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Small-Maturity Asymptotics for the At-The-Money Implied
Volatility Slope in Lévy Models
Stefan Gerhold, I. Cetin Gülüm and Arpad Pinter

Institute of Statistics and Mathematical Methods in Economics, TU Wien, Wiedner Hauptstrasse 8–10/E105-1,
Vienna A-1040, Austria

ABSTRACT
We consider the at-the-money (ATM) strike derivative of implied
volatility as the maturity tends to zero. Our main results quantify
the behaviour of the slope for infinite activity exponential Lévy
models including a Brownian component. As auxiliary results, we
obtain asymptotic expansions of short maturity ATM digital call
options, using Mellin transform asymptotics. Finally, we discuss
when the ATM slope is consistent with the steepness of the
smile wings, as given by Lee’s moment formula.
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1. Introduction

Recent years have seen an explosion of the literature on asymptotics of option prices
and implied volatilities (see, e.g., Andersen and Lipton 2013; Friz et al. 2011 for further
details). Such results are of practical relevance for fast model calibration, qualitative
model assessment and parametrization design. The small-time behaviour of the level of
implied volatility in Lévy models (and generalizations) has been investigated in great
detail (Boyarchenko and Levendorski 2002; Figueroa-López and Forde 2012; Figueroa-
López, Gong, and Houdré 2012, 2014; Roper 2008; Tankov 2011). We, on the other
hand, focus on the at-the-money (ATM) slope of implied volatility, i.e., the strike
derivative, and investigate its behaviour as maturity becomes small. For diffusion
models, there typically exists a limiting smile as the maturity tends to zero, and the
limit slope is just the slope of this limit smile (e.g., for the Heston model, this follows
from Section 5 in Durrleman 2010b). Our focus is, however, on exponential Lévy
models. There is no limit smile here that one could differentiate, as the implied
volatility blows up off-the-money (Tankov 2011). In fact, this is a desirable feature,
since in this way Lévy models are better suited to capture the steep short maturity
smiles observed in the market. But it also implies that the limiting slope cannot be
deduced directly from the behaviour of implied volatility itself, and requires a separate
analysis. (Note that a limiting smile does exist if maturity and log-moneyness tend to
zero jointly in an appropriate way (Mijatovi and Tankov 2012).)
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It turns out that the presence of a Brownian component has a decisive influence:
without it, the ATM slope explodes (under mild conditions). The blow-up is of order
T–1/2 for many models, but may also be slower (CGMY model with Y 2 (1, 2), e.g.; see
Example 10). Our main results are on Lévy models with a Brownian component,
though. We provide a result (Corollary 6 in Section 5) that translates the asymptotic
behaviour of the moment generating function to that of the ATM slope. When applied
to concrete models, we see that the slope may converge to a finite limit (Normal Inverse
Gaussian (NIG), Meixner, CGMY models) or explode at a rate slower than T–1/2

(generalized tempered stable model; this kind of behaviour seems to be the most
realistic one, see Bayer, Friz, and Gatheral 2016). Note that several studies (Aït-
Sahalia 2002, Aït-Sahalia and Jacod, 2010; Carr and Wu 2003) highlight the importance
of a Brownian component when fitting to historical data or option prices. In particular,
in many pure jump Lévy models, ATM implied volatility converges to zero as T ↓ 0
(see Proposition 5 in Tankov 2011 for a precise statement), which seems undesirable.

From a practical point of view, the asymptotic slope is a useful ingredient for model
calibration; e.g., if the market slope is negative, then a simple constraint on the model
parameters forces the (asymptotic) model slope to be negative, too. Our numerical tests
show that the sign of the slope is reliably identified by a first-order asymptotic
approximation, even if the maturity is not short at all. With our formulas, the asymp-
totic slope (and, of course, its sign) can be easily determined from the model para-
meters. For instance, the slope of the NIG model is positive if and only if the skewness
parameter satisfies β > � 1

2 .
To obtain these results, we investigate the asymptotics of ATM digital calls; their

relation to the implied volatility slope is well known. While, for Lévy processes X, the
small-time behaviour of the transition probabilities P ½XT � x� (in finance terms, digital
call prices) has been well studied for x ≠ X0 (see, e.g., Figueroa-López and Houdré 2009
and the references therein), not so much is known for x = X0. Still, first-order
asymptotics of P ½XT � X0� are available, and this suffices if there is no Brownian
component. If the Lévy process has a Brownian component, then it is well known
that limT!0 P ½XT � X0� ¼ 1

2. In this case, it turns out that the second-order term of
P ½XT � X0� is required to obtain slope asymptotics. For this, we use a novel approach
involving the Mellin transform (w.r.t. time) of the transition probability (Sections 4
and 5). We believe that this method is of wide applicability to other problems involving
time asymptotics of Lévy processes, and hope to elaborate on it in future work.

Finally, we consider the question whether a positive ATM slope requires the right
smile wing to be the steeper one, and vice versa. Wing steepness refers to large-strike
asymptotics here. It turns out that this is indeed the case for several of the infinite
activity models we consider. This results in a qualitative limitation on the smile shape
that these models can produce.

One of the few other works dealing with small-time Lévy slope asymptotics is the
comprehensive recent paper by Andersen and Lipton (2013). Besides many other problems
on variousmodels and asymptotic regimes, they study the small-maturity ATMdigital price
and volatility slope for the tempered stablemodel (Propositions 8.4 and 8.5 in Andersen and
Lipton 2013). This includes the CGMYmodel as a special case (see Example 10 for details).
Their proof method is entirely different from ours, exploiting the explicit form of the
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characteristic function of the tempered stable model. Using mainly the dominated conver-
gence theorem, they also analyse the convexity. We, on the other hand, assume a certain
asymptotic behaviour of the characteristic function, and use its explicit expression only
when calculating concrete examples. Our approach covers, e.g., the ATM slope of the
generalized tempered stable, NIG and Meixner models without additional effort.

The recent preprint (Figueroa-López and Ólafsson 2015) is also closely related to our
work. There, the Brownian component is generalized to stochastic volatility. On the
other hand, the assumptions on the Lévy measure exclude, e.g., the NIG and Meixner
models. Section 6 has additional comments on how our results compare to those of
Andersen and Lipton (2013) and Figueroa-López and Ólafsson (2015). Alòs, León, and
Vives (2007) also study the small time implied volatility slope under stochastic volatility
and jumps, but the latter are assumed to have finite activity, which is not our focus.
Results on the large time slope can be found in Forde, Jacquier, and Figueroa-López
(2011); see also Gatheral (2006, p. 63f).

