cu is included.

Example 2.12 (Extension of (2.11)). Define exp◦0(u) = u and log◦0(u) = u
for all u ∈ R. Then, for all l ∈ N, define iteratively the l-fold composition of
the exponential function by exp◦l(u) = exp(exp◦l−1(u)) for u ∈ R and the l-fold

composition of the natural logarithm by log◦l(u) = log(log◦l−1(u)) for all u >
exp◦l−1(0). With this notation and a constant C > 0 define for l ∈ N0 the constant
γl = 1/ exp◦l(2) > 0 and the function

κl(u) =

{
0 for u = 0,

Cu
∏l
k=1 log◦k

(
1
u

)
for u ∈ (0, γl].

(2.13)

Note that for every l ∈ N0

d

du
log◦l+1

( 1

u

)
= − C

κl(u)
, u ∈ (0, γl]. (2.14)

The example (2.13) satisfies the Osgood condition (2.8), because by (2.14) and the
fundamental theorem of calculus, for δ ∈ (0, γl],

C

∫ γl

δ

du

κl(u)
= log◦l+1

(1

δ

)
− log◦l+1

( 1

γl

)
→∞ as δ ↘ 0.

It follows from (2.13) and (2.14) using the product rule that, for every l ∈ N,

κl(u) = κl−1(u) log◦l
( 1

u

)
,

κ′l(u) = κ′l−1(u) log◦l
( 1

u

)
− C, (2.15)

κ′′l (u) = κ′′l−1(u) log◦l
( 1

u

)
− C

κ′l−1(u)

κl−1(u)
(2.16)

for all u ∈ (0, γl]. Since κ′0(u) ≡ C, κ′′0(u) ≡ 0, and log◦l
(
1
u

)
≥ 2 for all u ∈ (0, γl]

and l ∈ N, it follows from (2.15) and (2.16) by induction that κ′l(u) ≥ C and
κ′′l (u) ≤ 0 for all u ∈ (0, γl] and l ∈ N0. Therefore, κl is strictly increasing and
concave on [0, γl] for every l ∈ N0.

Remark 2.17. We will show below, contrary to the preceding example, that for
every ε > 0 and l ∈ N, the function κ̃ε,l: [0, γl]→ [0,∞) with

κ̃ε,l(u) :=

{
0 for u = 0,

κl−1(u)
(
log◦l

(
1
u

))1+ε
for u ∈ (0, γl],
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is growing too fast at the origin to satisfy the Osgood condition (2.8). Indeed, it
follows using (2.14) that

d

du

(
log◦l

( 1

u

))−ε
= − ε(

log◦l
(
1
u

))1+ε d

du
log◦l

( 1

u

)
=

Cε

κ̃ε,l(u)
, u ∈ (0, γl],

hence we have for every δ ∈ (0, γl] that

Cε

∫ γl

δ

du

κ̃ε,l(u)
=

1

2ε
− 1(

log◦l
(
1
δ

))ε ↗ 1

2ε
as δ ↘ 0.

Remark 2.18 (Deterministic dynamics). By setting the diffusion function σ equal

to zero and %(u) =
√
uκ(u) for u ∈ [0,∞), Theorem 2.1 also weakens the Lipschitz

condition for the uniqueness of solutions of ordinary initial value problems to (2.8).
Note that the function κ (or G, respectively) doesn’t need to be concave in this
case, because the application of Jensen’s inequality for (2.40) is not necessary (and
the entire proof simplifies substantially).

Corollary 2.19 (Application to the CIR model). In one dimension, if the drift b
is Lipschitz continuous, and σ is Hölder continuous with exponent 1/2, i.e., there
exists some constant C > 0 such that

|σ(t, x)− σ(t, y)| ≤ C
√
|x− y| ∀ 0 ≤ t <∞ and x, y ∈ R,

then the pathwise uniqueness for the solution of equation (1.2) holds for every initial
distribution µ.

Remark 2.20 (Review of linear algebra).

