An affine intensity model for large credit portfolios Stefano Herzel

University of Perugia

www.unipg.it/herzel

Related literatur

Model calibration

Simulation

Conclusion

Loint work with Roatrice Acciding

Related literature

Model calibration

Simulations

Conclusions

Joint work with Beatrice Acciain

Related literature

Model calibration

Simulations

Conclusions

Joint work with Reatrice Acciain

Related literature

Model calibration

Simulations

Conclusions

Joint work with Beatrice Acciain

Related literature

Model calibration

Simulations

Conclusions

Joint work with Beatrice Acciaio

- ▶ We model the intensity of default of *N* obligors.
- ▶ We assume that the obligors belong to *S* different groups (industrial sectors) and to a unique general environment (market).
- ► The default of any obligor can be due to one of the following causes (credit events):
 - 1 idiosyncratic
 - 2. sectoral
 - 3. generali

- ▶ We model the intensity of default of *N* obligors.
- ► We assume that the obligors belong to *S* different groups (industrial sectors) and to a unique general environment (market).
- ► The default of any obligor can be due to one of the following causes (credit events):
 - 1. idiosvncratic
 - 2. sectoral
 - 7 general

- ▶ We model the intensity of default of *N* obligors.
- ▶ We assume that the obligors belong to *S* different groups (industrial sectors) and to a unique general environment (market).
- ► The default of any obligor can be due to one of the following causes (credit events):
 - 1. idiosyncratic
 - 2. sectoral
 - 3. general

- ▶ We model the intensity of default of *N* obligors.
- ▶ We assume that the obligors belong to *S* different groups (industrial sectors) and to a unique general environment (market).
- ► The default of any obligor can be due to one of the following causes (credit events):
 - 1. idiosyncratic
 - 2. sectoral
 - 3. general

- ▶ We model the intensity of default of *N* obligors.
- ▶ We assume that the obligors belong to S different groups (industrial sectors) and to a unique general environment (market).
- ► The default of any obligor can be due to one of the following causes (credit events):
 - 1. idiosyncratic
 - 2. sectoral
 - general

- ▶ We model the intensity of default of *N* obligors.
- ▶ We assume that the obligors belong to S different groups (industrial sectors) and to a unique general environment (market).
- ► The default of any obligor can be due to one of the following causes (credit events):
 - 1. idiosyncratic
 - 2. sectoral
 - 3. general

▶ The time of default τ_j of obligor j has intensity

$$\lambda_j = X_j + u_j Y_{g(j)} + v_j Z, \quad j = 1, \dots, N,$$

where $\{X_1, \ldots, X_N, Y_1, \ldots, Y_S, Z\}$ are independent affine processes. X_1, \ldots, X_N are the idiosyncratic factors, Y_1, \ldots, Y_S are the sectoral factors Z is the common factor.

► The factors are affine jump-diffusions,

$$dX(t) = k(\theta - X(t))dt + \sigma\sqrt{X(t)}dW(t) + dJ(t).$$

where W is Brownian motion, J a pure-jump process with jump sizes exponential with mean μ , and jump times independent Poisson process with arrival rate ℓ .

Note: λ_i in general is not affine.

▶ The time of default τ_j of obligor j has intensity

$$\lambda_j = X_j + u_j Y_{g(j)} + v_j Z, \quad j = 1, \dots, N,$$

where $\{X_1, \ldots, X_N, Y_1, \ldots, Y_S, Z\}$ are independent affine processes. X_1, \ldots, X_N are the idiosyncratic factors, Y_1, \ldots, Y_S are the sectoral factors Z is the common factor.

The factors are affine jump-diffusions,

$$dX(t) = k(\theta - X(t))dt + \sigma\sqrt{X(t)}dW(t) + dJ(t),$$

where W is Brownian motion, J a pure-jump process with jump sizes exponential with mean μ , and jump times independent Poisson process with arrival rate ℓ .

▶ Note: λ_i in general is not affine.

▶ The time of default τ_j of obligor j has intensity

$$\lambda_j = X_j + u_j Y_{g(j)} + v_j Z, \quad j = 1, \dots, N,$$

where $\{X_1, \ldots, X_N, Y_1, \ldots, Y_S, Z\}$ are independent affine processes. X_1, \ldots, X_N are the idiosyncratic factors, Y_1, \ldots, Y_S are the sectoral factors Z is the common factor.

