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1. Information-based pricing framework

Information-driven asset-price dynamics

In derivative pricing, the starting point is usually the specification of a model for
the price process of the underlying asset.

For example, in the Black-Scholes-Merton theory, the underlying asset has a
geometric Brownian motion as its price process.

More generally, the economy is often modelled by a probability space equipped
with the filtration generated by a multi-dimensional Brownian motion, and it is
assumed that asset prices are adapted to this filtration.

The basic problem with this approach is that the market filtration is fixed, and
no comment is offered on the issue of “where it comes from”.

In other words, the filtration, which represents the revelation of information to
market participants, is modelled first, in an ad hoc manner, and then it is
assumed that the asset price processes are adapted to it.

But no indication is given about the nature of this “information”, and it is not
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obvious why the Brownian filtration is providing information rather than noise.

In a complete market there is a sense in which the Brownian filtration provides
no irrelevant information.

Nevertheless, the notion that the market filtration should be “prespecified” is an
unsatisfactory one in financial modelling.

What is unsatisfactory about the “prespecified-filtration” is that little structure
is given to the filtration: price movements behave as though they were
spontaneous.

In reality, we expect the price-formation process to exhibit more structure.

It would be out of place to attempt an account of the process of price
formation—nevertheless, we can improve on the “prespecified” approach.

In that spirit we proceed as follows.

We note that price changes arise from two sources.

The first is that resulting from changes in agent preferences—that is to say,
changes in the pricing kernel.
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Movements in the pricing kernel are associated with (a) changes in investor
attitudes towards risk, and (b) changes in investor “impatience”, the subjective
discounting of future cash flows.

Equally important are changes in price resulting from the revelation of
information about the future cash flows derivable from a given asset.

When a market agent decides to buy or sell an asset, the decision is made in
accordance with the information available to the agent concerning the likely
future cash flows associated with the asset.

A change in the information available to the agent about a future cash flow will
typically have an effect on the price at which they are willing to buy or sell, even
if the agent’s preferences remain unchanged.

The movement of the price of an asset should, therefore, be regarded as an
emergent phenomenon.

To put the matter another way, the price process of an asset should be viewed as
the output of (rather than an input into) the decisions made relating to possible
transactions in the asset, and these decisions should be understood as being
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induced primarily by the flow of information to market participants.

Taking into account this observation we propose a new framework for asset
pricing based on modelling of the flow of market information.

Mathematical framework

The framework discussed here will be based on modelling the flow of partial
information to market participants about impending debt obligation and equity
dividend payments.

As usual, we model the financial markets with the specification of a probability
space (Ω,F , Q) with filtration {Ft}0≤t<∞.

The probability measure Q is understood to be the risk-neutral measure, and the
filtration {Ft} is understood to be the “market filtration”.

Thus all asset-price processes and other information-providing processes
accessible to market participants are assumed to be adapted to {Ft}.
We assume the absence of arbitrage and the existence of a pricing kernel.
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With these conditions the existence of a unique risk-neutral measure is ensured.

We assume that the default-free discount-bond system, denoted by
{PtT}0≤t≤T<∞, can be written in the form

PtT =
P0T

P0t
. (1)

It follows that if the random variable DT represents a cash flow occurring at
time T , then its value St at any earlier time t is given by

St = PtTE [DT |Ft] . (2)

This is the discounted conditional expectation of DT in the risk-neutral measure.

In the case where the asset pays a sequence of dividends DTk
(k = 1, 2, . . . , n)

on the dates Tk the price (for t < T1) is given by

St =
n∑

k=1

PtTk
E
[
DTk

|Ft

]
. (3)

More generally, for all t ≥ 0, and taking into account the ex-dividend behaviour,
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we have

St =
n∑

k=1

1{t<Tk}PtTk
E
[
DTk

|Ft

]
. (4)

Modelling the flow of information

For the moment we consider the case in which the asset entails a single payment
DT at time T .

We make the reasonable assumption that some partial information regarding the
value of the cash flow DT is available at earlier times.

This information will in general be imperfect.

The model for such imperfect information will be of a simple type that allows for
a great deal of analytic tractability.

In this model, information about the true value of the cash flow steadily
increases, while at the same time the obscuring factors at first increase in
magnitude, and then eventually die away just as the payment day.
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More precisely, we shall assume that the following {Ft}-adapted market
information process is accessible to market participants:

ξt = σtDT + βtT . (5)

Here the process {βtT}0≤t≤T is a standard Brownian bridge on the interval [0, T ].

We assume that {βtT} is independent of DT , and thus represents “pure noise”.

The Brownian bridge process satisfies β0T = 0, and βTT = 0 (see Figure 1).

We also have E[βtT ] = 0 and

E [βsTβtT ] =
s(T − t)

T
(6)

for all s, t satisfying 0 ≤ s ≤ t ≤ T .

The market participants do not have direct access to the bridge process {βtT}.
That is to say, {βtT} is not assumed to be adapted to {Ft}.
We can thus think of {βtT} as representing the rumour, speculation,
misrepresentation, overreaction, and general disinformation often occurring, in
one form or another, in connection with financial activity.
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Figure 1: Sample paths for the Brownian bridge over the time period [0, 2].
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The parameter σ represents the rate at which the true value of DT is “revealed”
as time progresses.

If σ is low, then the true value of DT is effectively hidden until very near the
payment date of the asset.

On the other hand, if σ is high, then DT is revealed quickly.

On Markovian nature of the information process

More generally, the rate at which the true value of DT is revealed is not
constant.