2. Digital Call Prices

We denote the underlying by S ¼ eX , normalized to S0 ¼ 1, and the pricing measure by
P. W.l.o.g. the interest rate is set to zero, and so S is a P-martingale. Suppose that the
log-underlying X ¼ ðXtÞt�0 is a Lévy process with characteristic triplet ðb; σ2; νÞ and
X0 ¼ 0. The moment generating function (mgf) of XT is

Mðz;TÞ ¼ E½ezXT � ¼ exp TψðzÞð Þ;

where

ψðzÞ ¼ 1
2σ

2z2 þ bz þ
ð
R

ðezx � 1� zxÞνðdxÞ: (2:1)

This representation is valid if the Lévy process has a finite first moment, which we of
course assume, as even St ¼ eXt should be integrable. If, in addition, X has paths of

finite variation, then

ð
R

jxjνðdxÞ < 1, and

ψðzÞ ¼ 1
2σ

2z2 þ b0z þ
ð
R

ðezx � 1ÞνðdxÞ;

where the drift b0 is defined by

b0 ¼ b�
ð
R

xνðdxÞ:

The following theorem collects some results about the small-time behaviour of
P½XT � 0�. All of them are known, or easily obtained from known results. We are
mainly interested in the case where S ¼ eX is a martingale, and so P ½XT � 0� has the
interpretation of an ATM digital call price. Still, we mention that this assumption is not
necessary for parts (i)–(iv). In part (iv), the following condition from Rosenbaum and
Tankov (2011) is used:

APPLIED MATHEMATICAL FINANCE 137



ðH� αÞ The Le0vy measure ν has a density gðxÞ= jxj1þα; where g is a non� negative

measurable function admitting left and right limits at zero :

cþ :¼ lim
x#0

gðxÞ; c� :¼ lim
x"0

gðxÞ; with cþ þ c� > 0:

Theorem 1. Let X be a Lévy process with characteristic triplet ðb; σ2; νÞ and X0 = 0.

(i) If X has finite variation, and b0 ≠ 0, then

lim
T#0

P½XT � 0� ¼ 1; b0 > 0
0; b0 < 0:

�
(ii) If σ > 0, then limT#0 P ½XT � 0� ¼ 1

2.

(iii) If X is a Lévy jump diffusion, i.e., it has finite activity jumps and σ > 0, then

P½XT � 0� ¼ 1
2
þ b0
σ
ffiffiffiffiffiffi
2π

p ffiffiffiffi
T

p
þ OðTÞ; T # 0:

(iv) Suppose that σ = 0 and that ðH-αÞ holds for some α 2 ½1; 2Þ. If α ¼ 1, we

additionally assume c� ¼ cþ ¼: c and

ð1
0
x�1j gðxÞ � gð�xÞjdx < 1. Then

lim
T#0

P½XT � 0� ¼
1
2 þ 1

π arctan
b�
πc if α ¼ 1;

1
2 þ α

π arctanðβ tanðαπ2 ÞÞ if α�1;

�

where b� ¼ b�
ð1
0
ðgðxÞ � gð�xÞÞ=xdx and β ¼ ðcþ � c�Þ=ðcþ þ c�Þ:

(v) If eX is a martingale and the Lévy measure satisfies νðdxÞ ¼ e�x=2ν0ðdxÞ, where v0
is a symmetric measure, then

P ½XT � 0� ¼ Φð�σimpð1;TÞ
ffiffiffiffi
T

p
=2Þ;

where Φ denotes the standard Gaussian cdf.

Proof. (i) We have P ½XT � 0� ¼ P ½T�1XT � 0�, but T–1XT converges a.s. to b0, by
Theorem 43.20 in (Sato 1999).

(ii) If σ > 0, then T�1=2XT converges in distribution to a centred Gaussian random
variable with variance σ2 (see Sato 1999). For further central limit theorem-type results
in this vein, see Doney and Maller (2002) and Gerhold et al. (2015).

(iii) Conditioning on the first jump time τ, which has an exponential distribution,
we find

P½XT � 0� ¼ P½XT � 0jτ � T� � P½τ � T� þ P½XT � 0jτ > T� � P½τ > T�
¼ OðTÞ þ P½σWT þ b0T � 0�ð1þ OðTÞÞ
¼ P½σWT þ b0T � 0� þ OðTÞ
¼ Φðb0

ffiffiffiffi
T

p
=σÞ þ OðTÞ:

(2:2)

Now apply the expansion
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ΦðxÞ ¼ 1
2
þ xffiffiffiffiffiffi

2π
p þ Oðx3Þ; x ! 0: (2:3)

(iv) By Proposition 1 in Rosenbaum and Tankov (2011), the rescaled process
Xε;α
t :¼ ε�1Xεαt converges in law to a strictly α-stable process X�;α

t as ε↓0. Therefore,

lim
T#0

P½XT � 0� ¼ lim
ε#0

P½ε�1Xεα � 0� ¼ P½X�;α
1 � 0�;

and it suffices to evaluate the latter probability. For α ¼ 1, X�;1
1 has a Cauchy distribu-

tion with characteristic exponent

logE½expðiuX�;1
1 Þ� ¼ ib�u� πcjuj;

hence P½X�;1
1 � 0� ¼ 1

π arctan
b�
πc. (Our b* is denoted γ* in Rosenbaum and Tankov

(2011).)
If 1 < α < 2, then X�;α

1 has a strictly stable distribution with characteristic exponent

logE½expðiuX�;α
1 Þ� ¼ �jdujα 1� iβ sgnðuÞ tan απ

2

� �� �
;

where

dα� ¼ �Γð�αÞ cos απ

2

� �
c� � 0; dα ¼ dαþ þ dα�; β ¼ dαþ � dα�

dα
2 ð�1; 1Þ:

The desired expression for P½X�;α
1 � 0� then follows from Davydov and Ibragimov

(1971). See Figueroa-López and Forde (2012) for further related references.
(v) Under this assumption, the market model is symmetric in the sense of Fajardo

(2015) and Fajardo and Mordecki (2006). The statement is Theorem 3.1 in Fajardo
(2015).

The variance gamma model and the CGMY model with 0 < Y < 1 are examples of finite
variation models (of course, only when σ = 0), and so part (i) of Theorem 1 is applicable.
Part (iii) is applicable, clearly, to the well-known jump diffusion models by Merton and
Kou. In Section 6, we will discuss two examples for part (iv) (NIG and Meixner).

3. Implied Volatility Slope and Digital Options with Small Maturity

The (Black–Scholes) implied volatility is the volatility that makes the Black–Scholes call
price equal the call price with underlying S:

CBSðK;T; σimpðK;TÞÞ ¼ CðK;TÞ :¼ E½ðST � KÞþ�:
Since no explicit expression is known for σimpðK;TÞ (see Gerhold (2013)), many

authors have investigated approximations (see, e.g., the references in the introduction).
The following relation between implied volatility slope and digital calls is well known
(Gatheral 2006); we give a proof for completeness. (Note that absolute continuity of ST
holds in all Lévy models of interest, see Theorem 27.4 in Sato (1999), and will be
assumed throughout.)
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Lemma 2. Suppose that the law of ST is absolutely continuous for each T > 0, and that

lim
T#0

CðK;TÞ ¼ ðS0 � KÞþ; K > 0: (3:1)