(a) On the vector space Rn×d of (n×d)-dimensional matrices, an inner product
is defined by 〈A,B〉 = tr(AB>) for all A,B ∈ Rn×d, there tr(AB>) denotes
the trace of the (n × n)-dimensional matrix AB>, i.e. the sum of all its
entries on the diagonal,

tr(AB>) =

n∑
i=1

(AB>)i,i =

n∑
i=1

d∑
j=1

Ai,jBi,j = tr(B>A), (2.21)

where the last equality indicates that the (d × d)-dimensional matrix B>A
has the same trace as AB>. Note that 〈A,B〉 equals the usual inner product
on Rnd, when the rectangular form of the matrices A,B is ignored and
they are viewed as vectors in Rnd. The corresponding norm ‖ · ‖F is the

Frobenius matrix norm, given by ‖A‖F =
√

tr[AA>]. By the Cauchy–
Schwarz inequality,∣∣tr(AB>)

∣∣ ≤√tr[AA>]
√

tr[BB>], A,B ∈ Rn×d. (2.22)

(b) Let A ∈ Rn×n be a symmetric matrix, i.e. A = A>. Then there exists an
orthogonal matrix U ∈ Rn×n, whose columns form an orthonormal basis
of eigenvectors of A and which therefore satisfies U>U = I, and a corre-
sponding diagonal matrix D ∈ Rn×n with the real eigenvalues λ1, . . . , λn of
A on the diagonal such that A = UDU>. For every r ∈ N0 we can define
Dr ∈ Rn×n as the diagonal matrix with λr1, . . . , λ

r
n on the diagonal (using

the convention 00 := 1) and the matrix power Ar = UDrU>, which is again
symmetric. For r, s ∈ N0 we have the rule

ArAs = UDrU>UDsU> = UDr+sU> = Ar+s. (2.23)
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Using (2.21), it follows that

tr(Ar) = tr(UDrU>) = tr(U>UDr) = tr(Dr) = λr1 + · · ·+ λrn. (2.24)

If A ∈ Rn×n is positive semi-definite, then the eigenvalues λ1, . . . , λn are
non-negative and (2.23) and (2.24) extend to all real r, s ≥ 0, furthermore2

tr1/s(As) = (λs1 + · · ·+ λsn)1/s ≤ (λr1 + · · ·+ λrn)1/r = tr1/r(Ar) (2.25)

whenever s ≥ r > 0. If A is positive definite, then the eigenvalues are
strictly positive and (2.23) and (2.24) are valid for all r, s ∈ R.

(c) Let A,B ∈ Rn×n be positive semi-definite. Then
√
A is well-defined and

symmetric and 〈v,
√
AB
√
Av〉 = 〈

√
Av,B

√
Av〉 ≥ 0 for all v ∈ Rn, because

B is positive semi-definite, hence
√
AB
√
A is also positive semi-definite.

Hence (2.21) and (2.24) applied to
√
AB
√
A and r = 1 yield

tr(AB) = tr(
√
AB
√
A) ≥ 0. (2.26)

Applying (2.26), the Cauchy-Schwarz inequality (2.22) and (2.25) with s =
2 ≥ 1 = r shows that

0 ≤ tr(AB) ≤
√

tr(A2)
√

tr(B2) ≤ tr(A) tr(B), (2.27)

cf. [2, Theorem 1] and the references given there. We will use this result
once for (2.38) below.

Proof of Theorem 2.1. The main idea of the proof is to construct a sequence (fk)k∈N
of C2-functions fk: Rn → [0,∞) approximating the Euclidean norm Rn 3 z 7→ |z|,
such that Itō’s multi-dimensional formula can be applied to fk(Xt − Yt), where X

and Y are two solutions of the SDE (1.2) with X0
a.s.
= Y0. By then passing to the

limit k → ∞, the aim is to show that E[|Xt − Yt|] = 0 for all t ≥ 0, which implies
pathwise uniqueness.

The first step is to construct such approximations. Due to assumption (2.4),
there exists a sequence

γ = a0 > a1 > a2 > · · · > ak ↘ 0

such that ∫ ak−1

ak

du

%2(u)
= k, k ∈ N.