The factors are affine jump-diffusions,

$$dX(t) = k(\theta - X(t))dt + \sigma\sqrt{X(t)}dW(t) + dJ(t),$$

where W is Brownian motion, J a pure-jump process with jump sizes exponential with mean μ , and jump times independent Poisson process with arrival rate ℓ .

▶ Note: λ_i in general is not affine.

- ▶ We generalize a model by Duffie and Gârleanu (2001) for the valuation of CDO's. DG restrict λ_j 's to be affine, consider only one common factor, imposing to all the obligors the same sensibility to it.
- DG illustrate the effect of correlation and prioritization on CDO's valuation
- ► A common critique: intensity models produce low correlations of defaults (Hull and White (2001))
- ▶ Yu (2002) provides some evidence that this is not always true
- ▶ Other affine credit models include Duffee (1999) and Driessen (2002). They focus on the identification of default risk premium on corporate bonds

- ▶ We generalize a model by Duffie and Gârleanu (2001) for the valuation of CDO's. DG restrict λ_j 's to be affine, consider only one common factor, imposing to all the obligors the same sensibility to it.
- ▶ DG illustrate the effect of correlation and prioritization on CDO's valuation
- ► A common critique: intensity models produce low correlations of defaults (Hull and White (2001))
- ▶ Yu (2002) provides some evidence that this is not always true
- ▶ Other affine credit models include Duffee (1999) and Driessen (2002). They focus on the identification of default risk premium on corporate bonds

- ▶ We generalize a model by Duffie and Gârleanu (2001) for the valuation of CDO's. DG restrict λ_j 's to be affine, consider only one common factor, imposing to all the obligors the same sensibility to it.
- DG illustrate the effect of correlation and prioritization on CDO's valuation
- ► A common critique: intensity models produce low correlations of defaults (Hull and White (2001))
- ▶ Yu (2002) provides some evidence that this is not always true
- ▶ Other affine credit models include Duffee (1999) and Driessen (2002). They focus on the identification of default risk premium on corporate bonds.

- ▶ We generalize a model by Duffie and Gârleanu (2001) for the valuation of CDO's. DG restrict λ_j 's to be affine, consider only one common factor, imposing to all the obligors the same sensibility to it.
- DG illustrate the effect of correlation and prioritization on CDO's valuation
- ➤ A common critique: intensity models produce low correlations of defaults (Hull and White (2001))
- ▶ Yu (2002) provides some evidence that this is not always true
- ▶ Other affine credit models include Duffee (1999) and Driessen (2002). They focus on the identification of default risk premium on corporate bonds.

- ▶ We generalize a model by Duffie and Gârleanu (2001) for the valuation of CDO's. DG restrict λ_j 's to be affine, consider only one common factor, imposing to all the obligors the same sensibility to it.
- DG illustrate the effect of correlation and prioritization on CDO's valuation
- ➤ A common critique: intensity models produce low correlations of defaults (Hull and White (2001))
- ▶ Yu (2002) provides some evidence that this is not always true
- ▶ Other affine credit models include Duffee (1999) and Driessen (2002). They focus on the identification of default risk premium on corporate bonds.

Survival probabilities

► The survival probability

$$\begin{split} \mathbb{P}(\tau_{j} > t) &= \mathbb{E}_{0} e^{-\int_{0}^{t} \lambda_{j}(u) du} \\ &= \mathbb{E}_{0} e^{-\int_{0}^{t} X_{j}(u) du} e^{-u_{j} \int_{0}^{t} Y_{g(j)}(u) du} e^{-v_{j} \int_{0}^{t} Z(u) du} \\ &= \mathbb{E}_{0} e^{-\int_{0}^{t} X_{j}(u) du} \mathbb{E}_{0} e^{-u_{j} \int_{0}^{t} Y_{g(j)}(u) du} \mathbb{E}_{0} e^{-v_{j} \int_{0}^{t} Z(u) du} \end{split}$$

... because the processes are affine:

$$f(X,t,m) := \mathbb{E}_0 e^{-\int_0^t mX(u)du} = \exp(C(X,t,m)),$$

where

$$C(X, t, m) = \alpha_{\psi}^{m}(t) + \beta_{\psi}^{m}(t)X(0).$$

The functions $\alpha_{\psi}^{m}(t), \beta_{\psi}^{m}(t)$ can be efficiently computed.