Then, for T ↓ 0,

@KσimpðK;TÞjK¼1,
ffiffiffiffiffiffi
2π
T

r
1
2
� P½ST � 1� � σimpð1;TÞ

ffiffiffiffi
T

p

2
ffiffiffiffiffiffi
2π

p þ Oððσimpð1;TÞ
ffiffiffiffi
T

p
Þ2Þ

 !
:

(3:2)

Proof. By the implicit function theorem, the implied volatility slope has the
representation

@KσimpðK;TÞ ¼ @KCðK;TÞ � @KCBSðK;T; σimpðK;TÞÞ
@σCBSðK;T; σimpðK;TÞÞ :

Since the law of ST is absolutely continuous, the call price C(K,T) is continuously
differentiable w.r.t. K, and @KCðK;TÞ ¼ �P½ST � K�. Inserting the explicit formulas for
the Black–Scholes Vega and digital price, and specializing to the ATM caseK = S0 = 1, we get

@KσimpðK;TÞjK¼1 ¼
Φð�σimpð1;TÞ

ffiffiffiffi
T

p
=2Þ � P½ST � 1�ffiffiffiffi

T
p

φðσimpð1;TÞ
ffiffiffiffi
T

p
=2Þ ;

where Φ and φ denote the standard Gaussian cdf and density, respectively. By
Proposition 4.1 in Roper and Rutkowski (2009), our assumption (Equation (3.1))
implies that the annualized implied volatility σimpð1;TÞ

ffiffiffiffi
T

p
tends to zero as T ↓ 0.

(The second assumption used in Roper and Rutkowski (2009) are the no-arbitrage
bounds ðS0 � KÞþ � CðK;TÞ � S0, for K;T > 0, but these are satisfied here because
our call prices are generated by the martingale S.) Using Equation (2.3) and
φðxÞ ¼ 1ffiffiffiffi

2π
p þ Oðx2Þ, we thus obtain Equation (3.2).

The asymptotic relation (Equation (3.2)) is, of course, consistent with the small-
moneyness expansion presented in De Leo et al. (2012), where

ffiffiffiffiffiffiffiffiffiffiffi
2π=T

p
1
2 � P½ST � K�� �

appears as second-order term (i.e., first derivative) of implied volatility.
Lemma 2 shows that, in order to obtain first-order asymptotics for the ATM

slope, we need first-order asymptotics for the ATM digital call price P½ST � 1�.
(Recall that S0 = 1.) For models where limT#0 P ½ST � 1� ¼ 1

2, we need the second-

order term of the digital call as well, and the first-order term of σimpð1;TÞ
ffiffiffiffi
T

p
. The

limiting value 1/2 for the ATM digital call is typical for diffusion models (see
Gerhold et al. 2015), and Lévy processes that contain a Brownian motion. For
infinite activity models without diffusion component, P½ST � 1� may converge to 1/
2 as well (e.g., in the CGMY model with Y 2 ð1; 2Þ), but other limiting values are
also possible. See the examples in Section 6.

From part (i) of Theorem 1 and Lemma 2, we can immediately conclude the
following result. Note that we assume throughout that X is such that S ¼ eX is a
martingale with S0 = 1.
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Proposition 3. Suppose that the Lévy process X has finite variation (and thus, necessa-
rily, that σ ¼ 0), and that b0�0. Then the ATM implied volatility slope satisfies

@KσimpðK;TÞjK¼1,�
ffiffiffiffiffiffiffiffi
π=2

p
sgn ðb0Þ � T�1=2; T # 0:

Note that T–1/2 is the fastest possible growth order for the slope, in any model (see
Lee 2005).

If X is a Lévy jump diffusion with σ > 0, then by part (iii) of Theorem 1 (Equation
(3.2)) and the fact that σimp ! σ (implied volatility converges to spot volatility), we
obtain the finite limit

lim
T#0

@KσimpðK;TÞjK¼1 ¼ � b0
σ
� σ

2
: (3:3)

(It is understood that the substitution K ¼ 1 is to be performed before the limit T ↓ 0.)
Notice that the expression on the right-hand side of Equation (3.3) does depend on
the jump parameters, because the drift b0, fixed by the condition E½expðX1Þ� ¼ 1,
depends on them. Moreover, Equation (3.3) is consistent with the formal calculation of
the variance slope

lim
T#0

@Kσ
2
impðK;TÞjK¼1 ¼ �2b0 � σ2

in Gatheral (2006, p. 61f). In fact Equation (3.3) is well known for jump diffusions, see
also Alòs, León, and Vives (2007) and Yan (2011).

4. General Remarks on Mellin Transform Asymptotics

As mentioned after Lemma 2, we need the second-order term for the ATM digital call if
we want to find the limiting slope in Lévy models with a Brownian component. While
this is easy for finite activity models (see the end of Section 3), it is more difficult in the
case of infinite activity jumps. We will find this second-order term using Mellin trans-
form asymptotics. For further details and references on this technique, see, e.g., Flajolet,
Gourdon, and Dumas (1995). The Mellin transform of a function H, locally integrable
on (0, ∞), is defined by

ðMHÞðsÞ ¼
ð1
0
Ts�1HðTÞdT:

Under appropriate growth conditions on H at zero and infinity, this integral defines
an analytic function in an open vertical strip of the complex plane. The function H can
be recovered from its transform by Mellin inversion (see formula (7) in Flajolet,
Gourdon, and Dumas 1995):

HðTÞ ¼ 1
2πi

ðκþi1

κ�i1
ðMHÞðsÞT�sds; (4:1)

where κ is a real number in the strip of analyticity of MH. For the validity of Equation
(4.1), it suffices that H is continuous and that y 7!ðMHÞðκþ iyÞ is integrable. Denote
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by s0 2 R the real part of the left boundary of the strip of analyticity. A typical situation
in applications is that MH has a pole at s0, and admits a meromorphic extension to a
left half-plane, with further poles at s0 > s1 > s2 > . . . Suppose also that the mero-
morphic continuation satisfies growth estimates at ±i∞ which allow to shift the
integration path in Equation (4.1) to the left. We then collect the contribution of
each pole by the residue theorem, and arrive at an expansion (see formula (8) in
Flajolet, Gourdon, and Dumas 1995)

HðTÞ ¼ Ress¼s0ðMHÞðsÞT�s þ Ress¼s1ðMHÞðsÞT�s þ . . .

Thus, the basic principle is that singularities si of the transform are mapped to terms
T�si in the asymptotic expansion of H at zero. Simple poles of MH yield powers of T,
whereas double poles produce an additional logarithmic factor logT, as seen from the

expansion T�s ¼ T�sið1� ðlogTÞðs� siÞ þ Oððs� siÞ2ÞÞ.

