
Short-Maturity Asymptotics for
Fast Mean-Reverting Stochastic Volatility Models

Jean-Pierre Fouque
University of California Santa Barbara

Joint work with Jin Feng (Kansas Univ.) and Martin Forde (Dublin City Univ.)

Conference on small time asymptotics, perturbation theory and heat

kernel methods in mathematical finance

February 10-12, 2009

Wolfgang Pauli Institute (WPI) Vienna, Austria

1



Heston Model

In this talk, we will mainly deal with the Heston model.

Under the risk-neutral measure it is:

dSt = rStdt+ σtSt dW
1
t ,

σt =
√

Yt ,

dYt = κ(θ − Yt)dt+ ν
√

Yt dW
2
t ,

where W 1,W 2 are two standard Brownian motions with

covariation d〈W 1,W 2〉t = ρdt, where |ρ| < 1.

We assume that 2κθ>ν2, ν, κ, θ, Y0 = y > 0, so that the

square-root (or CIR) process (Yt) stays positive at all times.
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Implied Volatility

Black-Scholes implied volatility:

CallHeston(S, y;K,T ) = CallBS(S;K,T ;σimp(S, y;K,T ))

In what follows we use log-moneyness:

x = log(K/S0)

and the notation

σimp(x, y, T )

where T is time-to-maturity.
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Implied Volatility at Short Maturity

Large deviation result.

Geodesic distance:

yd2
x + 2ρνydxdy + ν2yd2

y = 1

d(x = 0, y) = 0

d(x, y) > 0 for x > 0

At short maturity:

σimp(x, y, T = 0) =
x

d(x, y)

where d (which does not depend on κ) is computed numerically.

Avellaneda-BoyerOlson-Busca-Friz (2003)

Berestycki-Busca-Florent (2004)
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Fast Mean-Reverting Heston Model

By fast mean-reverting stochastic volatility, we mean that the rate

of mean reversion κ is large. In order to ensure that volatility is

not “dying” or “exploding” we also impose that the vol-vol

parameter ν is large of the order of
√
κ. In order to achieve this

scaling, we introduce a small parameter 0 < ǫ≪ 1, and we replace

(κ, ν) by (κ/ε2, ν/ε) so that the model becomes:

dSt = rStdt+ St

√

YtdW
1
t ,

dYt =
κ

ε2
(θ − Yt)dt+

ν

ε

√

YtdW
2
t .

The small quantity ε2 represents the intrinsic time scale of the

volatility process (Yt), or, in other words, its de-correlation time.

Observe that the condition 2
(

κ

ε2

)

θ >
(

ν

ε

)

2

is equivalent to 2κθ > ν2 and

therefore independent of ε.
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Asymptotics at Fixed Maturities

Fouque-Papanicolaou-Sircar (2000) for general FMR SV models:

“implied vol is affine in LMMR”

σimp(x, y, T ) = σ̄ + ερC
( x

T

)

+O(ε2) ,

where σ is the effective volatility

σ2 =

∫

σ(y)2ΦY (dy) ,

ΦY being the invariant distribution of the process Y .

In the case of Heston, σ(y) =
√
y, ΦY = Γ(θ, θν2

2κ ), and σ2 = θ.

C is a constant which depends on the model parameters.
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Prices and Pricing PDE’s

P ε(t, x, y) = IE⋆
{

e−r(T−t)h(Sε
T )|Sε

t = x, Y ε
t = y

}

∂P ε

∂t
+

1

2
yx2 ∂

2P ε

∂x2
+
ρν

ε
xy
∂2P ε

∂x∂y
+

ν2

2ε2
y
∂2P ε

∂y2

+r

(

x
∂P ε

∂x
− P ε

)

+
1

ε2
(m− y)

∂P ε

∂y
= 0

to be solved for t < T with the terminal condition

P ε(T, x, y) = h(x)
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Operator Notation

(

1

ε2
L0 +

1

ε
L1 + L2

)

P ε = 0

with

L0 =
1

2
ν2y

∂2

∂y2
+ (m− y)

∂

∂y
= LCIR

L1 = ρνxy
∂2

∂x∂y

L2 =
∂

∂t
+

1

2
yx2 ∂

2

∂x2
+ r

(

x
∂

∂x
− ·
)