Factorization of survival probabilities

► The survival probabilities of the *i*-th obligor can be factorized as

$$s_i^t := f(X_i, t, 1) f(Y_{g(i)}, t, u_i) f(Z, t, v_i),$$

The formula shows the dependence of the default probability of a single obligor on the occurrences of idiosyncratic, sectoral, general "credit events".

Let e(M, t) be the r.v. indicating the occurrence of a general credit event before time t, then

$$\mathbb{P}(e(M, t)) = 1 - f(Z, t, 1)$$

and

$$\mathbb{P}(\tau^i < t, e(M, t)) = 1 - f(Z, t, v_i)$$

Factorization of survival probabilities

► The survival probabilities of the *i*-th obligor can be factorized as

$$s_i^t := f(X_i, t, 1) f(Y_{g(i)}, t, u_i) f(Z, t, v_i),$$

The formula shows the dependence of the default probability of a single obligor on the occurrences of idiosyncratic, sectoral, general "credit events".

▶ Let e(M, t) be the r.v. indicating the occurrence of a general credit event before time t, then

$$\mathbb{P}(e(M, t)) = 1 - f(Z, t, 1)$$

and

$$\mathbb{P}(\tau^i < t, e(M, t)) = 1 - f(Z, t, v_i))$$

Data needed for calibration

► For each obligor *i*, the survival probabilities

$$s_i^t := \mathbb{P}(\tau_i > t), \quad i = 1, \dots, N, \quad t \in \mathcal{T}.$$

► The probabilities of general and sectoral credit events

$$p^{\prime\prime\prime}(t):=\mathbb{P}(e(M,t)))$$
 $p^i(t):=\mathbb{P}(e(G(i),t))),\quad i=1,\ldots,S$

► For each obligor *i*, the probability of default conditioned on a general or sectoral credit event

$$egin{align}
ho_{i|G}(t) &:= \mathbb{P}(au^i < t|e(G(i),t)), \
ho_{i|M}(t) &:= \mathbb{P}(au^i < t|e(M,t)). \end{align}$$

Data needed for calibration

► For each obligor *i*, the survival probabilities

$$s_i^t := \mathbb{P}(\tau_i > t), \quad i = 1, \dots, N, \quad t \in \mathcal{T}.$$

► The probabilities of general and sectoral credit events

$$p^M(t) := \mathbb{P}(e(M, t)))$$
 $p^i(t) := \mathbb{P}(e(G(i), t))), \quad i = 1, \dots, S$

► For each obligor *i*, the probability of default conditioned on a general or sectoral credit event

$$egin{aligned} & egin{aligned}
ho_{i|G}(t) := \mathbb{P}(au^i < t | e(G(i), t)), \ & egin{aligned}
ho_{i|M}(t) := \mathbb{P}(au^i < t | e(M, t)). \end{aligned}$$

Data needed for calibration

For each obligor i, the survival probabilities

$$s_i^t := \mathbb{P}(\tau_i > t), \quad i = 1, \dots, N, \quad t \in \mathcal{T}.$$

▶ The probabilities of general and sectoral credit events

$$p^M(t) := \mathbb{P}(e(M, t)))$$
 $p^i(t) := \mathbb{P}(e(G(i), t))), \quad i = 1, \dots, S$

► For each obligor *i*, the probability of default conditioned on a general or sectoral credit event

$$p_{i|G}(t) := \mathbb{P}(\tau^i < t|e(G(i), t))$$

 $p_{i|M}(t) := \mathbb{P}(\tau^i < t|e(M, t))$

- ▶ Estimate the parameters sets $\hat{\psi}_c$ and $\{\hat{\psi}_{g_i}, i=1,...,S\}$ that better fit the input data $\{p^M(t), t \in \mathcal{T}\}$ and $\{p^i(t), i=1,...,S, t \in \mathcal{T}\}$
- ▶ From $p_{i|G}(t)$ and $p^i(t)$, extract $\mathbb{P}(\tau^i < t, e(G(i), t))$ and compute u_i from

$$u_i := \operatorname{argmin}_u \|\mathbb{P}(au^i < t, e(G(i), t)) - (1 - f(Y_{g_i}, t, u)))\|$$

From $p_{i|M}(t)$ and $p^i(t)$ extract $\mathbb{P}(\tau^i < t, e(M, t))$ and compute v_i from

$$v_i := \operatorname{argmin}_v || \mathbb{P}(\tau^i < t, e(M, t)) - (1 - f(Z, t, v)))||$$