5. Main Results: Digital Call Prices and Slope Asymptotics

The mgf Mðz;TÞ of XT is analytic in a strip z� < ReðzÞ < zþ, given by the critical
moments

zþ ¼ supfz 2 R : E½ezXT � < 1g (5:1)

and

z� ¼ inffz 2 R : E½ezXT � < 1g: (5:2)

Since X is a Lévy process, the critical moments do not depend on T. We will obtain
asymptotic information on the transition probabilities (i.e., digital call prices) from the
Fourier representation (Lee 2004b)

P½ST � 1� ¼ P½XT � 0�

¼ 1
2iπ

ðaþi1

a�i1

Mðz;TÞ
z

dz

¼ 1
π
Re

ð1
0

Mðaþ iy;TÞ
aþ iy

dy;

(5:3)

where the real part of the vertical integration contour satisfies a 2 ð0; 1Þ 	 ðz�; zþÞ,
and convergence of the integral is assumed throughout. We are going to analyse the
asymptotic behaviour of this integral, for T # 0, by computing its Mellin transform.
Asymptotics of the probability (digital price) P½XT � 0� are then evident from Equation
(5.3). The linearity of log M as a function of T enables us to evaluate the Mellin
transform in semi-explicit form.

Lemma 4. Suppose that S ¼ eX is a martingale, and that σ > 0. Then, for any
a 2 ð0; 1Þ, the Mellin transform of the function

HðTÞ :¼
ð1
0

eTψðaþiyÞ

aþ iy
dy; T > 0; (5:4)
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is given by

ðMHÞðsÞ ¼ ΓðsÞFðsÞ; 0 < ReðsÞ < 1
2; (5:5)

where

FðsÞ ¼
ð1
0

ð�ψðaþ iyÞÞ�s

aþ iy
dy; 0 < ReðsÞ < 1

2: (5:6)

Moreover, jðMHÞðsÞj decays exponentially, if ReðsÞ 2 ð0; 12Þ is fixed and jImðsÞj ! 1.
See the Appendix for the proof of Lemma 4. With the Mellin transform in hand, we

now proceed to convert an expansion of the mgf at i∞ to an expansion of P½XT � 0� for
T # 0. The following result covers, e.g., the NIG and Meixner models, and the general-
ized tempered stable model, all with σ > 0. See Section 6 for details.

Theorem 5. Suppose that S ¼ eX is a martingale, and that σ > 0. Assume further that
there are constants a 2 ð0; 1Þ, c 2 C , ν 2 ½1; 2Þ and ε > 0 such that the Laplace exponent
satisfies

ψðzÞ ¼ 1
2
σ2z2 þ czν þ Oðzν�εÞ; ReðzÞ ¼ a; Im ðzÞ ! 1: (5:7)

Then the ATM digital call price satisfies

P½XT � 0� ¼ 1
2
þ C~νT

~ν þ oðT~νÞ; T # 0; (5:8)

where C~ν ¼ ~ν
2π

1
2σ

2
� �~ν�1

Imðe�iπ~νcÞΓð�~νÞ with ~ν ¼ ð2� νÞ=2 2 ð0; 12�. For ν ¼ 1, this
simplifies to

P½XT � 0� ¼ 1
2
þ ReðcÞ
σ
ffiffiffiffiffiffi
2π

p
ffiffiffiffi
T

p
þ oð

ffiffiffiffi
T

p
Þ; T # 0:

Together with Lemma 2, this theorem implies the following corollary, which is our
main result on the implied volatility slope as T # 0.

Corollary 6. Under the assumptions of Theorem 5, the ATM implied volatility slope
behaves as follows:

(i) If ν ¼ 1, then

lim
T#0

@KσimpðK;TÞjK¼1 ¼ �ReðcÞ
σ

� σ

2
;

with c from Equation (5.7).
(ii) If 1 < ν < 2 and C~ν � 0, then

@KσimpðK;TÞjK¼1,� ffiffiffiffiffiffi
2π

p
C~νT

~ν�1=2; T # 0:

Proof of Theorem. From Equations (5.3) and (5.4), we know that
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P½XT � 0� ¼ 1
π
ReHðTÞ: (5:9)

We now express H(T) by the Mellin inversion formula (Equation (4.1)), with
κ 2 ð0; 12Þ. This is justified by Lemma 4, which yields the exponential decay of the
transform MH along vertical rays. (Continuity of H, which is also needed for the
inverse transform, is clear.) Therefore, we have

HðTÞ ¼ 1
2πi

ð1=4þi1

1=4�i1
ΓðsÞFðsÞT�sds; T � 0: (5:10)

As outlined in Section 4, we now show that ΓðsÞFðsÞ has a meromorphic continua-
tion, then shift the integration path in Equation (5.10) to the left, and collect residues. It
is well known that Γ is meromorphic with poles at the non-positive integers, so it
suffices to discuss the continuation of F, defined in Equation (5.6). As in the proof of
Lemma 4, we put hðyÞ :¼ �ψðaþ iyÞ, y � 0. To prove exponential decay of the desired
meromorphic continuation, it is convenient to split the integral:

FðsÞ ¼
ðy0
0

hðyÞ�s

aþ iy
dyþ

ð1
y0

hðyÞ�s

aþ iy
dy

¼: A0ðsÞ þ ~FðsÞ; 0 < ReðsÞ < 1
2:

(5:11)

The constant y0 � 0 will be specified later. It is easy to see that A0 is analytic in the

half-plane ReðsÞ < 1
2, and so ~F captures all poles of F in that half-plane. By Equation

(5.7), the function h has the expansion (with a possibly decreased ε, to be precise)

hðyÞ ¼ 1
2σ

2y2 þ ~cyν þ Oðyν�εÞ; y ! 1; (5:12)

where

~c :¼ �ciν ν > 1
�ðcþ σ2aÞi ν ¼ 1:

�

The reason why F (or ~F) is not analytic at s = 0 is that the second integral in
Equation (5.11) fails to converge for y large. We thus subtract the following conver-

gence-inducing integral from ~F:

~G1ðsÞ : ¼
ð1
y0

ð12σ2y2Þ
�s

aþ iy
dy

¼ �πið12a2σ2Þ�s eiπs

sin 2πs
�
ðy0
0

ð12σ2y2Þ
�s

aþ iy
dy

(5:13)

¼: G1ðsÞ þ A1ðsÞ:

Note that G1 is meromorphic, and that A1 is analytic for ReðsÞ < 1
2. From the

expansion

144 S. GERHOLD ET AL.



hðyÞ�s ¼ ð12σ2y2Þ�s � 2~cs
σ2

σ2

2

� 	�s

yν�2s�2 þ Oðyν�2ReðsÞ�2�εÞ; y ! 1; (5:14)

for s fixed, we see that the function

~F1ðsÞ :¼
ð1
y0

1
aþ iy

hðyÞ�s � ð12σ2y2Þ
�s� �

dy (5:15)

is analytic for � ~ν < ReðsÞ < 1
2, and, clearly, for 0 < ReðsÞ < 1

2 we have

~FðsÞ ¼ ~F1ðsÞ þ ~G1ðsÞ: (5:16)