In that case we will have

ξt = DT

∫ t

0

σsds + βtT , (7)

where σs ≥ 0.

When {σt} is constant, the resulting information process (5) is Markovian.
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Along with the fact that DT is FT -measurable we thus find that

E [DT |Ft] = E [DT |ξt] , (8)

which simplifies the calculation.

For the moment we shall assume that σt = σ is constant.

Determining the conditional expectation

If the random variable DT that represents the payoff has a continuous
distribution, then the conditional expectation in (8) can be expressed as

E [DT |ξt] =

∫ ∞

0

xπt(x) dx. (9)

Here πt(x) is the conditional probability density for the random variable DT :

πt(x) =
d

dx
Q(DT ≤ x|ξt). (10)

We assume appropriate technical conditions on the distribution of the dividend
that will suffice to ensure the existence of the expressions under consideration.

Also, for convenience we use a notation appropriate for continuous distributions,
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though corresponding results can be inferred for discrete distributions, or more
general distributions, by a slight modification.

Bearing these in mind, the conditional probability density process for the
dividend can be worked out by use of a form of the Bayes formula:

πt(x) =
p(x)ρ(ξt|DT = x)∫∞

0 p(x)ρ(ξt|DT = x)dx
. (11)

Here p(x) denotes the a priori probability density for DT , which we assume is
known as an initial condition, and ρ(ξt|DT = x) denotes the conditional density
for the random variable ξt given that DT = x.

Since βtT is a Gaussian random variable with mean zero and variance
t(T − t)/T , we deduce that the conditional probability density for ξt is

ρ(ξt|DT = x) =

√
T

2πt(T − t)
exp

(
−(ξt − σtx)2T

2t(T − t)

)
. (12)

Inserting this expression into the Bayes formula we get

πt(x) =
p(x) exp

[
T

T−t
(σxξt − 1

2
σ2x2t)

]
∫∞

0 p(x) exp
[

T
T−t(σxξt − 1

2σ
2x2t)

]
dx

. (13)
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We thus obtain the following result for the asset price:

The information-based price process {St}0≤t≤T of a limited-liability asset that
pays a single dividend DT at time T with a priori distribution

Q(DT ≤ y) =

∫ y

0

p(x) dx (14)

is given by

St = 1{t<T}PtT

∫∞
0 xp(x) exp

[
T

T−t(σxξt − 1
2σ

2x2t)
]
dx∫∞

0 p(x) exp
[

T
T−t(σxξt − 1

2σ
2x2t)

]
dx

, (15)

where ξt = σtDT + βtT is the market information.

Asset price dynamics in the case of a single cash flow

In order to analyse the properties of the price process deduced above, and to be
able to compare it with other models, we need to work out its dynamics.

One of the advantages of the framework under consideration is that we have an
explicit expression for the price at our disposal.
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Thus in obtaining the dynamics we need to find the stochastic differential
equation of which {St} is the solution.

Let us write

DtT = E[DT |ξt]. (16)

Evidently, DtT can be expressed in the form DtT = D(ξt, t), where D(ξ, t) is
defined by

D(ξ, t) =

∫∞
0 xp(x) exp

[
T

T−t(σxξ − 1
2σ

2x2t)
]
dx∫∞

0 p(x) exp
[

T
T−t(σxξ − 1

2σ
2x2t)

]
dx

. (17)

A straightforward calculation making use of the Ito rules shows that the
dynamical equation for {DtT} is given by

dDtT =
σT

T − t
Vt

[
1

T − t

(
ξt − σTDtT

)
dt + dξt

]
. (18)

Here Vt is the conditional variance of the dividend:

Vt = Et

[
(DT − Et[DT ])2

]
=

∫ ∞

0

x2πt(x) dx −
(∫ ∞

0

xπt(x) dx

)2

. (19)
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Therefore, if we define a new process {Wt}0≤t<T by setting

Wt = ξt −
∫ t

0

1

T − s

(
σTDtT − ξs

)
ds, (20)

we find, after some rearrangement, that

dDtT =
σT

T − t
VtdWt. (21)

For the dynamics of the asset price we thus have

dSt = rtStdt + ΓtTdWt, (22)

where rt = −d ln P0t/dt is the short rate, and the absolute price volatility ΓtT is

ΓtT = PtT
σT

T − t
Vt. (23)

As we shall demonstrate later, the process {Wt} defined in (20) is an
{Ft}-Brownian motion.

Hence from the point of view of the market it is the process {Wt} that drives
the asset price dynamics.

In this way our framework resolves the paradoxical point of view usually adopted
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in financial modelling in which {Wt} is regarded on the one hand as “noise”,
and yet on the other hand also generates the market information flow.

Therefore, instead of hypothesising the existence of a driving process for the
dynamics of the markets, we are able to deduce the existence of such a process.
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2. Black-Scholes theory from the information perspective

From cash flow to market factors

In general the cash flow DT is determined by a number of independent market
factors (called the ‘X factors’):

DT = D(X1
T ,X2

T , . . . , Xn
T ). (24)

For each market factor we have the vector-valued information process

ξα
tT = σαXα

T t + βα
tT , (25)

which generates the market filtration.

Log-normal cash flow

The simplest application of the X-factor technique arises in the case of
geometric Brownian motion models.

We consider a limited-liability company that makes a single cash distribution DT

at time T .
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We assume that DT has a log-normal distribution under Q, and thus can be
written in the form

DT = S0 exp
(
rT + ν

√
TXT − 1

2ν
2T
)

, (26)

where the market factor XT is normally distributed with mean zero and variance
one, and r > 0 and ν > 0 are constants.