For every k ∈ N, we can construct a continuous function φk: [0,∞)→ [0,∞) such
that

φk(u)

{
≤ 2

k%2(u) for u ∈ (ak, ak−1),

= 0 otherwise,
(2.28)

and ∫ ak−1

ak

φk(u) du = 1,

because the upper bound (2.28) of φk integrates to 2 over (ak, ak−1). Next we
define the auxiliary function ϕk: [0,∞)→ [0,∞) by

ϕk(w) =

∫ w

0

∫ v

0

φk(u) du dv, w ≥ 0.

2Note that this well-known inequality is positive homogeneous in (λ1, . . . , λn), hence it suffices
to prove it for λr1 + · · · + λrn = 1, i.e. to show in this case that λs1 + · · · + λsn ≤ 1. This is clear,

because λi ∈ [0, 1], hence λsi ≤ λri for each i ∈ {1, . . . , n}.
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Note that ϕk is a twice continuously differentiable function with ϕk(w) = 0 for
w ∈ [0, ak]. Furthermore,

ϕ′k(w) =

∫ w

0

φk(u) du


= 0 for w ∈ [0, ak],

≤ 1 for w ∈ (ak, ak−1),

= 1 for w ∈ [ak−1,∞).

(2.29)

Therefore, the sequence (ϕk)k∈N is monotone increasing with w−ak−1 ≤ ϕk(w) ≤ w
for all w ∈ [ak−1,∞). Finally, we can define the approximating sequence (fk)k∈N
by

fk(z) := ϕk(|z|), k ∈ N, z ∈ Rn.

It follows that each fk is a twice continuously differentiable function on Rn and
that fk(z)↗ |z| uniformly in z ∈ Rn as k →∞.

Now, let X and Y be two solutions of (1.2) with X0
a.s.
= Y0, driven by the same

d-dimensional Brownian motion, and define the difference process Z by

Zt := Xt − Yt =

∫ t

0

bs ds+

∫ t

0

σs dWs, t ≥ 0,

where we simplified the notation by defining the Rn-valued stochastic process

bs = b(s,Xs)− b(s, Ys), s ≥ 0,

and the matrix-valued stochastic process

σs = σ(s,Xs)− σ(s, Ys), s ≥ 0.

Define τ = inf{t ≥ 0 : |Zt| ≥ γ}. Since {z ∈ Rn : |z| ≥ γ} is closed and Z has
continuous paths, τ is a stopping time. By assumption (2.2),

|bs∧τ | ≤ κ(|Zs∧τ |), s ≥ 0. (2.30)

We note that the definition of the Frobenius matrix norm and assumption (2.3)
imply

tr[σs∧τσ
>
s∧τ ] = ‖σs∧τ‖2F ≤ %2(|Xs∧τ − Ys∧τ |) = %2(|Zs∧τ |), s ≥ 0. (2.31)

Fix k ∈ N. Applying Itō’s multi-dimensional formula to fk(Zt), we obtain up to
indistinguishability,

fk(Zt) = Ik(t) + Jk(t), t ≥ 0, (2.32)

with

Ik(t) :=

∫ t

0

∇fk(Zs)σs dWs, t ≥ 0, (2.33)

and

Jk(t) :=

∫ t

0

(
∇fk(Zs) bs +

1

2
tr[Hk(Zs)σsσ

>
s ]

)
ds, t ≥ 0, (2.34)

where ∇fk(z) and Hk(z) denote the gradient vector and the Hessian matrix of fk
at z = (z1, . . . , zn) ∈ Rn, respectively. We will now fix t ≥ 0 and define suitable
stopping times, so that we can treat the expectation of these two terms.