= LBS(
√
y)
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Formal Expansion

Expand:

P ε = P0 + εP1 + ε2P2 + ε3P3 + · · ·
Compute:

(

1

ε2
L0 +

1

ε
L1 + L2

)

(

P0 + εP1 + ε2P2 + ε3P3 + · · ·
)

= 0

Group the terms by powers of ε:

1

ε2
L0P0 +

1

ε
(L0P1 + L1P0)

+ (L0P2 + L1P1 + L2P0)

+ ε (L0P3 + L1P2 + L2P1)

+ · · · = 0
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Diverging terms

• Order 1/ε2:

L0P0 = 0

L0 = LCIR, acting on y =⇒ P0 = P0(t, x)

with P0(T, x) = h(x)

• Order 1/ε:

L0P1 + L1P0 = 0

L1 takes derivatives w.r.t. y =⇒ L1P0 = 0

=⇒ L0P1 = 0

As for P0 : P1 = P1(t, x) with P1(T, x) = 0

• Important observation:

P0 + εP1 does not depend on y
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Zero Order Term

L0P2 + (L1P1 = 0) + L2P0 = 0

Poisson equation in P2 with respect to L0 and the variable y.

Solution:

P2 = (−L0)
−1(L2P0)

Only if L2P0 is centered

with respect to the

invariant distribution of Y .
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Poisson Equations

L0χ+ g = 0

Expectations w.r.t. the invariant distribution of the CIR process:

〈g〉 = −〈L0χ〉 = −
∫

(L0χ(y))Φ(y)dy =

∫

χ(y)(L⋆
0Φ(y))dy = 0

lim
t→+∞

IE {g(Yt)|Y0 = y} = 〈g〉 = 0 (exponentially fast)

χ(y) =

∫ +∞

0

IE {g(Yt)|Y0 = y} dt

checked by applying L0
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Leading Order Term

Centering:

〈L2P0〉 = 〈L2〉P0 = 0

〈L2〉 =

〈

∂

∂t
+

1

2
yx2 ∂

2

∂x2
+ r

(

x
∂

∂x
− ·
)〉

=
∂

∂t
+

1

2
〈y〉x2 ∂

2

∂x2
+ r

(

x
∂

∂x
− ·
)

Effective volatility: σ̄2 = 〈y〉 = θ

The zero order term P0(t, x) is the solution of the

Black-Scholes equation

LBS(σ̄)P0 = 0

with the terminal condition P0(T, x) = h(x)
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Back to P2(t, x, y)

The centering condition 〈L2P0〉 = 0 being satisfied:

L2P0 = L2P0 − 〈L2P0〉 =
1

2

(

y − σ̄2
)

x2 ∂
2P0

∂x2

=
1

2
L0φ(y)x2 ∂

2P0

∂x2

for φ a solution of the Poisson equation:

L0φ = y − 〈y〉

Then

P2(t, x, y) = −L−1
0 (L2P0) = −1

2
(φ(y) + c(t, x))x2 ∂

2P0

∂x2
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Terms of order ε

Poisson equation in P3:

L0P3 + L1P2 + L2P1 = 0

Centering condition:

〈L1P2 + L2P1〉 = 0

Equation for P1:

〈L2P1〉 = −〈L1P2〉 =
1

2

〈

L1

[

(φ(y) + c(t, x))x2 ∂
2P0

∂x2

]〉

P1 independent of y and L1 takes derivatives w.r.t. y

=⇒ LBS(σ̄)P1 =
1

2
〈L1φ(y)〉

[

x2 ∂
2P0

∂x2

]

with P1(T, x) = 0
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The correction P ε

1
(t, x) = εP1(t, x)

LBS(σ̄)P ε
1 − εν

2

〈(

ρxy
∂2

∂x∂y

)

φ(y)

〉[

x2 ∂
2P0

∂x2

]

= 0

LBS(σ̄)P ε
1 + V ε

3 x
∂

∂x

(

x2 ∂
2PBS

∂x2

)

= 0

BS equation with source and zero terminal condition

with the small parameter V ε
3 given by:

V ε
3 =

−ερν
2

〈yφ′(y)〉
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Explicit Formula for the Corrected Price

P ε
1 = (T − t)V ε

3 x
∂

∂x

(

x2 ∂
2PBS

∂x2

)

where V ε
3 is a small number of order ε.