The information process {ξt} is taken to be of the form

ξt = σtXT + βtT , (27)

where the Brownian bridge {βtT} is independent of XT , and where the
information flow rate is of the special form

σ =
1√
T

. (28)

Geometric Brownian motion model

By use of the Bayes formula we find that the conditional probability density is of
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the Gaussian form:

πt(x) =

√
T

2π(T − t)
exp

(
− 1

2(T − t)

(√
Tx − ξt

)2
)

, (29)

and has the following dynamics

dπt(x) =
1

T − t

(√
Tx − ξt

)
πt(x)dξt. (30)

A short calculation then shows that the value of the asset at time t < T is

St = e−r(T−t)Et[DT ]

= e−r(T−t)

∫ ∞

−∞
S0e

rT+ν
√

Tx−1
2 ν2Tπt(x)dx

= S0 exp
(
rt + νξt − 1

2ν
2t
)
. (31)

The surprising fact in this example is that {ξt} itself turns out to be the
innovation process.

Indeed, it is not too difficult to verify that {ξt} is an {Ft}-Brownian motion.

Hence, setting Wt = ξt for 0 ≤ t < T we obtain the standard geometric
Brownian motion model:

St = S0 exp
(
rt + νWt − 1

2ν
2t
)
. (32)
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We see therefore that starting with an information process of the form (27) we
are able to recover the familiar asset price dynamics given by (32).

Orthogonal decomposition of Brownian motion

An important point to note here is that the Brownian bridge process {βtT}
appears quite naturally in this context.

In fact, if we start with (32) then we can make use of the following orthogonal
decomposition of the Brownian motion:

Wt =
t

T
WT +

(
Wt − t

T
WT

)
. (33)

The second term in the right, independent of the first term on the right, is a
standard representation for a Brownian bridge process:

βtT = Wt − t

T
WT . (34)

Thus by writing

XT = WT/
√

T and σ = 1/
√

T (35)

we find that the right side of (33) is indeed the market information.
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In other words, formulated in the information-based framework, the standard
Black-Scholes-Merton theory can be expressed in terms of a normally distributed
X-factor and an independent Brownian bridge noise process.

The special feature of the Black-Scholes theory therefore is the fact that the
information flow rate takes the specific form σ = 1/

√
T .
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3. Application to credit risk management

Credit derivatives: an information-based approach

It turns out that the information-based approach has a nice application in
modelling credit risk.

Models for credit risk management and for the pricing of credit derivatives are
usually classified into two types: structural and reduced-form.

The latter are more commonly used in practice on account of their tractability,
and the fact that fewer assumptions are required about the nature of the debt
obligations involved and the circumstances that might lead to default.

Most reduced-form models are based on the introduction of a random time of
default, where the default time is modelled as the time at which the integral of a
random intensity process first hits a certain random critical level.

An unsatisfactory feature of intensity models is that they do not adequately take
into account the fact that defaults are typically associated with a failure in the
delivery of a promised cash-flow—for example, a missed coupon payment.
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Another drawback of the intensity approach is that it is not well adapted to the
situation where one wants to model the rise and fall of credit spreads.

The present framework provides a way forward in dealing with these issues.

The credit model in more detail

Let us consider the case of a simple credit-risky discount bond that matures at
time T to pay a principal of h1 dollars, providing there is no default.

In the event of default, the bond pays h0 dollars.

For example we might consider the case h1 = 1 and h0 = 0.

When just two such payoffs are possible we shall call the resulting structure a
‘binary’ discount bond.

Let us write p1 for the probability that the bond will pay h1, and p0 for the
probability that the bond will pay h0.

The probabilities here are the risk-neutral probabilities, and hence build in any
risk adjustments required in expectations needed in order to deduce prices.
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If we write B0T for the price at time 0 of the risky discount bond then

B0T = P0T (p1h1 + p0h0). (36)

It follows that, providing we know the market data B0T and P0T , we can infer
the a priori probabilities p1 and p0:

p0 =
1

h1 − h0

(
h1 − B0T

P0T

)
, p1 =

1

h1 − h0

(
B0T

P0T
− h0

)
. (37)

Let HT denotes the random payout of the bond.

The true value of HT , therefore, is not fully accessible until time T .

That is to say, we assume that HT is FT -measurable, but is not necessarily
Ft-measurable for t < T .

Modelling the flow of information

We make the reasonable assumption that some partial information regarding the
value of the principal repayment HT is available at earlier times.

More precisely, we shall assume that the following {Ft}-adapted market
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information process is accessible to market participants:

ξt = σHTt + βtT . (38)

Here the process {βtT}0≤t≤T is a standard Brownian bridge over [0, T ],
independent of HT , and thus represents “pure noise”.

Expression for the price process of a credit-risky bond

For simplicity, we assume that the only information available about HT at times
earlier than T comes from observations of {ξt}.
More specifically, if we denote by F ξ

t ⊂ Ft the subalgebra of Ft generated by
{ξt}0≤s≤t, then our assumption is that

E [HT |Ft] = E

[
HT

∣∣∣F ξ
t

]
. (39)

Now we are in a position to determine the price-process {BtT}0≤t≤T for a
credit-risky discount bond with payout HT .

In particular, we wish to calculate

BtT = PtTE

[
HT

∣∣∣F ξ
t

]
. (40)
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From the result obtained earlier we see that the conditional expectation

HtT = E

[
HT

∣∣∣F ξ
t

]
(41)

can be worked out explicitly.