- Estimate the parameters sets $\hat{\psi}_c$ and $\{\hat{\psi}_{g_i}, i=1,...,S\}$ that better fit the input data $\{p^M(t), t\in\mathcal{T}\}$ and $\{p^i(t), i=1,...,S, t\in\mathcal{T}\}$
- ▶ From $p_{i|G}(t)$ and $p^i(t)$, extract $\mathbb{P}(\tau^i < t, e(G(i), t))$ and compute u_i from

$$u_i := \operatorname{argmin}_u \|\mathbb{P}(\tau^i < t, e(G(i), t)) - (1 - f(Y_{g_i}, t, u)))\|$$

▶ From $p_{i|M}(t)$ and $p^i(t)$ extract $\mathbb{P}(\tau^i < t, e(M, t))$ and compute v_i from

$$v_i := \operatorname{argmin}_v || \mathbb{P}(\tau^i < t, e(M, t)) - (1 - f(Z, t, v)))||$$

- ▶ Estimate the parameters sets $\hat{\psi}_c$ and $\{\hat{\psi}_{g_i}, i=1,...,S\}$ that better fit the input data $\{p^M(t), t \in \mathcal{T}\}$ and $\{p^i(t), i=1,...,S, t \in \mathcal{T}\}$
- ▶ From $p_{i|G}(t)$ and $p^i(t)$, extract $\mathbb{P}(\tau^i < t, e(G(i), t))$ and compute u_i from

$$u_i := \operatorname{argmin}_u \| \mathbb{P}(\tau^i < t, e(G(i), t)) - (1 - f(Y_{g_i}, t, u))) \|$$

▶ From $p_{i|M}(t)$ and $p^i(t)$ extract $\mathbb{P}(\tau^i < t, e(M, t))$ and compute v_i from

$$v_i := \operatorname{argmin}_v \| \mathbb{P}(\tau^i < t, e(M, t)) - (1 - f(Z, t, v))) \|$$

► For each obligor *i*, define

$$\hat{f}(X_i,t) = \frac{s_i^t}{\hat{f}(Y_{g(i)},t,u_i)\hat{f}(Z,t,v_i)}.$$

▶ Fit the obligors' survival probabilities s_i^t by calibrating the parameters of the idiosyncratic factor X_i

► For each obligor *i*, define

$$\hat{f}(X_i,t) = \frac{s_i^t}{\hat{f}(Y_{g(i)},t,u_i)\hat{f}(Z,t,v_i)}.$$

► Fit the obligors' survival probabilities s_i^t by calibrating the parameters of the idiosyncratic factor X_i

- ► An exercise with default probabilities taken from Moody's transition matrix 1980-1999.
- ▶ We consider a portfolio of 90 obligors, belonging to 3 groups.
- ► Within each group, obligors 1-10 are Ba, 11-20 are B, 21-30
- ► General credit events are rare (Aa) Plo
- ► Groups credit events are (Baa,Ba,B)

- An exercise with default probabilities taken from Moody's transition matrix 1980-1999.
- ▶ We consider a portfolio of 90 obligors, belonging to 3 groups.

- ► Groups credit events are (Baa,Ba,B) Plo

- ► An exercise with default probabilities taken from Moody's transition matrix 1980-1999.
- ▶ We consider a portfolio of 90 obligors, belonging to 3 groups.
- ► Within each group, obligors 1-10 are Ba, 11-20 are B, 21-30 are Caa Plot
- ► General credit events are rare (Aa) Plot
- ► Groups credit events are (Baa,Ba,B) □ Plot

transition matrix 1980-1999.

An exercise with default probabilities taken from Moody's

- ▶ We consider a portfolio of 90 obligors, belonging to 3 groups.
- ► Within each group, obligors 1-10 are Ba, 11-20 are B, 21-30 are Caa Plot
- ► Groups credit events are (Baa,Ba,B) Plot

transition matrix 1980-1999.