The corrected price is given explicitly by

P0 + (T − t)V ε
3 x

∂

∂x

(

x2 ∂
2PBS

∂x2

)

where P0 is the Black-Scholes price with constant volatility σ̄ =
√

θ
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Comments

• The small constant V ε
3 is a complex functions of the original

model parameters (θ, ν, ρ, ε)

• Only (σ̄, V ε
3 ) are needed to compute the corrected price

• Probabilistic representation of (P0 + P ε
1 )(t, x):

ĪE

{

e−r(T−t)h(X̄T ) +

∫ T

t

e−r(s−t)H(s, X̄s)ds|X̄t = x

}

• Put-Call Parity is preserved at the order O(ε)

• The V ε
3 term is the skew effect

ρ = 0 =⇒ V ε
3 = 0
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Corrected Call Option Prices

h(x) = (x−K)+

and

P0(t, x) = CBS(t, x;K,T ; σ̄)

Compute the Delta, the Gamma and the Delta-Gamma

Deduce the source

H = V ε
3 x

∂

∂x

(

x2 ∂
2PBS

∂x2

)

and the correction

P ε
1 (t, x) = (T − t)H(t, x) =

xe−d2
1/2

σ
√

2π

(

−V3
d1

σ

)
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Expansion of Implied Volatilities

Recall

CBS(t, x;K,T ; I) = Cobserved

Expand

I = σ̄ + εI1 + · · ·
Deduce for given (K,T ):

CBS(t, x; σ̄) + εI1
∂CBS

∂σ
(t, x; σ̄) + · · · = P0(t, x) + P ε

1 (t, x) + · · ·

=⇒ εI1 = P ε
1 (t, x) [Vega(σ̄)]−1

Compute the Vega = ∂CBS/∂σ = xe−d2
1/2

√
T − t/

√
2π

and deduce
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Calibration Formulas

The implied volatility is an affine function of the LMMR:

log-moneyness-to-maturity-ratio = log(K/x)/(T − t)

I = a [LMMR] + b+ O(ε2)

with

a =
V ε

3

σ̄3

b = σ − V ε
3

σ3

(

r − 1

2
σ2

)

or for calibration purpose:

σ = b+ a(r − b2

2
)

V ε
3 = ab3
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Fast Mean-Reverting Short-Maturity Scaling

We combine fast mean reversion and short maturity by considering

maturities of order ε, that is short maturities but long compared

to the intrinsic volatility time scale ε2. We set T = εt where t > 0.

A typical situation: T ∼ 15 days and ε2 ∼ 2 days.

t 7→ ǫt gives (in distribution) the rescaled process:

dSǫ,t = ǫrSǫ,tdt+ Sǫ,t

√

ǫYǫ,tdW
1
t ,

dYǫ,t =
κ

ǫ
(θ − Yǫ,t)dt+

ν√
ǫ

√

Yǫ,tdW
2
t ,

preserving the constant correlation ρ.

The log-price Xǫ,t = logSǫ,t is given by

Xǫ,t = x0 + ǫrt− ǫ

2

∫ t

0

Yǫ,sds+
√
ε

∫ t

0

√

Yǫ,sdW
1
s .
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Asymptotic Results

• Large deviation principle

• Option pricing

• Implied volatilities

Proofs based on explicit computation of moment generating

functions.
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Large Deviation Principle

For each t > 0, {Xǫ,t : ǫ > 0} satisfies the large deviation principle

with rate function I(q;x0, t) = Λ∗(q − x0; 0, t),

where Λ∗(q;x, t) ≡ supp∈R{qp− Λ(p;x, t)} is the Legendre

transform of

Λ(p;x, t) : R ×R×R+ 7→ R ∪ {+∞} given explicitly by:

Λ(p;x, t) = xp+
κθt

ν2

(

(κ− νρp) −
√

(κ− ρνp)2 − ν2p2
)

,

for − κ

ν(1 − ρ)
≤ p ≤ κ

ν(1 + ρ)
,

= +∞ otherwise.