We have thus established the meromorphic continuation of ~F to the strip

� ~ν < ReðsÞ < 1
2. To continue ~F even further, we look at the second term in

Equation (5.14) and define

~G2ðsÞ : ¼ � 2~cs
σ2

σ2

2

� 	�sð1
y0

yν�2s�2

aþ iy
dy

¼ � 2~cπ
σ2

σ2

2

� 	�s

saν�2s�2 eð2s�νþ3Þπi=2

sin πðν� 2sÞ þ
2~cs
σ2

σ2

2

� 	�sðy0
0

yν�2s�2

aþ iy
dy

¼: G2ðsÞ þ A2ðsÞ

and the compensated function

~F2ðsÞ :¼
ð1
y0

1
aþ iy

hðyÞ�s � ð12σ2y2Þ
�s þ 2~cs

σ2
σ2

2

� 	�s

yν�2s�2

� 	
dy:

By Equation (5.14), the function ~F2 is analytic for ReðsÞ 2 ð�~ν� ε=2; ðν� 1Þ=2Þ.
Moreover, by definition we have

~F1ðsÞ ¼ ~F2ðsÞ þ ~G2ðsÞ; �~ν < ReðsÞ < ν�1
2 ;

and so the meromorphic continuation of ~F to the region � ~ν� ε=2 < ReðsÞ < 1
2 is

established.
In order to shift the integration path in Equation (5.10) to the left, we have to ensure

that the integral converges. This is the content of Lemma 7, which also yields the
existence of an appropriate y0 � 0, to be used in the definition of ~F in Equation (5.11).
By the residue theorem, we obtain

HðTÞ ¼ Ress¼0ðMHÞðsÞT�s þ Ress¼�~νðMHÞðsÞT�s

þ 1
2πi

ðκþi1

κ�i1
ðMHÞðsÞT�sds; T � 0;

(5:17)

where κ ¼ �~ν� ε=4, and MH now of course denotes the meromorphic continuation
of the Mellin transform. We then compute the residues. According to Equations (5.11)
and (5.16), the continuation of MH in a neighborhood of s = 0 is given by

ΓðsÞðA0ðsÞ þ ~F1ðsÞ þ ~G1ðsÞÞ. Therefore,
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Ress¼0ðMHÞðsÞT�s ¼ A0ð0Þ þ ~F1ð0Þ þ A1ð0Þ þ Ress¼0ΓðsÞG1ðsÞT�s

¼ Ress¼0ΓðsÞG1ðsÞT�s

¼ 1
2π þ ið12γ� logðaσ=

ffiffiffi
2

p
Þ þ 1

2 logTÞ;
(5:18)

where γ is Euler’s constant. Note that A0ð0Þ ¼ �A1ð0Þ and ~F1ð0Þ ¼ 0 by definition.
The remaining residue (Equation (5.18)) is straightforward to compute from Equation
(5.13) (e.g., with a computer algebra system) and has real part 1

2π. Notice that the
logarithmic term logT, resulting from the double pole at zero (see the end of Section 4),
appears only in the imaginary part. Recalling Equation (5.9), we see that the first term
on the right-hand side of Equation (5.17) thus yields the first term of Equation (5.8).

Similarly, we compute for ν > 1

Ress¼�~νðMHÞðsÞT�s ¼ Ress¼�~νΓðsÞG2ðsÞT�s

¼ Γð�~νÞ
2π

2~cs
σ2

σ2

2

� 	�s

πaν�2s�2eð2s�νþ3Þπi=2T�s


 �
s¼�~ν

:

In the case ν ¼ 1, the function G1 also has a pole at � ~ν ¼ �1
2, and we obtain

Ress¼�~νðMHÞðsÞT�s ¼ Ress¼�1=2ΓðsÞðG1ðsÞ þ G2ðsÞÞT�s

¼
ffiffiffi
π

2

r
i~c
σ
� aσ

� 	 ffiffiffiffi
T

p
:

A straightforward computation shows that the stated formula for C~ν is correct in
both cases. The integral on the right-hand side of Equation (5.17) is clearly
OðT�κÞ ¼ oðT~νÞ, and so the proof is complete.

Lemma 7. There is y0 � 0 such that the meromorphic continuation of MH constructed
in the proof of Theorem 5, which depends on y0 via the definition of ~F in Equation (5.11),
decays exponentially as jImðsÞj ! 1.

Lemma 7 is proved in the Appendix.

6. Examples

We now apply our main results (Theorem 5 and Corollary 6) to several concrete
models.

Example 8. The NIG model has Laplace exponent

ψðzÞ ¼ 1
2σ

2z2 þ μz þ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � β2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � ðβþ zÞ2

q� 	
;

where δ > 0, α̂ > maxfβþ 1;�βg. (The notation α̂ should avoid confusion with α from
Theorem 1.) Since S is a martingale, we must have

μ ¼ �1
2σ

2 þ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � ðβþ 1Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � β2

q� 	
:
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The relation between μ and b from Equation (2.1) is μþ βδ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � β2

q
¼ b, as seen

from the derivative of the Laplace exponent ψ at z = 0. The Lévy density is

νðdxÞ
dx

¼ δα̂

πjxj e
βxK1ðα̂jxjÞ;

where K1 is the modified Bessel function of second order and index 1.
First assume σ ¼ 0. Since K1ðxÞ,1=x for x # 0, condition ðH-αÞ is satisfied with

α ¼ 1, with cþ ¼ c� ¼ δ=π. The integrability condition in part (iv) of Theorem 1 is
easily checked, and we conclude

lim
T#0

P½XT � 0� ¼ 1
2
þ 1
π
arctan ðμ

δ
Þ; σ ¼ 0:

Note that b� ¼ μ ¼ b� δα̂
π

ð1
0
K1ðα̂xÞðeβx � e�βxÞdx. By Lemma 2, the implied volati-

lity slope of the NIG model thus satisfies

@KσimpðK;TÞjK¼1,�
ffiffiffiffiffiffiffiffi
2=π

p
arctanðμ=δÞ � T�1=2; T # 0; σ ¼ 0; μ�0:

Now assume that σ > 0. Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � ðβþ zÞ2

q
¼ �iz þ Oð1Þ as ImðzÞ ! 1,

Equation (5.7) becomes

ψðzÞ ¼ 1
2σ

2z2 þ ðμþ iÞz þ Oð1Þ; ReðzÞ ¼ a; ImðzÞ ! 1:

We can thus apply Theorem 5 to conclude that the ATM digital price satisfies

P½XT � 0� ¼ 1
2
þ μ

σ
ffiffiffiffiffiffi
2π

p ffiffiffiffi
T

p
þ oð

ffiffiffiffi
T

p
Þ; T # 0; σ > 0:

By part (i) of Corollary 6, the limit of the implied volatility slope is given by

lim
T#0

@KσimpðK;TÞjK¼1 ¼ � μ

σ
� σ

2

¼ δ

σ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � β2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � ðβþ 1Þ2

q
Þ; σ > 0:

(6:1)

This limit is positive if and only if β > � 1
2.

See Figure 1 for a numerical example. Let us stress again that we identify the correct
sign of the slope, while we find that explicit asymptotics do not approximate the value
of the slope very accurately. Still, in the right panel of Figure 1, we have zoomed in at
very short maturity to show that our approximation gives the asymptotically correct
tangent in this example.