The result is given by the following expression:

HtT =
p0h0 exp

[
T

T−t

(
σh0ξt − 1

2σ
2h2

0t
)]

+p1h1 exp
[

T
T−t

(
σh1ξt − 1

2σ
2h2

1t
)]

p0 exp
[

T
T−t

(
σh0ξt − 1

2σ
2h2

0t
)]

+p1 exp
[

T
T−t

(
σh1ξt − 1

2σ
2h2

1t
)] .(42)

The value of the bond at any time t before maturity can be expressed as a
function of the value of ξt.

Since {ξt} is given by a combination of the random bond payoff and an
independent Brownian bridge, this means that it is straightforward to simulate
sample trajectories for the bond price process.

The bond price trajectories will then rise and fall randomly in line with the
fluctuating information about the likely final payoff.

Determining the conditional expectation
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Now consider the more general situation where the discount bond pays out the
value HT = hi (i = 0, 1, . . . , n) with a priori probability Q[HT = hi] = pi.

For convenience we assume hn > hn−1 > · · · > h1 > h0.

The case n = 1 then corresponds to the binary bond we have just considered.

We think of HT = hn as the case of no default, and all of the other cases as
various possible degrees of partial recovery.

Writing ξt = σtHT + βtT as before, we want to find the conditional expectation
E[HT |F ξ

t ] of the bond payoff.

It follows from the Markovian property of {ξt} that the conditioning with

respect to the σ-algebra F ξ
t can be replaced by conditioning with respect to ξt.

Therefore, writing

HtT = E[HT |ξt] (43)

for the conditional expectation of HT given ξt, we have

HtT =
∑

i

hiπit. (44)
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The process {πit} is defined by

πit = Q(HT = hi|ξt). (45)

Thus {πit} is the conditional probability that the credit-risky bond pays out hi.

The a priori probability pi and the a posteriori probability πit at time t are
related by the Bayes formula:

Q(HT = hi|ξt) =
piρ(ξt|HT = hi)∑
i piρ(ξt|HT = hi)

. (46)

Here ρ(ξ|HT = hi) is the conditional density function for the random variable ξt,
given by

ρ(ξ|HT = hi) =

√
T

2πt(T − t)
exp

(
−T (ξ − σthi)

2

2t(T − t)

)
. (47)

Expression (47) can be deduced from the fact that conditional on HT = hi the
random variable ξt is normally distributed with mean σthi and variance
t(T − t)/T .

As a consequence of (46) and (47), we deduce that the conditional probabilities
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are

πit =
pi exp

[
T

T−t(σhiξt − 1
2σ

2h2
i t)
]

∑
i pi exp

[
T

T−t(σhiξt − 1
2σ

2h2
i t)
]. (48)

It follows that

HtT =

∑
i pihi exp

[
T

T−t

(
σhiξt − 1

2σ
2h2

i t
)]

∑
i pi exp

[
T

T−t

(
σhiξt − 1

2σ
2h2

i t
)] . (49)

This is the desired expression for the conditional expectation of the bond payoff.

The discount-bond price process {BtT} is therefore given by

BtT = PtTHtT . (50)

Defaultable discount bond dynamics

Let us now proceed to analyse the dynamics of the discount bond price process.

The key relation we need for determining the dynamics of the bond price process
is that the conditional probability {πit} satisfies a diffusion equation of the form

dπit =
σT

T − t
(hi − HtT )πitdWt. (51)
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The process {Wt}0≤t<T appearing here, defined by

Wt = ξt +

∫ t

0

1

T − s
ξs ds − σT

∫ t

0

1

T − s
HsT ds, (52)

is an {Ft}-Brownian motion.

The fact that {Wt} is an {Ft}-Brownian motion is a highly nontrivial result,
and can be verified directly by showing that {Wt} is an {Ft}-martingale and
that (dWt)

2 = dt.

The Brownian motion {Wt} arising in this way can thus be regarded as part of
the information accessible to market participants.

We note that, unlike {βtT}, the value of Wt contains some “real” information
relevant to the ultimate fate of the bond payoff.

As before, we call {Wt} the “innovation process”.

It follows from (44) and (51) that for the discount bond dynamics we have

dBtT = rtBtT dt + ΣtT dWt. (53)

Here rt = −∂ ln P0t/∂t is the deterministic short rate.
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The absolute bond volatility ΣtT is given by

ΣtT =
σT

T − t
PtTVtT . (54)

The process {VtT} appearing here is defined by the relation

VtT =
∑

i

(hi − HtT )2πit. (55)

We see that VtT has the interpretation of being the conditional variance of the
terminal payoff HT .

It should be apparent that as the maturity date is approached the absolute
discount bond volatility will be high unless the conditional probability has most
of its mass concentrated around the “true” outcome.

Simulation of credit-risky bond price processes

The present framework allows for a very simple and natural simulation
methodology for the dynamics of defaultable bonds and related structure.

In the case of a defaultable discount bond all we need to do is to simulate the
dynamics of the process {ξt}.
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Thus for each “run” of the simulation we choose at random a value for HT (in
accordance with the correct a priori probabilities), and a sample path for the
Brownian bridge.

That is to say, each simulation corresponds to a choice of ω ∈ Ω, and for each
such choice we simulate the path

ξt(ω) = σtHT (ω) + βtT (ω) (56)

for t ∈ [0, T ].

One way to simulate a Brownian bridge is to write

βtT = Bt − t

T
BT . (57)

Here {Bt} is a standard Brownian motion.

It is straightforward to verify that if {βtT} is defined in this way then it has the
correct auto-covariance properties.