Note that Λ∗(q; x, t) = Λ∗(q − x; 0, t) and Λ(p;x, t) = t Λ(p; x

t
, 1) .

Λ∗ will be given explicitly.
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25



Pricing Short-Maturity Out-of-The-Money Options

Suppose log( K
S0

) > 0, and t > 0 fixed. Then

lim
ǫ→0

ǫ logE[e−rεt(Sǫ,t −K)+|Sǫ,0 = S0, Yǫ,0 = y0] =

−Λ∗
(

log(
K

S0
); 0, t

)

,

independently of the initial square-volatility level y0.

Note that the maturity of the option is T = εt which goes to zero

in the limit.

The discounting factor e−rεt plays no role in this asymptotic result.
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Implied Volatilities

The asymptotic implied volatilities can be computed.

Let σε
imp(x, y, t) denote the Black-Scholes implied volatility for the

European call option with strike price K, out-of-the-money so

that x = log(K/S0) > 0, with short maturity T = εt for t > 0

fixed, and computed under the fast mean-reverting dynamics. Then

lim
ǫ→0

σǫ
imp(t, x)

2 =
x2

2Λ∗(x; 0, t)t
.

Similarly, by considering Out-of-The-Money put options, one

obtains the same formula for x < 0.

The At-The-Money volatility is obtained by taking the limit x→ 0

and coincides with the effective volatility σ =
√
θ.
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Explicit Formula for Λ∗

Λ∗(q; 0, t) = qp(q; t) − Λ(p(q; t); 0, t),

where p(q; t) is given by

p(q; t) =
κ

ν(1 − ρ2)

(

−ρ+
qν + κθtρ

√

(qν + κθtρ)2 + (1 − ρ2)κ2θ2t2

)

∈ int(Dom(Λ)) =

(

− κ

ν(1 − ρ)
,

κ

ν(1 + ρ)

)

.

Λ∗(q; 0, t) is finite for all q ∈ R.

It is strictly increasing for q > 0 and strictly decreasing for q < 0.

Λ∗(0; 0, t) = 0.

Λ∗(q; 0, t) is continuous in (q, t) ∈ R ×R+.
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Moment Generating Function

Λǫ(p) = Λǫ(p;x, y, t) = ǫ logE[e
p
ǫ
Xǫ,t |Xǫ,0 = x, Yǫ,0 = y]

= ǫ logE[S
p
ǫ

ǫ,t|Sǫ,0 = ex, Yǫ,0 = y]

= ǫrpt+ ǫ logE[S̃
p
ǫ

ǫ,t|S̃ǫ,0 = ex, Yǫ,0 = y],

where S̃ε,t is the discounted stock price.

E[S̃
p
ǫ

ǫ,t|S̃ǫ,0 = ex, Yǫ,0 = y]

= e
xp
ε E[e

− p
2

∫

t

0
Yǫ,sds+ p

√
ε

∫

t

0

√
Yǫ,sdW 1

s |Yǫ,0 = y]

= e
xp
ε E[e

− p
2

∫

t

0
Yǫ,sds+ pρ

√
ε

∫

t

0

√
Yǫ,sdW 2

s +
p
√

1−ρ2
√

ε

∫

t

0

√
Yǫ,sdW 3

s |Yǫ,0 = y]

= e
xp
ε E[e

− p
2

∫

t

0
Yǫ,sds+ pρ

√
ε

∫

t

0

√
Yǫ,sdW 2

s +
p2(1−ρ2)

2ε

∫

t

0
Yǫ,sds|Yǫ,0 = y]

= e
xp
ε E[e

pρ
√

ε

∫

t

0

√
Yǫ,sdW 2

s − p2ρ2

2ε

∫

t

0
Yǫ,sds

e
p(p−ε)

2ε

∫

t

0
Yǫ,sds|Yǫ,0 = y],
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Moment Generating Function (continued)

Using Girsanov tranform, one obtains that

E[S̃
p
ǫ

ǫ,t|S̃ǫ,0 = ex, Yǫ,0 = y] = e
xp
ε EQ[e

p(p−ε)
2ε

∫

t

0
Zǫ,sds|Zǫ,0 = y],

where, under the probability Q, the process Zǫ,t satisfies

dZǫ,t =
1

ǫ
(κθ − (κ− νρp)Zǫ,t) dt+

ν√
ǫ

√

Zǫ,tdW
Q
t ,

driven by a Brownian motion WQ.