Example 9. The Laplace exponent of the Meixner model is

ψðzÞ ¼ 1
2σ

2z2 þ μz þ 2d̂ log
cosðb̂=2Þ

cosh 1
2ð�âiz � ib̂Þ ;
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where d̂ > 0, b̂ 2 ð�π; πÞ, and 0 < â < π � b̂. (We follow the notation of Schoutens

2002, except that we write μ instead of m, and â; b̂; d̂ instead of a,b,d.) The Lévy density is

νðdxÞ
dx

¼ d̂
exp ðb̂x=âÞ

x sin hðπx=âÞ :

We can proceed analogously to Example 8. For σ ¼ 0, we again apply part (iv) of

Theorem 1, with α ¼ 1, where now cþ ¼ c� ¼ d̂â=π. Consequently,

lim
T#0

P½XT � 0� ¼ 1
2
þ 1
π
arctan

μ

âd̂

� 	
; σ ¼ 0;

and

@KσimpðK;TÞjK¼1,�
ffiffiffiffiffiffiffiffi
2=π

p
arctan

μ

âd̂

� 	
� T�1=2; T # 0; σ ¼ 0; μ � 0:

Now assume σ > 0. The expansion of the Laplace exponent is

ψðzÞ ¼ 1
2σ

2z2 þ ðμþ âd̂iÞz þ Oð1Þ; ReðzÞ ¼ a; ImðzÞ ! 1:

By Theorem 5, the ATM digital price in the Meixner model thus satisfies

P½XT � 0� ¼ 1
2
þ μ

σ
ffiffiffiffiffiffi
2π

p ffiffiffiffi
T

p
þ oð

ffiffiffiffi
T

p
Þ; T # 0:

The limit of the implied volatility slope is given by

lim
T#0

@KσimpðK;TÞjK¼1 ¼ � μ

σ
� σ

2
¼ 2d̂

σ
log

cosðb̂=2Þ
cosh 1

2ð�ðâþ b̂ÞiÞ

 !
; σ > 0:
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Figure 1. The volatility smile, as a function of log-strike, of the NIG model with parameters σ ¼ 0:085,
α̂ ¼ 4:237, β ¼ �3:55, δ ¼ 0:167 and maturity T ¼ 0:1 (left panel), respectively, T ¼ 0:01 (right
panel). The parameters were calibrated to S&P 500 call prices from Appendix A of Bu (2007). The
dashed line is the slope approximation (Equation (6.1)). We did the calibration and the plots with
Mathematica, using the Fourier representation of the call price.
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Example 10. The Laplace exponent of the CGMY model is

ψðzÞ ¼ 1
2σ

2z2 þ μz þ CΓð�YÞððM � zÞY �MY þ ðGþ zÞY � GYÞ; (6:2)

where we assume C > 0, G > 0, M > 1, 0 < Y < 2,and Y�1.
The case σ ¼ 0 and Y 2 ð0; 1Þ need not be discussed, as it is a special case of

Proposition 8.5 in Andersen and Lipton (2013). Our Proposition 3 could also be applied,
as the CGMY process has finite variation in this case.

If σ ¼ 0 and Y 2 ð1; 2Þ, then the ATM digital call price converges to 1
2, and the slope

explodes, of order T1=2�1=Y . This is a special case of Corollary 3.3 in Figueroa-López and
Ólafsson (2015). Note that Proposition 8.5 in Andersen and Lipton (2013) is not
applicable here, because the constant CM from this proposition vanishes for the CGMY
model, and so the leading term of the slope is not obtained. Theorem 1 (iv) from our
Section 2 is not useful, either; it gives the correct digital call limit price 1

2, but does not
provide the second-order term necessary to get slope asymptotics.

We now proceed to the case σ > 0, which is our main focus. The expansion of ψ at
i∞ is

ψðzÞ ¼ 1
2σ

2z2 þ cYz
Y þ μz þ OðzY�1Þ; ReðzÞ ¼ a; ImðzÞ ! 1;

with the complex constant cY :¼ CΓð�YÞð1þ e�iπYÞ. First assume 0 < Y < 1. Then we
proceed analogously to the preceding examples, applying Theorem 5 and Corollary 6.
The ATM digital price thus satisfies

P½XT � 0� ¼ 1
2
þ μ

σ
ffiffiffiffiffiffi
2π

p ffiffiffiffi
T

p
þ oð

ffiffiffiffi
T

p
Þ; T # 0; (6:3)

and the limit of the implied volatility slope is given by

lim
T#0

@KσimpðK;TÞjK¼1 ¼ � μ

σ
� σ

2
¼ 1

σ
CΓð�YÞððM � 1ÞY �MY þ ðGþ 1ÞY � GYÞ:

(6:4)

Now assume 1 < Y < 2. In principle, Theorem 5 is applicable, with ν ¼ Y; however,
the constant C~ν in Equation (5.8) is zero, and so we do not get the second term of the
expansion immediately. What happens is that the Mellin transform of H (see the proof of
Theorem 5) may have further poles in � 1

2 < ReðsÞ < 0, but none of them gives a
contribution, since the corresponding residues have zero real part. Therefore, Equations
(6.3) and (6.4) are true also for 1 < Y < 2. See Pinter’s (in preparation) PhD thesis for
details. Note that Equations (6.3) and (6.4) also follow from concurrent work by
Figueroa-López and Ólafsson (2015). For 0 < Y < 1, they also follow from Proposition
8.5 in Andersen and Lipton (2013), but not for 1 < Y < 2, because then the constant CM

from that proposition vanishes when specializing it to the CGMY model.
In the following example, we discuss the generalized tempered stable model. The

tempered stable model, which is investigated in Andersen and Lipton (2013), is
obtained by setting α� ¼ αþ.

Example 11. The generalized tempered stable process (Cont and Tankov 2004) is a
generalization of the CGMY model, with Lévy density
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νðdxÞ
dx

¼ C�
jxj1þα�

e�λ�jxj1ð�1;0ÞðxÞ þ Cþ
jxj1þαþ

e�λþjxj1ð0;1ÞðxÞ;

where α� < 2 and C�; λ� > 0. For α�‚f0; 1g the Laplace exponent of the generalized
tempered stable process is

ψðzÞ ¼ 1
2σ

2z2 þ μz þ Γð�αþÞCþððλþ � zÞαþ � λαþþ Þ
þ Γð�α�ÞC�ððλ� þ zÞα� � λα�� Þ:

For σ > 0, αþ 2 ð1; 2Þ, and α� < αþ we have the following expansion:

ψðzÞ ¼ 1
2σ

2z2 þ Γð�αþÞCþe�iπαþzαþ þ Oðzmaxf1;α�gÞ; ReðzÞ ¼ a; ImðzÞ ! 1:

We now apply Theorem 5 with ν ¼ αþ, and find that the second order expansion of the
ATM digital call is

P½XT � 0� ¼ 1
2
þ C~νT

~ν þ oðT~νÞ; T # 0;

with ~ν ¼ 1� αþ=2 2 ð0; 12Þ and the real constant

C~ν ¼ ~ν

2π
1
2σ

2
� �~ν�1

Γð�αþÞCþ Imðe�iπ~νe�iπαþÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼sinð�πð1þαþ=2ÞÞ

Γð�~νÞ:

By Corollary 6 (ii), the ATM implied volatility slope explodes, but slower than T–1/2:

@KσimpðK;TÞjK¼1,�
ffiffiffiffiffiffi
2π

p
C~νT

~ν�1=2; T # 0:

Note that these results also follow from the concurrent paper (Figueroa-López and
Ólafsson 2015), which treats tempered stable-like models.