Since the bond price at time t is expressed directly as a function of ξt, this
means that a pathwise simulation of the trajectory of the bond price is feasible
for an arbitrary number of recovery levels.
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Figure 2: Examples of sample paths for σ = 0.04.
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Figure 3: Examples of sample paths for σ = 0.2.
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Figure 4: Examples of sample paths for σ = 1.
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Figure 5: Examples of sample paths for σ = 5.
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Dynamic consistency and model calibration

The information-based framework exhibits a property that might appropriately
be called “dynamic consistency”.

Loosely speaking, the question is: if the information process is given as
described, but then we re-initialise the model at some specified intermediate
time, is it still the case that the dynamics of the model moving forward from that
intermediate time can be consistently represented by an information process?

To answer this question we proceed as follows.

First we define a standard Brownian bridge over the interval [t, T ] to be a
Gaussian process {γuT}t≤u≤T satisfying γtT = 0, γTT = 0, E[γuT ] = 0 for all
u ∈ [t, T ], and

E[γuTγvT ] = (u − t)(T − v)/(T − t) (58)

for all u, v such that t ≤ u ≤ v ≤ T .

Let {βtT}0≤t≤T be a standard Brownian bridge over the interval [0, T ], and
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define the process {γuT}t≤u≤T by

γuT = βuT − T − u

T − t
βtT . (59)

Then {γuT}t≤u≤T is a standard Brownian bridge over the interval [t, T ], and is
independent of {βsT}0≤s≤t.

Now let the information process {ξs}0≤s≤T be given, and fix an intermediate
time t ∈ (0, T ).

Then for all u ∈ [t, T ] let us define a process {ηu} by

ηu = ξu − T − u

T − t
ξt. (60)

We claim that {ηu} is an information process over the time interval [t, T ].

In fact, a short calculation establishes that

ηu = σ̃HT (u − t) + γuT , (61)

where {γuT}t≤u≤T is a standard Brownian bridge over the interval [t, T ],
independent of HT , and σ̃ = σT/(T − t).

Thus the “original” information process proceeds from time 0 up to time t.
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At that time we can re-calibrate the model by taking note of the value of the
random variable ξt, and introducing the re-initialised information process {ηu}.
The new information process depends on HT ; but since the value of ξt is
supplied, the a priori probability distribution for HT now changes to the
appropriate a posteriori distribution consistent with the knowledge of ξt.

These interpretive remarks can be put into a more precise form as follows.

For 0 ≤ t ≤ u < T we want a formula for the conditional probability πiu

expressed in terms of the information ηu and the “new” a priori probability πit.

Such a formula exists, and is given as follows:

πiu =
πit exp

[
T−t
T−u

(
σ̃hiηu − 1

2σ̃
2h2

i (u − t)
)]

∑
i πit exp

[
T−t
T−u

(
σ̃hiηu − 1

2σ̃
2h2

i (u − t)
)]. (62)

This remarkable relation can be verified by substituting the given expressions for
πit, ηu, and σ̃ into the right-hand side of (62).

But (62) has the same structure as the original formula for πit, and thus we see
that the model exhibits manifest dynamic consistency.
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4. Pricing and hedging credit derivatives

Options on credit-risky bonds

We now turn to consider the pricing of options on credit-risky bonds.

In the case of a binary bond there is an exact solution for the valuation of
European-style vanilla options.

The resulting expression for the option price exhibits a structure that is strikingly
analogous to that of the Black-Scholes option pricing formula.

We consider the value at time 0 of an option that is exercisable at a fixed time
t > 0 on a credit-risky discount bond that matures at time T > t.

The value C0 of a call option is

C0 = P0tE
[
(BtT − K)+

]
, (63)

where K is the strike price.

Inserting formulae (49) and (50) for BtT into the valuation formula (63) for the
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option, we obtain

C0 = P0t E
[
(PtTHtT − K)+]

= P0t E

⎡
⎣
(

n∑
i=0

PtTπithi − K

)+
⎤
⎦

= P0t E

⎡
⎣
(

1

Φt

n∑
i=0

PtTpithi − K

)+
⎤
⎦

= P0t E

⎡
⎣ 1

Φt

(
n∑

i=0

(
PtThi − K

)
pit

)+
⎤
⎦ . (64)

Here the random variables pit, i = 0, 1, . . . , n, are the “unnormalised”
conditional probabilities, defined by

pit = pi exp

[
T

T − t

(
σhiξt − 1

2σ
2h2

i t
)]

. (65)
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Then πit = pit/Φt, where Φt =
∑

i pit, or, more explicitly,

Φt =

n∑
i=0

pi exp

[
T

T − t

(
σhiξt − 1

2σ
2h2

i t
)]

. (66)

Change of measure technique

Our plan now is to use the factor 1/Φt appearing in (64) to make a change of
probability measure on (Ω,Ft).

To this end, we fix a time horizon u at or beyond the option expiration but
before the bond maturity, so t ≤ u < T .

We define a process {Φt}0≤t≤u by use of the expression (66), where now we let t
vary in the range [0, u].

It is a straightforward exercise in Ito calculus, making use of (52), to verify that

dΦt = σ2

(
T

T − t

)2

H2
tTΦt dt + σ

T

T − t
HtTΦt dWt. (67)

Mathematical Methods for Finance: Educational Workshop c© DC Brody 2007



Information-Based Asset Pricing - 43 - 17 September 2007

It follows then that

dΦ−1
t = −σ

T

T − t
HtTΦ−1

t dWt, (68)

and hence that

Φ−1
t = exp

(
−σ

∫ t

0

T

T − s
HsT dWs − 1

2
σ2

∫ t

0

T 2

(T − s)2
H2

sT ds

)
. (69)

Since {HsT} is bounded, and s ≤ u < T , we see that the process {Φ−1
s }0≤s≤u

is a martingale.