An exercise with default probabilities taken from Moody's

- ▶ We consider a portfolio of 90 obligors, belonging to 3 groups.
- ► Within each group, obligors 1-10 are Ba, 11-20 are B, 21-30 are Caa Plot
- ► General credit events are rare (Aa) ► Plot
- ► Groups credit events are (Baa,Ba,B) ▶ Plot

- lacktriangle The dependence is only considered at time t=1
- We assume three levels of dependence L = 0.25; M = 0.5; H = 0.75, that is

$$p_{i|G}(t) = L, M, H$$

- ▶ Within each group, obligors 1-10 have dependence (with their group and with the general factor) *L*, 11-20 *M*, 21-30 *H*.
- ▶ We can compute the correlation of defaults before time t

$$ho_{i,j} = \mathsf{corr}\left(\mathbf{1}_{ au^i < t}, \mathbf{1}_{ au^j < t}
ight)$$

- ▶ The dependence is only considered at time t = 1
- ► We assume three levels of dependence L = 0.25; M = 0.5; H = 0.75, that is

$$p_{i|G}(t) = L, M, H$$

- ▶ Within each group, obligors 1-10 have dependence (with their group and with the general factor) *L*, 11-20 *M*, 21-30 *H*.
- ▶ We can compute the correlation of defaults before time *t*

$$\rho_{i,j} = \mathsf{corr}\left(\mathbf{1}_{\tau^i < t}, \mathbf{1}_{\tau^j < t}\right)$$

- ▶ The dependence is only considered at time t = 1
- We assume three levels of dependence L = 0.25; M = 0.5; H = 0.75, that is

$$p_{i|G}(t) = L, M, H$$

- ► Within each group, obligors 1-10 have dependence (with their group and with the general factor) *L*, 11-20 *M*, 21-30 *H*.
- \triangleright We can compute the correlation of defaults before time t

$$\rho_{i,j} = \operatorname{corr}\left(\mathbf{1}_{\tau^i < t}, \mathbf{1}_{\tau^j < t}\right)$$

- lacktriangle The dependence is only considered at time t=1
- We assume three levels of dependence L = 0.25; M = 0.5; H = 0.75, that is

$$p_{i|G}(t) = L, M, H$$

- ▶ Within each group, obligors 1-10 have dependence (with their group and with the general factor) *L*, 11-20 *M*, 21-30 *H*. ▶ Plot
- ightharpoonup We can compute the correlation of defaults before time t

$$\rho_{i,j} = \operatorname{corr} \left(\mathbf{1}_{\tau^i < t}, \mathbf{1}_{\tau^j < t} \right)$$

▶ Plot

The standard way to simulate default scenarios $\left\{ \tau^{(n)}, I^{(n)} \right\}_{n=1}^{N_d}$ is

- From $\lambda_j(t_0), j=1,\ldots,N$ compute the total intensity $\Lambda(t_0) = \sum_{i=1}^N \lambda_i(t_0)$
- ▶ Simulate the occurrence of one default in the interval Δt with probability $\Lambda(t_0)\Delta t$
- ▶ In case of default extract the identity of defaulter with probabilities $p_i = \lambda_i(t_0)/\Lambda(t_0)$
- ▶ Compute $\lambda_i(t_0 + \Delta t), j = 1, ..., N$ by discretization

- ▶ The standard way to simulate is based on the discretization of the continuous process. It converges as $\Delta t \rightarrow 0$
- ightharpoonup The smaller Δt the greater the computational effort
- ► Another problem is that the discretization of affine-square root processes often produces negative values.

- ▶ The standard way to simulate is based on the discretization of the continuous process. It converges as $\Delta t \rightarrow 0$
- \blacktriangleright The smaller Δt the greater the computational effort
- ► Another problem is that the discretization of affine-square root processes often produces negative values.

- ▶ The standard way to simulate is based on the discretization of the continuous process. It converges as $\Delta t \rightarrow 0$
- ightharpoonup The smaller Δt the greater the computational effort
- ► Another problem is that the discretization of affine-square root processes often produces negative values.

Exact simulations

Exact simulation for default scenarios $\{\tau^{(n)}, I^{(n)}\}_{n=1}^{N_d}$

- set $\tau^{(0)} := 0$, $C_0 := \{1, ..., N\}$ and n := 1;
- simulate $\tau^{(n)}$, IF $\tau^{(n)} > T$ or n = N STOP;
- extract $I^{(n)}$;
- re-start the intensities λ_j of obligors $j \in C_n := C_{n-1} \setminus \{I^{(n)}\}$;
- \longrightarrow set n = n + 1, GO TO (II).

- ► We simulated default scenarios from the previous calibration exercise
- ▶ 10 simulations for defaults before time T = 7
- ► Consider the discretization method. Let *N* be the number of intervals in a year.