If σ > 0 and αþ < 1, then part (i) of Corollary 6 is applicable, and formulas analogous
to Equations (6.3) and (6.4) hold.

7. Robustness of Lee’s Moment Formula

As we have already mentioned, our first-order slope approximations give limited
accuracy for the size of the slope, but usually succeed at identifying its sign, i.e., whether
the smile increases or decreases at the money. It is a natural question whether this sign
gives information on the smile as a whole: If the slope is positive, does it follow that the
right wing is steeper than the left one, and vice versa? To deal with this issue, recall
Lee’s moment formula (Lee 2004a). Under the assumption that the critical moments z+
and z-, defined in Equations (5.1) and (5.2), are finite, Lee’s formula states that

lim sup
k!1

σimpðK;TÞffiffiffi
k

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψðzþ � 1Þ

T

r
(7:1)

and

lim sup
k!�1

σimpðK;TÞffiffiffiffiffiffi�k
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψð�z�Þ

T

r
; (7:2)
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where T > 0 is fixed, k ¼ logK and ΨðxÞ :¼ 2� 4ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x

p � xÞ. According to Lee’s
formula, the slopes of the wings depend on the size of the critical moments. In Lévy
models, the critical moments do not depend on T. The compatibility property we seek
now becomes

lim
k!1

σimpðK;TÞffiffiffi
k

p > lim
k!�1

σimpðK;TÞffiffiffiffiffiffi�k
p for all T > 0 (7:3)

if and only if

@KσimpðK;TÞjK¼1 > 0 for all sufficiently small T: (7:4)

That is, the right wing of the smile is steeper than the left wing deep out-of-the-
money if and only if the small-maturity ATM slope is positive. We now show that this is
true for several infinite activity Lévy models. By our methods, this can certainly be
extended to other infinite activity models. It does not hold, though, for the Merton and
Kou jump diffusion models. The parameter ranges in the following theorem are the
same as in the examples in Section 6.

Theorem 12. Equations (7.3) and (7.4) are equivalent for the following models. For the
latter three, we assume that σ > 0 or μ � 0.

● Variance gamma with σ ¼ 0, b0 � 0
● NIG
● Meixner
● CGMY

Put differently, these models are not capable (at short maturity) of producing a smile
that has, say, its minimum to the left of logK ¼ k ¼ 0, and thus a positive ATM slope,
but whose left wing is steeper than the right one.

Proof. The critical moments are clearly finite for all of these models. Moreover, it is
well known that the limsup in Equations (7.1) and (7.2) can typically be replaced by a
genuine limit, for instance, using the criteria given by Benaim and Friz (2008). Their
conditions on the mgf are easily verified for all our models; in fact Benaim and Friz
(2008) explicitly treat the variance gamma model with b0 ¼ 0 and the NIG model. We
thus have to show that Equation (7.4) is equivalent to Ψðzþ � 1Þ > Ψð�z�Þ. Since Ψ is
strictly decreasing on (0,∞), the latter condition is equivalent to zþ � 1 < � z�. It
remains to check the equivalence

zþ � 1 < � z� , ð7:4Þ: (7:5)

The mgf of the variance gamma model is (see Madan, Carr, and Chang 1998)

Mðz;TÞ ¼ eTb0zð1� θνz � 1
2σ̂

2νz2Þ�T=ν;

where σ̂; ν > 0 and θ 2 R . Its paths have finite variation, and so Proposition 3 shows
that Equation (7.4) is equivalent to b0 < 0. The critical moments are
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z� ¼ � νθ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2νσ̂2 þ ν2θ2

p
νσ̂2

;

and we have � z� þ 1� zþ ¼ 1þ 2θ=σ̂2. This is positive if and only if

b0 ¼ ν�1 logð1� θν� 1
2σ̂

2νÞ < 0;

which yields Equation (7.5).
As for the other three models, first suppose that σ > 0. The examples in Section 6

show that Equation (7.4) is equivalent to μ < � 1
2σ

2. The critical moments of the NIG
model are zþ ¼ α̂� β and z� ¼ �α̂� β. Therefore, zþ � 1 < � z� if and only if
β > � 1

2, and this is indeed equivalent to

μþ 1
2σ

2 ¼ δð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � ðβþ 1Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂2 � β2

q
Þ < 0:

For the Meixner model, we have z� ¼ ð�π � b̂Þ=â, which yields

� z� þ 1� zþ ¼ 1þ 2b̂=â. On the other hand,

μþ 1
2σ

2 ¼ �2d̂ log
cosðb̂=2Þ

cosððâþ b̂Þ=2Þ ;

which is negative if and only if cosðb̂=2Þ > cosððâþ b̂Þ=2Þ, and this is equivalent

to âþ 2b̂ > 0.
Finally, in case of the CGMY model, we have

μþ 1
2σ

2 ¼ �CΓð�YÞððM � 1ÞY �MY þ ðGþ 1ÞY � GYÞ:

Since, for Y 2 ð0; 1Þ, Γð�YÞ < 0 and the function x 7!xY � ðxþ 1ÞY is strictly
increasing on ð0;1Þ, we see that μþ 1

2σ
2 < 0 if and only if M � 1 < G. This is the

desired condition, since the explicit Equation (6.2) shows that zþ ¼ M and z� ¼ �G.
The case Y 2 ð1; 2Þ is analogous.

It remains to treat the case σ ¼ 0. First, note that the critical moments do not depend
on σ. Furthermore, from the examples in Section 6, we see that Equation (7.4) holds if
and only if μ < 0. Now observe that adding a Brownian motion σWt to a Lévy model
adds � 1

2σ
2 to the drift, if the martingale property is to be preserved. Therefore, the

assertion follows from what we have already proved about σ > 0.