In particular, since Φ0 = 1, we deduce that EQ[Φ−1
t ] = 1, where t is the option

maturity date, and hence that the factor 1/Φt in (64) can be used to effect a
change of measure on (Ω,Ft).

Writing BT for the new probability measure thus defined, we have

C0 = P0t E
BT

⎡
⎣
(

n∑
i=0

(
PtThi − K

)
pit

)+
⎤
⎦ . (70)

We call BT the “bridge” measure because it has the special property that it
makes {ξs}0≤s≤t a BT -Gaussian process with mean zero and covariance
EBT [ξrξs] = r(T − s)/T for 0 ≤ r ≤ s ≤ t.
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In other words, with respect to the measure BT , and over the interval [0, t], the
information process has the law of a standard Brownian bridge over the interval
[0, T ].

The bridge measure

The proof that {ξs}0≤s≤t has the claimed properties under the measure BT is as
follows.

For convenience we introduce a process {W ∗
t }0≤t≤u which we define as the

following Brownian motion with drift in the Q-measure:

W ∗
t = Wt + σ

∫ t

0

T

T − s
HsT ds. (71)

It is straightforward to check that on (Ω,Ft) the process {W ∗
t }0≤t≤u is a

Brownian motion with respect to the measure defined by use of the density
martingale {Φ−1

t }0≤t≤u given by (69).

It then follows from the definition of {Wt}, given in (52), that

W ∗
t = ξt +

∫ t

0

1

T − s
ξs ds. (72)
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Taking the stochastic differential of each side of this relation, we deduce that

dξt = − 1

T − t
ξt dt + dW ∗

t . (73)

We note, however, that (73) is the stochastic differential equation satisfied by a
Brownian bridge over the interval [0, T ].

Thus we see that in the measure BT defined on (Ω,Ft) the process {ξs}0≤s≤t

has the properties of a standard Brownian bridge over [0, T ], albeit restricted to
the interval [0, t].

For the transformation back from BT to Q on (Ω,Ft), the appropriate density
martingale {Φt}0≤t≤u with respect to BT is given by:

Φt = exp

(
σ

∫ t

0

T

T − s
HsT dW ∗

s − 1
2
σ2

∫ t

0

T 2

(T − s)2
H2

sT ds

)
. (74)

The crucial point that follows is that the random variable ξt is BT -Gaussian.

Options on binary bonds

In the case of a binary discount bond, therefore, the relevant expectation for
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determining the option price can be carried out by standard techniques, and we
are led to a formula of the Black-Scholes type.

In particular, for a binary bond, Equation (70) reads

C0 = P0tE
BT

[(
(PtTh1 − K)p1t + (PtTh0 − K)p0t

)+
]

, (75)

where p0t and p1t are given by

p0t = p0 exp
[

T
T−t

(
σh0ξt − 1

2σ
2h2

0t
)]

,

p1t = p1 exp
[

T
T−t

(
σh1ξt − 1

2σ
2h2

1t
)]

.
(76)

To compute the value of (75) there are essentially three different cases that have
to be considered: (i) PtTh1 > PtTh0 > K, (ii) K > PtTh1 > PtTh0, and (iii)
PtTh1 > K > PtTh0.

In case (i) the option is certain to expire in the money.

Thus, making use of the fact that ξt is BT -Gaussian with mean zero and
variance t(T − t)/T , we see that EBT [pit] = pi; hence in case (i) we have
C0 = B0T − P0tK.
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In case (ii) the option expires out of the money, and thus C0 = 0.

In case (iii) the option can expire in or out of the money, and there is a
“critical” value of ξt above which the argument of (75) is positive.

This is obtained by setting the argument of (75) to zero and solving for ξt.

Writing ξ̄t for the critical value, we find that ξ̄t is determined by the relation

T

T − t
σ(h1 − h0)ξ̄t = ln

[
p0(PtTh0 − K)

p1(K − PtTh1)

]
+ 1

2σ
2(h2

1 − h2
0)τ, (77)

where τ = tT/(T − t).

Next we note that since ξt is BT -Gaussian with mean zero and variance
t(T − t)/T , for the purpose of computing the expectation in (75) we can set
ξt = Z

√
t(T − t)/T , where Z is BT -Gaussian with zero mean and unit variance.

Then writing Z̄ for the corresponding critical value of Z, we obtain

Z̄ =
ln
[

p0(PtT h0−K)
p1(K−PtTh1)

]
+ 1

2
σ2(h2

1 − h2
0)τ

σ
√

τ (h1 − h0)
. (78)

With this expression at hand, we can work out the expectation in (75).
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Figure 6: Call price as a function of initial bond price. The parameters are: r = 5%, σ = 25%, T = 2 year, t = 1 year,
and K = 0.6.

We are thus led to the following option pricing formula:

C0 = P0t

[
p1(PtTh1 − K)N(d+) − p0(K − PtTh0)N(d−)

]
. (79)

Here d+ and d− are defined by

d± =
ln
[

p1(PtTh1−K)
p0(K−PtTh0)

]
± 1

2σ
2(h1 − h0)

2τ

σ
√

τ (h1 − h0)
. (80)
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Greeks

A short calculation shows that the corresponding option delta, defined by
Δ = ∂C0/∂B0T , is given by

Δ =
(PtTh1 − K)N(d+) + (K − PtTh0)N(d−)

PtT (h1 − h0)
. (81)

This can be verified by using (79) to determine the dependency of the option
price C0 on the initial bond price B0T .