- ► We simulated default scenarios from the previous calibration exercise
- ▶ 10 simulations for defaults before time T=7
- Consider the discretization method. Let N be the number of intervals in a year.
- ► Compute the mean frequency of negative values as a function of *N* [Plot]

- ► We simulated default scenarios from the previous calibration exercise
- ▶ 10 simulations for defaults before time T=7
- ► Consider the discretization method. Let *N* be the number of intervals in a year.
- ► Compute the mean frequency of negative values as a function of *N* [Plot]
- ► Compute the CPU times for the 10 simulations and compare to the exact method [► Plot]

- ► We simulated default scenarios from the previous calibration exercise
- ▶ 10 simulations for defaults before time T=7
- ► Consider the discretization method. Let *N* be the number of intervals in a year.
- ► Compute the mean frequency of negative values as a function of *N* [Plot]
- ► Compute the CPU times for the 10 simulations and compare to the exact method [Plot]

- ► We simulated default scenarios from the previous calibration exercise
- ▶ 10 simulations for defaults before time T=7
- ► Consider the discretization method. Let *N* be the number of intervals in a year.
- Compute the mean frequency of negative values as a function of N [▶ Plot]
- ► Compute the CPU times for the 10 simulations and compare to the exact method [Plot]

- ► A model for large portfolios subject to credit risk (e.g. CDO)
- ► The affine setting leads to closed formulas for many important quantities
- ▶ Flexible enough for calibration
- ► Can produce high correlations between defaulters
- Efficient production of default scenarios through exact simulation

- ► A model for large portfolios subject to credit risk (e.g. CDO)
- ► The affine setting leads to closed formulas for many important quantities
- ► Flexible enough for calibration
- ► Can produce high correlations between defaulters
- ► Efficient production of default scenarios through exact simulation

- ► A model for large portfolios subject to credit risk (e.g. CDO)
- ► The affine setting leads to closed formulas for many important quantities
- ► Flexible enough for calibration
- ► Can produce high correlations between defaulters
- ► Efficient production of default scenarios through exact simulation

- ▶ A model for large portfolios subject to credit risk (e.g. CDO)
- ► The affine setting leads to closed formulas for many important quantities
- Flexible enough for calibration
- ► Can produce high correlations between defaulters
- ► Efficient production of default scenarios through exact simulation

- ▶ A model for large portfolios subject to credit risk (e.g. CDO)
- The affine setting leads to closed formulas for many important quantities
- ▶ Flexible enough for calibration
- ► Can produce high correlations between defaulters
- ► Efficient production of default scenarios through exact simulation

References

- ▶ Driessen J. (2005), Is default event risk priced in corporate bonds? Review of Financial Studies 18, 165-195.
- ▶ Duffee G. (1999), Estimating the price of default risk, Review of Financial Studies 12, 197-226.
- Duffie D. and Gârleanu N. (2001). "Risk and Valuation of Collateralized Debt Obligation", Financial Analysts Journal 57, (1) January-February, 41-62.
- ▶ Hull J. and White A. (2001), "Valuing credit default swaps II: Modeling default correlations", Journal of Derivatives 8, 12-22.
- ➤ Yu F. (2002), "Correlated Defaults in Reduced-Form Models", working paper

II: Simulate the n^{th} default-time $\tau^{(n)}$

► Invert the total survival probability

$$SP_n(t) := \mathbb{P}(s_n > t | \mathcal{F}_{\tau^{(n-1)}})$$
$$= \mathbb{E}_{\tau^{(n-1)}} \left[e^{-\int_{\tau^{(n-1)}+t}^{\tau^{(n-1)}+t} \Lambda^{n-1}(u) du} \right]$$

where

$$\Lambda^{n-1}(t) = \sum_{j \in C_{n-1}} \lambda_j(t) = \sum_{j \in C_{n-1}} X_j(t) + u_j Y_{g(j)}(t) + v_j Z(t)$$

► Easy to be computed and inverted (numerically).

II: Simulate the n^{th} default-time $\tau^{(n)}$

Invert the total survival probability

$$SP_n(t) := \mathbb{P}(s_n > t | \mathcal{F}_{\tau^{(n-1)}})$$

$$= \mathbb{E}_{\tau^{(n-1)}} \left[e^{-\int_{\tau^{(n-1)}+t}^{\tau^{(n-1)}+t} \Lambda^{n-1}(u) du} \right]$$

where

$$\Lambda^{n-1}(t) = \sum_{j \in C_{n-1}} \lambda_j(t) = \sum_{j \in C_{n-1}} X_j(t) + u_j Y_{g(j)}(t) + v_j Z(t)$$

► Easy to be computed and inverted (numerically).