This result is derived in Andersen and Piterbarg (2007). Note that

the proof allows the possibility of “+∞ = +∞”.

Their statement is limited to the case of p(p− ǫ) > 0, but the proof

is not limited to that case, allowing p ∈ R.
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Explicit evaluation of Λǫ

The following two inequalities play important roles:

(ρνp− κ)2 ≥ p(p− ǫ)ν2 , ρνp < κ.

When they are both satisfied, then by results on exponential

functionals of CIR processes (Albanese and Lawi (2005), or

Hurd and Kuznetsov (2008)), we have

EQ[e
p(p−ε)

2ε

∫

t

0
Zǫ,sds|Zǫ,0 = y] = emε(t)−nε(t)y, with

mǫ(t) =
κθt

σ2
(b− b̄) +

2κθ

σ2
log

(

b̄eb̄t/2

b̄ cosh( b̄t
2 ) + b sinh( b̄t

2 )

)

,

nǫ(t) =
−p(p− ǫ)

ε

(

sinh( b̄t
2 )

b̄ cosh( b̄t
2 ) + b sinh( b̄t

2 )

)

,

b̄ =
1

ǫ

√

(κ− νρp)2 − ν2p(p− ǫ) , b =
κ− νρp

ǫ
.
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Explicit evaluation of Λǫ (continued)

Note that when the limit exists as ε → 0, the only contribution from

ε (mǫ(t) − nǫ(t)y) comes from the first term of mε(t) which leads to

formula for Λ(p;x, t).

If one of the two inequalities (ρνp− κ)2 ≥ p(p− ǫ)ν2 , ρνp < κ is

violated then Λε = +∞. A careful analysis shows that:

Λǫ(p) is lower semicontinuous and convex in p.

For ǫ > 0 small enough,

Λǫ(p;x, y, t) = ǫrpt+ xp+ ǫ (mǫ(t) − nǫ(t)y)

holds when c1,ǫ ≤ p ≤ c2,ǫ with

c1,ǫ =
(ǫν − 2κρ) −

√

(ǫν − 2κρ)2 + 4κ2(1 − ρ2)

2ν(1 − ρ2)
≤ 0,

c2,ǫ =
(ǫν − 2κρ) +

√

(ǫν − 2κρ)2 + 4κ2(1 − ρ2)

2ν(1 − ρ2)
≥ 0.

33



Convergence of Λǫ to Λ, and LDP

The function Λ is lower semicontinuous and essentially smooth in p.

Moreover, Λǫ(·;x, y, t) Γ-converges to Λ(·;x, t):
for each x ∈ R, y > 0, t > 0

1. For every p ∈ R, there exists {pǫ} with pǫ → p such that

lim
ǫ→0+

Λǫ(pǫ;x, y, t) = Λ(p;x, t).

2. For every p ∈ R and every pǫ → p,

lim inf
ǫ→0+

Λǫ(pǫ;x, y, t) ≥ Λ(p;x, t).

A close inspection of the proof for the usual form of the

Gärtner-Ellis theorem shows that the theorem generalizes under

Γ-convergence. Note that without essential smoothness of the

function Λ in the example above, one cannot conclude that the

large deviation lower bound holds. Our LDP result follows.
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OTM Option Pricing (lower bound)

For δ > 0 we have

E[(Sǫ,t −K)+] ≥ E[1{Sǫ,t−K>δ}(Sǫ,t −K)+]

≥ δP (Sǫ,t > K + δ).

By LDP, it follows that

lim inf
ǫ→0+

ǫ logE[(Sǫ,t −K)+] ≥ lim inf
ǫ→0+

ǫ logP (Xǫ,t > log(K + δ))

≥ − inf
q>log(K+δ)

Λ∗(q − log S0; 0, t)

= −Λ∗
(

log

(

K + δ

S0

)

; 0, t

)

.

The last equality follows from the fact that log( K
S0

) > 0, and that

Λ∗(q; 0, t) is non-decreasing for q in the region q ≥ 0.