8. Conclusion

Our main result (Corollary 6) translates asymptotics of the log-underlying’s mgf to
first-order asymptotics for the ATM implied volatility slope. Checking the requirements
of Corollary 6 only requires Taylor expansion of the mgf, which has an explicit
expression in all models of practical interest. Higher-order expansions can be obtained
by the same proof technique, if desired. They will follow in a relatively straightforward

152 S. GERHOLD ET AL.



way from higher-order expansions of the mgf, by collecting further residues of the
Mellin transform. In future work, we hope to connect our assumptions on the mgf with
properties of the Lévy triplet, which should give additional insight on how the slope
depends on model characteristics.
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Appendix Proofs of lemmas 4 and 7

Proof of Lemma 4. Since S ¼ eX is a martingale, we have ψ0ð0Þ ¼ E½X1� < 0. Then ψð0Þ ¼ 0
implies that ψðaÞ < 0 for all sufficiently small a > 0. In fact, it easily follows from ψð1Þ ¼ 0 and
the concavity of Ψ that all a 2 ð0; 1Þ satisfy ψðaÞ < 0. Let us fix such an a. From

Reð�ψðaþ iyÞÞ ¼ �ψðaÞ þ 1
2
σ2y2 þ

ð
R

eax ð1� cosðyxÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�0

νðdxÞ

we obtain that the function hðyÞ :¼ �ψðaþ iyÞ, y � 0, satisfies

Re hðyÞ > 1
2σ

2y2 � 0; y � 0: (A:1)

For 0 < ReðsÞ < 1
2, define the function

gðTÞ ¼ TReðsÞ�1

ð1
0

e�TReðhðyÞÞ

jaþ iyj dy; T > 0:

Using Fubini’s theorem and substituting T ReðhðyÞÞ ¼ u, we then calculate for ReðsÞ > 0ð1
0
gðTÞdT ¼

ð1
0

1
jaþ iyj

ð1
0
e�T ReðhðyÞÞTRe ðsÞ�1dTdy

¼
ð1
0

ReðhðyÞÞ�ReðsÞ

jaþ iyj
ð1
0
e�uuReðsÞ�1du

� 	
dy

¼ ΓðReðsÞÞ
ð1
0

ReðhðyÞÞ�ReðsÞ

jaþ iyj dy:

From (A.1), we get ð1
0

ReðhðyÞÞ�ReðsÞ

jaþ iyj dy � ð12σ2Þ�ReðsÞ
ð1
0

y�2ReðsÞ

jaþ iyj dy:

The restriction Re ðsÞ < 1
2 ensures that the last integral is finite and thus the integrability of g.

Using the dominated convergence theorem and Fubini’s theorem, the Mellin transform of H can
now be calculated as ð1

0
HðTÞTs�1dT ¼

ð1
0

1
aþ iy

ð1
0
e�ThðyÞTs�1dTdy:

The substitution ThðyÞ ¼ u gives us the result. Note that h(y) is in general non-real; it is easy
to see, though, that Euler’s integral

ΓðsÞ ¼
ð1
0
us�1e�udu; Re ðsÞ > 0;

still represents the gamma function if the integration is performed along any complex ray
emanating from zero, as long as the ray stays in the right half-plane. The latter holds, since
Re ðhðyÞÞ > 0.

It remains to prove the exponential decay of the Mellin transform MHðsÞ ¼ ΓðsÞFðsÞ for
large jImðsÞj. First, note that
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Imψðaþ iyÞ ¼ byþ σ2ayþ
ð
R

ðeax sin xyþ xyÞνðdxÞ

¼ OðyÞ; y ! 1;

which together with Equation (A.1) yields the existence of an ε > 0 such that j arg hðyÞj � 1
2π � ε

for all y � 0. We then estimate, with ReðsÞ 2 ð0; 12Þ fixed,

jFðsÞj �
ð1
0

e�Reðs log hðyÞÞ

jaþ iyj dy

¼
ð1
0

e�ReðsÞ log jhðyÞjþImðsÞ arg hðyÞ

jaþ iyj dy

� eðπ=2�εÞjImðsÞj
ð1
0

ð12σ2y2Þ
�ReðsÞ

jaþ iyj dy:

The integral converges, and thus this estimate is good enough, since Stirling’s formula yields
jΓðsÞj ¼ expð�1

2πjImðsÞjð1þ oð1ÞÞÞ.
Proof of Lemma 7. Recall that, in the proof of Theorem 5, we defined the following

meromorphic continuation of F(s), to the strip � ~ν� 1
2ε < Re ðsÞ < 1

2:

A0ðsÞ þ ~G1ðsÞ þ ~F1ðsÞ; �~ν < ReðsÞ < 1
2;

A0ðsÞ þ ~G1ðsÞ þ ~G2ðsÞ þ ~F2ðsÞ; �~ν� 1
2ε < ReðsÞ < 1

2ðν� 1Þ:

As noted at the end of the proof of Lemma 4, Stirling’s formula implies
jΓðsÞj ¼ expð�1

2πjImðsÞjð1þ oð1ÞÞÞ. By Equation (5.5), it thus suffices to argue that the conti-

nuation of FðsÞ is Oðexpðð12π � εÞjImðsÞjÞÞ for some ε > 0. The functions ~G1 and ~G2 are clearly
Oð1Þ. As for A0, defined in Equation (5.11), we have

jA0ðsÞj �
ðy0
0

e�Reðs log hðyÞÞ

jaþ iyj dy

¼
ðy0
0

jhðyÞj�ReðsÞeImðsÞ arg hðyÞ

jaþ iyj dy:

Now note that

jhðyÞj�ReðsÞ � ð12σ2y2Þ
�ReðsÞ 0 < Re ðsÞ < 1

2;

max0�y�y0 jhðyÞj
� ��ReðsÞ

Re ðsÞ � 0;

 

and that

expðImðsÞ arg hðyÞÞ � expððπ2 � εÞjImðsÞjÞ

for some ε > 0, as argued in the proof of Lemma 4.
It remains to establish a bound for ~F1, defined in Equation (5.15). (The bound for ~F2 is

completely analogous, and we omit the details.) In what follows, we assume that
� ~ν < ReðsÞ < 1

2. By Equation (5.12), we have (where the O is uniform w.r.t. s, and y0 � 0 is
still arbitrary):
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~F1ðsÞ ¼
ð1
y0

1
aþ iy

ð12σ2y2Þ
�sð1þ Oðyν�2ÞÞ�s � ð12σ2y2Þ

�s� �
dy

¼
ð1
y0

1
aþ iy

ð12σ2y2Þ�s ð1þ Oðyν�2ÞÞ�s � 1
� �

dy: (A:2)

We now choose y0 such that, for some constant C0 > 0,

j log j1þ Oðyν�2Þjj � 1
4π;

jarg ð1þ Oðyν�2ÞÞj � 1
4π;

j logð1þ Oðyν�2ÞÞj � C0y
ν�2;

hold for all y � y0. (By a slight abuse of notation, here Oðyν�2Þ of course denotes the function
hiding behind the Oðyν�2Þ in Equation (A.2).) For all w 2 C , we have the estimate

jew � 1j � jwjejReðwÞj:

Using this in Equation (A.2), we find

ð1þ Oðyν�2ÞÞ�s � 1


 

 ¼ expð�s logð1þ Oðyν�2ÞÞÞ � 1



 


� js logð1þ Oðyν�2ÞÞj � expðjReðs logð1þ Oðyν�2ÞÞjÞ

� C1jsjyν�2 expð14πjImðsÞjÞ;

where C1 ¼ C0 expð14π sups jReðsÞjÞ, and thus

j~F1ðsÞj � C2jsje
1
4πjImðsÞj

ð1
y0
y�2ReðsÞþν�3dy

¼ expð14πjImðsÞjð1þ oð1ÞÞÞ:
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