III: extract the n^{th} defaulter

▶ The probability, conditioned to $\tau^{(n)}$, that $I^{(n)} = j$ is

$$\mathbb{P}(I^{(n)} = j | \mathcal{F}_{\tau^{(n-1)}} \vee \tau^{(n)}) = \frac{\mathbb{E}_{\tau^{(n-1)}} \left[\lambda_j(\tau^{(n)}) e^{-\int_{\tau^{(n-1)}}^{\tau^{(n)}} \Lambda^{n-1}(s) ds} \right]}{\mathbb{E}_{\tau^{(n-1)}} \left[\Lambda^{n-1}(\tau^{(n)}) e^{-\int_{\tau^{(n-1)}}^{\tau^{(n)}} \Lambda^{n-1}(s) ds} \right]},$$

It is sufficient to compute only the numerator...

▶ Back

III: extract the n^{th} defaulter

▶ The probability, conditioned to $\tau^{(n)}$, that $I^{(n)} = j$ is

$$\mathbb{P}(I^{(n)} = j | \mathcal{F}_{\tau^{(n-1)}} \vee \tau^{(n)}) = \frac{\mathbb{E}_{\tau^{(n-1)}} \left[\lambda_j(\tau^{(n)}) e^{-\int_{\tau^{(n-1)}}^{\tau^{(n)}} \Lambda^{n-1}(s) ds} \right]}{\mathbb{E}_{\tau^{(n-1)}} \left[\Lambda^{n-1}(\tau^{(n)}) e^{-\int_{\tau^{(n-1)}}^{\tau^{(n)}} \Lambda^{n-1}(s) ds} \right]},$$

It is sufficient to compute only the numerator...

▶ Back

▶ Suppose $\tau^{(1)} = t$ and $I^{(1)} = k$, then

$$\mathbb{E}[\lambda_j(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k]=$$

$$\mathbb{E}[X_j(\tau^{(1)})+u_jY_{g(j)}(\tau^{(1)})+v_jZ(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k].$$

$$\mathbb{E}[X_j(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k] = \frac{\partial}{\partial r}\Big|_{r=0}H^j(r;t,k), \ j=1,...,N$$

b

$$H^{j}(r;t,k) := \mathbb{E}[e^{rX_{j}(\tau^{(1)})}|\tau^{(1)} = t, I^{(1)} = k$$

$$= \frac{\mathbb{E}[e^{-\int_{0}^{t} \Lambda(s)ds} \lambda_{k}(t)e^{rX_{j}(t)}]}{\mathbb{E}[e^{-\int_{0}^{t} \Lambda(s)ds} \lambda_{k}(t)]}.$$

Easily computed in affine setting

▶ Suppose $\tau^{(1)} = t$ and $I^{(1)} = k$, then

$$\mathbb{E}[\lambda_j(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k]=$$

$$\mathbb{E}[X_j(\tau^{(1)})+u_jY_{g(j)}(\tau^{(1)})+v_jZ(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k].$$

$$\mathbb{E}[X_{j}(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k] = \frac{\partial}{\partial r}\Big|_{r=0}H^{j}(r;t,k), \ j=1,...,N$$

$$H^{j}(r;t,k) := \mathbb{E}[e^{rX_{j}(\tau^{(1)})}|\tau^{(1)} = t, I^{(1)} = k$$
$$= \frac{\mathbb{E}[e^{-\int_{0}^{t} \Lambda(s)ds} \lambda_{k}(t)e^{rX_{j}(t)}]}{\mathbb{E}[e^{-\int_{0}^{t} \Lambda(s)ds} \lambda_{k}(t)]}.$$

Easily computed in affine setting <a>O

• Suppose $\tau^{(1)} = t$ and $I^{(1)} = k$, then

$$\mathbb{E}[\lambda_j(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k]=$$

$$\mathbb{E}[X_j(\tau^{(1)})+u_jY_{g(j)}(\tau^{(1)})+v_jZ(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k].$$

$$\mathbb{E}[X_j(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k] = \frac{\partial}{\partial r}\Big|_{r=0}H^j(r;t,k), \ j=1,...,N$$

$$H^{j}(r;t,k) := \mathbb{E}[e^{rX_{j}(\tau^{(1)})}|\tau^{(1)} = t, I^{(1)} = k]$$
$$= \frac{\mathbb{E}[e^{-\int_{0}^{t} \Lambda(s)ds} \lambda_{k}(t)e^{rX_{j}(t)}]}{\mathbb{E}[e^{-\int_{0}^{t} \Lambda(s)ds} \lambda_{k}(t)]}.$$