Taking δ → 0+, by continuity of Λ∗, we obtain the desired lower

bound.
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OTM Option Pricing (upper bound)

For p, q > 1 such that p−1 + q−1 = 1, we have:

E[(Sǫ,t −K)+] ≤ E1/p[|(Sǫ,t −K)+|p]E1/q[1{Sǫ,t−K≥0}] .

Therefore

ǫ logE[(Sǫ,t −K)+] ≤ ǫ

p
logE[(Sǫ,t)

p] + ǫ(1 − 1

p
) logP (Sǫ,t ≥ K)

≤ 1

p
Λǫ(ǫp) + (1 − 1

p
)ǫ logP (Sǫ,t ≥ K) .

Taking limp→+∞ lim supǫ→0 on both sides, and noting that

limǫ→0 Λǫ(ǫp) = 0, we deduce (by LDP) the desired upper bound

lim sup
ǫ→0

ǫ logE[(Sǫ,t −K)+] ≤ −Λ∗
(

log(
K

S0
); 0, t

)

.
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Asymptotic Implied Volatility

We denote the log-moneyness by x = log(K/S0) > 0, and for

simplicity σǫ
imp(t, x) = σε, t and x being fixed here.

First, we show that

lim
ǫ→0

σǫ

√
ǫt = 0.

We know that Λ∗(x; 0, t) > 0. Let 0 < δ < Λ∗(x; 0, t). By the LDP

upper bound, for ǫ > 0 small enough

e−(Λ∗(x;0,t)−δ)/ǫ ≥ E[(Sǫ,t −K)+]

= erεtS0Φ

(−x+ rεt+ 1
2σ

2
ǫ ǫt

σǫ

√
ǫt

)

−KΦ

(−x+ rεt− 1
2σ

2
ǫ ǫt

σǫ

√
ǫt

)

,

Since E[(Sǫ,t −K)+] ≥ 0, the right-hand side must converge to zero

as ε→ 0, which implies limǫ→0 σǫ

√
ǫt = 0
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Asymptotic Implied Volatility (lower bound)

We use the classical notation

d1 =
log
(

S0

K

)

+ rεt+
σ2

ǫ

2 ǫt

σε

√
ǫt

.

Let δ > 0, by the lower bound LDP, for ǫ > 0 small enough, we have

e−(Λ∗(x;0,t)+δ)/ǫ ≤ E[(Sǫ,t −K)+]

≤ erεtS0Φ(d1) = erεtS0 (1 − Φ(−d1))

≤ erεtS0

(

1

−d1

)

Φ′ (−d1) ,

from classical estimate on Φ. Using limǫ→0 σǫ

√
ǫt = 0 and S0 < K,

we know that limε→0 d1 = −∞. Taking (ǫ log) on both sides, one

sees that the leading order term on the right-hand side is given by

−ε
(

log(S0

K )
)2

2(σε

√
εt)2

= − x2

2σ2
ε t

=⇒ −(Λ∗(x, ; 0, t) + δ) ≤ − x2

2 limǫn→0 σ2
ǫn
t
.
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Asymptotic Implied Volatility (upper bound)

Denoteby PBS = PBS(σǫ) the measure under which Sǫ follows the

Black-Scholes model with constant volatility σε = σε(t, x):

dSε,s = Sε,s (rds+ σεdWs) ,

where W is a Brownian motion under PBS (note that here t is fixed

and the maturity of the call option is εt). Using the notation

d2 =
log
(

S0

K+δ

)

+ rεt− σ2
ǫ

2 ǫt

σε

√
ǫt

, one obtains:

e−(Λ∗(x;0,t)−δ)/ǫ ≥ EP [(Sǫ,t −K)+] = EPBS [(Sǫ,t −K)+]

≥ δPBS(Sǫ,t > K + δ)

= δ (1 − Φ(−d2))

≥ δ

( −d2

1 + d2
2

)

φ(−d2),
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Asymptotic Implied Volatility (upper bound continued)

Arguing as in the case of the lower bound, we know that

limε→0 d2 = −∞. Taking (ε log) on both sides, the leading order

term on the right-hand side is given by

−

(

log( S0

K+δ )
)2

2σ2
ε t

=⇒ −(Λ∗(x; 0, t) − δ) ≥ −

(

log(K+δ
S0

)
)2

2 limǫn→0+ σ2
ǫn
t
.