It is interesting to note that the parameter σ plays a role like that of the
volatility parameter in the Black-Scholes model.

The more rapidly information is “leaked out” about the true value of the bond
repayment, the higher the volatility.

It is straightforward to verify that the option price has a positive vega, i.e. that
C0 is an increasing function of σ.

This means that we can use bond option prices (or, equivalently, caps and
floors) to back out an implied value for σ, and hence to calibrate the model.

Writing V = ∂C0/∂σ for the corresponding option vega, we obtain the following
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Figure 7: Delta hedge for a defaultable digital bond option with r = 5%, σ = 25%, T = 2 year, and K = 0.6.

positive expression:

V =
1√
2π

e−rt−1
2A(h1 − h0)

√
τp0p1(PtTh1 − K)(K − PtTh0), (82)

where

A =
1

σ2τ (h1 − h0)2

(
ln

[
p1(PtTh1 − K)

p0(K − PtTh0)

])2

+ 1
4σ

2τ (h1 − h0)
2. (83)
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Options on general bonds

In the more general case of a stochastic recovery, a semi-analytic option pricing
formula can be obtained that, for practical purposes, can be regarded as fully
tractable.

In particular, starting from (70) we consider the case where the strike price K
lies in the range PtThk+1 > K > PtThk for some value of k ∈ {0, 1, . . . , n}.
It is an exercise to verify that there exists a unique critical value of ξt such that
the summation appearing in the argument of the max(x, 0) function in (70)
vanishes.

Writing ξ̄t for the critical value, which can be obtained by numerical methods,
we define the scaled critical value Z̄ as before, by setting ξ̄t = Z̄

√
t(T − t)/T .

A calculation then shows that the option price is given by the following
expression:

C0 = P0t

n∑
i=0

pi (PtThi − K) N(σhi

√
τ − Z̄). (84)
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5. Volatility and correlation: modelling dependent assets

Market factors and multiple cash flows

We proceed to consider the more general situation where the asset pays multiple
dividends.

This will allow us to consider a wider range of financial instruments.

Let us write DTk
(k = 1, . . . , n) for a set of random dividends paid at the

pre-designated dates Tk (k = 1, . . . , n).

Possession of the asset at time t entitles the bearer to the cash flows occurring
at times Tk > t.

For each value of k we introduce a set of independent random variables Xα
Tk

(α = 1, . . . , mk), which we call market factors or X-factors.

For each value of α we assume that the market factor Xα
Tk

is FTk
-measurable,

where {Ft} is the market filtration.

For each value of k, the market factors {Xα
Tj
}j≤k represent the independent
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elements that determine the cash flow occurring at time Tk.

Thus for each value of k the cash flow DTk
is assumed to have the following

structure:

DTk
= ΔTk

(Xα
T1

, Xα
T2

, ..., Xα
Tk

), (85)

where ΔTk
(Xα

T1
, Xα

T2
, ..., Xα

Tk
) is a function of

∑k
j=1 mj variables.

For each cash flow it is, so to speak, the job of the financial analyst (or actuary)
to determine the relevant independent market factors, and the form of the
cash-flow function ΔTk

for each cash flow.

With each market factor Xα
Tk

we associate an information process {ξα
tTk

}0≤t≤Tk

of the form

ξα
tTk

= σα
Tk

Xα
Tk

t + βα
tTk

. (86)

The X-factors and the Brownian bridge processes are all independent.

The parameter σα
Tk

determines the rate at which the market factor Xα
Tk

is
revealed.

The market filtration {Ft} is generated by the totality of the independent
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information processes {ξα
tTk

}0≤t≤Tk
for k = 1, . . . , n and α = 1, . . . ,mk.

Hence, the price of the asset is given by

St =
n∑

k=1

1{t<Tk}PtTk
Et

[
DTk

]
. (87)

As an elementary example consider a two-factor bond price process, where the
cash flow is given by

DT = X
(1)
T X

(2)
T . (88)

Assuming X
(1)
T , X

(2)
T are binary random variables taking values 0, 1, the resulting

bond price sample paths are simulated for a range of values for σ1, σ2 (Figure 8).

Assets with common factors

The multiple-dividend asset pricing model can be extended in a natural way to
the situation where two or more assets are being priced.

In this case we consider a collection of N assets with price processes

{S(i)
t }i=1,2,...,N .
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Figure 8: Sample paths for a two-factor bond price process, with r = 0%.
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With asset number (i) we associate the cash flows {D(i)
Tk
} paid at the dates

{Tk}k=1,2,...,n.

The dates {Tk}k=1,2,...,n are not tied to any specific asset, but rather represent
the totality of possible cash-flow dates of any of the given assets.

If a particular asset has no cash flow on one of the dates, then it is assigned a
zero cash-flow for that date.

From this point, the theory proceeds exactly as in the single asset case.

That is to say, with each value of k we associate a set of X-factors Xα
Tk

(α = 1, 2, . . . ,mk), and a system of market information processes {ξα
tTk

}.
The X-factors and the information processes are not tied to any particular asset.