The stochastic process Ik is a local martingale starting at zero, hence there exists
an increasing sequence (Tk,l)l∈N of stopping times with Tk,l → ∞ as l → ∞ such
that, for every l ∈ N, the process Mk,l(s) := Ik(s ∧ Tk,l) with s ≥ 0 is a uniformly
integrable martingale. By Doob’s optional stopping theorem [7, Ch. II, §3],

E[Ik(t ∧ τ ∧ Tk,l)] = 0, l ∈ N. (2.35)
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Note that ∇fk(z) = 0 for |z| ≤ ak and ∇fk(z) = ϕ′k(|z|)z/|z| for |z| ≥ ak, hence
|∇fk(z)| ≤ 1 for all z ∈ Rn by (2.29). Therefore, by the Cauchy–Schwarz inequality
and estimate (2.30),

|∇fk(Zs∧τ ) bs∧τ | ≤ |∇fk(Zs∧τ )| |bs∧τ | ≤ κ(|Zs∧τ |), s ≥ 0. (2.36)

The diagonal components of the Hessian matrix are given by

(Hk(z))i,i =
∂2fk(z)

∂z2i
= φk(|z|) z

2
i

|z|2
+ ϕ′k(|z|) |z|

2 − z2i
|z|3

, i ∈ {1, . . . , n},

(remember that ϕ′k and φk are zero in a neighborhood of the origin). Since ϕ′k is
uniformly bounded by one, see (2.29), the above equation implies that

tr[Hk(z)] = φk(|z|) + ϕ′k(|z|)n− 1

|z|
≤ φk(|z|) +

n− 1

|z|
I{z 6=0}, z ∈ Rn. (2.37)

Note that ϕk is convex on [0,∞) by construction, also the Euclidean norm is convex
on Rn, hence fk is convex. Therefore, the Hessian Hk of fk is positive semi-definite
everywhere. Since also σs∧τσ

>
s∧τ is positive semi-definite, it follows from (2.27) that

0 ≤ tr[Hk(Zs∧τ )σs∧τσ
>
s∧τ ] ≤ tr[Hk(Zs∧τ )] tr[σs∧τσ

>
s∧τ ], s ≥ 0. (2.38)

Combining this inequality with (2.31) and (2.37) in the first step and using (2.28)
in the second one implies that

0 ≤ tr[Hk(Zs∧τ )σs∧τσ
>
s∧τ ] ≤ φk(|Zs∧τ |)%2(|Zs∧τ |) +

n− 1

|Zs∧τ |
%2(|Zs∧τ |)I{Zs∧τ 6=0}

≤ 2

k
+
n− 1

|Zs∧τ |
%2(|Zs∧τ |)I{Zs∧τ 6=0}, s ≥ 0.

(2.39)

Inserting the estimates (2.36) and (2.39) into (2.34) and using the upper bound
(2.5) given by G, it follows that

|Jk(t ∧ τ)| ≤ t

k
+

∫ t∧τ

0

G(|Zs∧τ |) ds, t ≥ 0.

It follows from (2.32) that, for all l ∈ N and t ≥ 0,

E[fk(Zt∧τ∧Tk,l)] = E[Ik(t ∧ τ ∧ Tk,l)] + E[Jk(t ∧ τ ∧ Tk,l)].
The first expectation on the right-hand side vanishes due to (2.35). Noting that G
is non-negative, it follows that

E[fk(Zt∧τ∧Tk,l)] ≤
t

k
+

∫ t

0

E[G(|Zs∧τ |)] ds, l ∈ N, t ≥ 0.

Since by assumption G is concave on [0, γ], Jensen’s inequality implies that

E[G(|Zs∧τ |)] ≤ G(E[|Zs∧τ |]), s ≥ 0. (2.40)

Letting l→∞, using Fatou’s lemma, it follows that

E[fk(Zt∧τ )] ≤ t

k
+

∫ t

0

G(E[|Zs∧τ |]) ds.