► Easily computed in affine setting ► Back

▶ Suppose $\tau^{(1)} = t$ and $I^{(1)} = k$, then

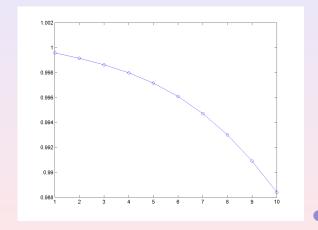
$$\mathbb{E}[\lambda_j(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k] = \\ \mathbb{E}[X_j(\tau^{(1)})+u_jY_{g(j)}(\tau^{(1)})+v_jZ(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k].$$

$$\mathbb{E}[X_{j}(\tau^{(1)})|\tau^{(1)}=t,I^{(1)}=k] = \frac{\partial}{\partial r}\Big|_{r=0}H^{j}(r;t,k), \ j=1,...,N$$

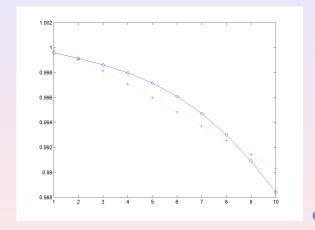
$$H^{j}(r;t,k) := \mathbb{E}[e^{rX_{j}(\tau^{(1)})}|\tau^{(1)} = t, I^{(1)} = k]$$
$$= \frac{\mathbb{E}[e^{-\int_{0}^{t}\Lambda(s)ds}\lambda_{k}(t)e^{rX_{j}(t)}]}{\mathbb{E}[e^{-\int_{0}^{t}\Lambda(s)ds}\lambda_{k}(t)]}.$$

► Easily computed in affine setting ► Back

Input data: General factor (Aa)

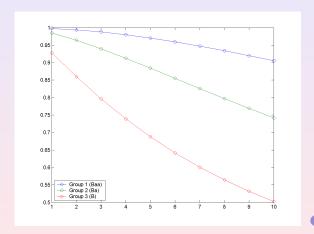


Calibrated data: General factor (Aa)

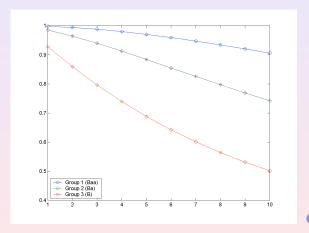


→ Text

Input data: Groups

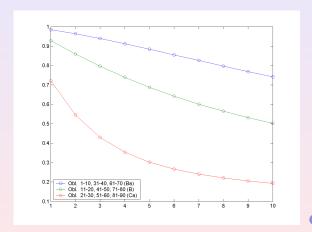


Calibrated data: Groups



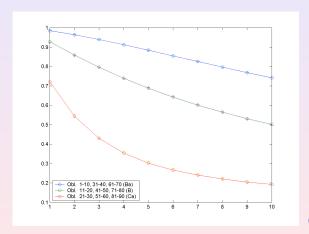
→ Text

Input data: obligors



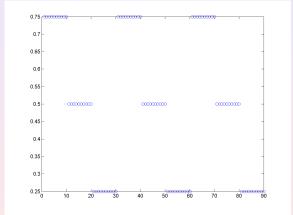
→ Text → Fitting

Calibrated data: obligors



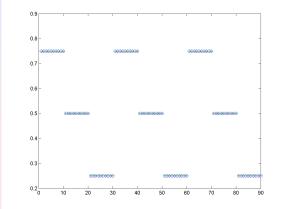
→ Text

Input data: conditional probabilities (general and sectoral)



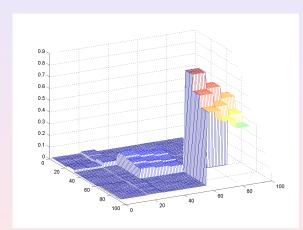
▶ Text

Cal. data: conditional probabilities (general and sectoral)



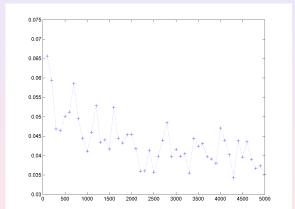
▶ Text

Correlation of defaults in the first year



▶ Text

Frequency of Negative Values



CPU times