The cash flow D
(i)
Tk

occurring at time Tk for asset number (i) is given by a cash
flow function of the form

D
(i)
Tk

= Δ
(i)
Tk

(Xα
T1

, Xα
T2

, ..., Xα
Tk

). (89)

In other words, for each asset, each cash flow can depend on all of the X-factors
that have been “activated” at that point.
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Thus for the general multi-asset model we have the following price process:

S
(i)
t =

n∑
k=1

1{t<Tk}PtTk
Et

[
D

(i)
Tk

]
. (90)

It is possible in general for two or more assets to “share” an X-factor in
association with one or more of the cash flows of each of the assets.

This in turn implies that the various assets will have at least one Brownian
motion in common in the dynamics of their price processes.

We thus obtain a natural model for the correlation structures in the prices of
these assets.

The intuition is that as new information comes in (whether “true” or “bogus”)
there will be several different assets all affected by the news, and as a
consequence there will be a correlated movement in their prices.

As a simple application we can ask how the price process of a T -maturity bond
is affected if the same firm also issues a T ′(< T )-maturity bond.

Several sample paths for the T -maturity bond price process in these scenarios
are simulated in Figure 9.
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Figure 9: Sample paths for a T -maturity bond price with parameters σ = 25%, r = 5%, T ′ = 2.5, and T = 5. The cash
flows are given by HT ′ = X and HT = XY .
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Origin of unhedgeable stochastic volatility

Based on the general model introduced here, we are in a position to make an
observation concerning the nature of stochastic volatility in the equity markets.

The dynamics of the stochastic volatility can be derived without the need for
any ad hoc assumptions.

In fact, a very specific dynamical model for stochastic volatility is obtained—thus
leading to a possible means by which the theory proposed here might be tested.

We shall work out the volatility associated with the dynamics of the asset price
process {St} given by (87).

First, as an example, we consider the dynamics of an asset that pays a single
dividend DT at T .

We assume that the dividend depends on the market factors {Xα
T}α=1,...,m.

Mathematical Methods for Finance: Educational Workshop c© DC Brody 2007



Information-Based Asset Pricing - 60 - 17 September 2007

For t < T we then have:

St = PtTEQ
[
ΔT

(
X1

T , . . . , Xm
T

)∣∣ ξ1
tT , . . . , ξm

tT

]
= PtT

∫
· · ·
∫

ΔT (x1, . . . , xm) π1
tT (x1) · · ·πm

tT (xm) dx1 · · · dxm. (91)

Here the various conditional probability density functions πα
tT (x) for

α = 1, . . . , m are

πα
tT (x) =

pα(x) exp
[

T
T−t

(
σα x ξα

tT − 1
2
(σα)2 x2t

)]
∫∞

0 pα(x) exp
[

T
T−t

(
σα x ξα

tT − 1
2
(σα)2 x2t

)]
dx

, (92)

where pα(x) denotes the a priori probability density function for the factor Xα
T .

The drift of {St}0≤t<T is given by the short rate.

This is because Q is the risk-neutral measure, and no dividend is paid before T .

Thus, we are left with the problem of determining the volatility of {St}.
We find that for t < T the dynamical equation of {St} assumes the form:

dSt = rtStdt +
m∑

α=1

Γα
tTdWα

t . (93)

Mathematical Methods for Finance: Educational Workshop c© DC Brody 2007



Information-Based Asset Pricing - 61 - 17 September 2007

Here the volatility term associated with factor number α is given by

Γα
tT = σα T

T − t
PtT Cov

[
ΔT

(
X1

T , . . . , Xm
T

)
, Xα

T

∣∣Ft

]
, (94)

and {Wα
t } denotes the Brownian motion associated with the information

process {ξα
t }, as defined in (86).

The absolute volatility of {St} is of the form

Γt =

(
m∑

α=1
(Γα

tT )2
)1/2

. (95)

For the dynamics of a multi-factor single-dividend paying asset we can thus write

dSt = rtStdt + ΓtdZt, (96)

where the {Ft}-Brownian motion {Zt} that drives the asset-price process is

Zt =

∫ t

0

1

Γs

m∑
α=1

Γα
sT dWα

s . (97)

The point to note here is that in the case of a multi-factor model we obtain an
unhedgeable stochastic volatility.
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That is to say, although the asset price is in effect driven by a single Brownian
motion, its volatility depends on a multiplicity of Brownian motions.

This means that in general an option position cannot be hedged with a position
in the underlying asset.

The components of the volatility vector are given by the covariances of the cash
flow and the independent market factors.

Unhedgeable stochastic volatility thus emerges from the multiplicity of uncertain
elements in the market that affect the value of the future cash flow.

As a consequence we see that in this framework we obtain a natural explanation
for the origin of stochastic volatility.

This result can be contrasted with, say, the Heston model, which despite its
popularity suffers from the fact that it is ad hoc in nature.

Much the same can be said for the various generalisations of the Heston model
used in commercial applications.

The approach to stochastic volatility proposed here is thus of a new character.
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Expression (93) generalises to the case for which the asset pays a set of
dividends DTk

(k = 1, . . . , n), and for each k the dividend depends on the

X-factors {{Xα
Tj
}α=1,...,mj

j=1,...,k }.
The result can be summarised as follows:

The price process of a multi-dividend asset has the following dynamics:

dSt = rt St dt +
n∑

k=1

mk∑
α=1

1{t<Tk}
σα

k Tk

Tk − t
PtTk

Cov
[
DTk

, Xα
Tk

∣∣Ft

]
dWαk

t

+
n∑

k=1

DTk
d1{t<Tk}, (98)

where DTk
= ΔTk

(Xα
T1

, Xα
T2

, · · · , Xα
Tk

) is the dividend at time Tk

(k = 1, 2, . . . , n).
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