Letting k →∞ and using monotone converge theorem, we obtain for the differ-
ence process Z the estimate

E[|Zt∧τ |] ≤
∫ t

0

G(E[|Zs∧τ |]) ds, t ≥ 0. (2.41)
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The stopping at τ makes sure that [0,∞) 3 s 7→ E[|Zs∧τ |] is [0, γ]-valued and
continuous (apply the dominated convergence theorem). Due to (2.6) and Bihari’s
inequality (see Theorem 3.1(b) below with β ≡ 1, u(s) = E[|Zs∧τ |] and w(x) =
G(x ∧ γ) for all x ≥ 0), estimate (2.41) implies that E[|Zt∧τ |] = 0. Since Zt∧τ =
Zt1{τ>t} + Zτ1{τ≤t} and |Zτ | = γ > 0 on {τ < ∞}, it follows that P[τ ≤ t] = 0,
hence E[|Zt|] = 0, therefore Xt

a.s.
= Yt. Since this holds for all rational t ≥ 0 and

since the processes X and Y have continuous paths, they are indistinguishable. �

3. Bihari’s inequality

Bihari’s inequality [1, 6], proved by Hungarian mathematician Imre Bihari (1915–
1998), is a nonlinear generalization of the Grönwall–Bellman inequality3. It is an
important tool to obtain various estimates in the theory of ordinary and stochastic
differential equations.

Theorem 3.1. Let I denote an interval of the real line of the form [a,∞), [a, b]
or [a, b) with a < b. Let β, u: I → [0,∞) and w: [0,∞) → [0,∞) be three
functions, where u and w are continuous on I, β is continuous on the interior I◦

of I with
∫ t
a
β(s) ds <∞ for all t ∈ I, and w is non-decreasing and strictly positive

on (0,∞).

(a) If, for some α > 0, the function u satisfies the inequality

u(t) ≤ α+

∫ t

a

β(s)w(u(s)) ds, t ∈ I, (3.2)

then

u(t) ≤ F−1
(∫ t

a

β(s) ds

)
, t ∈ [a, T ), (3.3)

where F−1 is the inverse function of

F (x) :=

∫ x

α

dy

w(y)
, x > 0,

and

T := sup

{
t ∈ I

∣∣∣∣ ∫ t

a

β(s) ds <

∫ ∞
α

dy

w(y)

}
.

(b) If the function u satisfies the inequality (3.2) with α = 0 and∫ x

0

dy

w(y)
=∞ for all x > 0, (3.4)

then u(t) = 0 for all t ∈ I.

Remark 3.5. If
∫∞
α

dy
w(y) =∞, then (3.3) is valid on [0,∞). An example of such a

function is w(y) = y for y ∈ [0,∞).

Remark 3.6. The assumptions on the function β allow for a singularity at the left
end point a of the interval I, for example β(s) = (s−a)−γ for s > a with γ ∈ (0, 1).
The integrability assumption for β ensures that T > a in (3.3).

3See also Gronwall’s inequality at en.wikipedia.org/wiki/, version of December 8, 2012.

http://en.wikipedia.org/wiki/Gronwall's inequality
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Proof of Theorem 3.1. (a) Denoting the right-hand side of (3.2) by

v(t) := α+

∫ t

a

β(s)w(u(s)) ds, t ∈ I,

we have u ≤ v on I by (3.2), which implies that w(u(s)) ≤ w(v(s)) for all s ∈ I
since w is non-decreasing. Using α > 0, the definitions of F and v as well as this
inequality, it follows that

dF (v(s))

ds
=

v′(s)

w(v(s))
=
β(s)w(u(s))

w(v(s))
≤ β(s), s ∈ I◦.

Integrating this between a and t and using F (v(a)) = F (α) = 0,

F (v(t)) = F (v(t))− F (v(a)) ≤
∫ t

a

β(s) ds, t ∈ I.

Since F is strictly increasing,

v(t) ≤ F−1
(∫ t

a

β(s) ds

)
, t ∈ [a, T ).

Since u(t) ≤ v(t), the inequality (3.3) follows.
(b) Consider any t ∈ I and x > 0. Due to (3.4) there exists α ∈ (0, x] such that∫ x

α

dy

w(y)
=

∫ t

a

β(s) ds.

Since u also satisfies (3.2) with this α, (3.3) implies that

u(t) ≤ F−1
(∫ t

a

β(s) ds

)
= x.

Since x > 0 was arbitrary, u(t) = 0 follows. �
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