Sending δ → 0+ gives the desired upper bound, which concludes

the proof of

lim
ε→0

σ2
ε = σ(t, x)2 =

x2

2Λ∗(x; 0, t)t
,

in this regime “fast mean reverting volatility and short maturity”,

and for an OTM call option (x > 0).

The same formula for x < 0 is derived similarly by considering

OTM put options.
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The ATM Limit

Using the explicit formula for Λ∗(x; 0, t), one can derive the

At-The-Money limit:

lim
x→0

σ(t, x)2 = θ ,

by checking that near zero

p(q; t) =
q

θt
+O(q2),

Λ(p; 0, t) =
θt

2
p2 +O(p3),

and consequently

Λ∗(q; 0, t) = q
( q

θt

)

− θt

2

( q

θt

)2

+O(q3) =
q2

2θt
+O(q3).
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Asymptotic ATM Implied Volatility

In fact, we can also derive the limit as ε→ 0 of the At-The-Money

implied volatility σε(t, 0).

The asymptotic At-The-Money volatility is given by

lim
ε→0

σε(t, 0)
2 = lim

x→0
σ(t, x)2 = θ .

This is not a large deviation result but rather an averaging result

of the type studied by FPS. Since it involves convergence in

distribution, it is more convenient to work with put options whose

payoffs are continuous and bounded. The ATM volatility is defined

by the unique positive number σε(0, t) = σε(0) satisfying

E[(S0−Sε,t)
+] = S0Φ(−d2)−erεtS0Φ(−d1) , d1,2 =

(r ± 1
2σε(0)

2)
√
εt

σε(0)
.
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Asymptotic ATM Implied Volatility (continued)

Dividing on both sides by
√
ε S0, on gets Eq *

E

[

(

−
√
ε

∫ t

0

r
Sε,s

S0
ds−

∫ t

0

Sε,s

S0

√

Yε,sdW
1
s

)+
]

=
1√
ε

(

Φ(−d2) − erεtΦ(−d1)
)

The following integrals convergence to zero in probability

√
ε

∫ t

0

r
Sε,s

S0
ds and

∫ t

0

(

Sε,s

S0
− 1

)

√

Yε,sdW
1
s .

The convergence of the quadratic variation of the martingale term,
∫ t

0
Yε,s ds→ σ̄2t, implies the convergence in distribution

(

−
√
ε

∫ t

0

r
Sε,s

S0
ds−

∫ t

0

Sε,s

S0

√

Yε,sdW
1
s

)

→
∫ t

0

σ̄dW 1
s = σ̄W 1

t ,
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Asymptotic ATM Implied Volatility (continued)

σ̄2 =
∫ +∞
0

yΓ(dy) is the ergodic average of the square volatility Yε,·
where Γ is the invariant distribution of the ergodic process Y . A

complete proof of this result involves introducing a solution ψ of

the Poisson equation Lψ(y) = y − σ̄2 , where L is the infinitesimal

generator of the process Y , and using Ito’s formula to show that

∫ t

0

(

Yε,s − σ̄2
)

ds =

∫ t

0

Lψ(Yε,s)ds = ε (ψ(Yε,t) − ψ(Y0))−
√
ε

∫ t

0

σψ′(Yε,s)Yε,sdW
2
s

converges to zero (FPS 2000 for details).

In this case, the invariant distribution is a Gamma with mean θ

and consequently σ̄2 = θ. Therefore, the left-hand side of Eq *

converges to E[(σ̄W 1
t )+] = σ̄

√
t/
√

2π =
√
θt/

√
2π. By direct

inspection of the right-hand side of Eq * and the relation between

d1,2 and σε(0), one deduces that σε(0) must converge to θ as ε→ 0.
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The parameters are t = 1, κ = 1.15, θ = .04, ν = .2 and ρ = −.4, 0, +.4
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Work in Progress

• The same technique applies to long maturities.

• Different approach using homogenization of HJB

equations (Feng-Kurtz, 2006) to handle general stochastic

volatility models.

• Compute the next term in the ε-small limit.

• ......

THANKS FOR YOUR ATTENTION
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