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Abstract. We prove positivity of the BMV measure in dimension d = 3 in

several non-trivial cases by combinatorial methods.

1. Introduction and Results

Definition 1. Let d ≥ 1 be fixed. Let A, B be complex, hermitian d × d matrices

and B ≥ 0, then we denote

φA,B(z) := tr(exp(A− zB))

for z ∈ C.

The Bessis-Moussa-Villani conjecture (open since 1975, see [2]) asserts that the

function φA,B is completely monotone, i.e., φA,B is the Laplace transform of a

positive measure µA,B supported by [0,∞[,

tr(exp(A− zB)) =
∫ ∞

0

exp(−zx)µA,B(dx).

Since the function φA,B is always Laplace transform of a possibly signed measure

on [0,∞[, we shall always denote this signed measure by µA,B.

The BMV conjecture is closely related to convergence assertions on perturbation

series in quantum mechanics and there is a substantial literature on it (recently [9]

has been published, where several further references can be found, in particular we

mention the review article [10]). We quote from [11]: ”The BMV conjecture would
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entail a number of interesting inequalities not just for quantum partition functions,

but also for their derivatives (a badly needed tool). Despite a lot of work, some by

prominent mathematical physicists, only some simple cases have been decided. So

far all results, including fairly extensive numerical experiments, are in agreement

with the conjecture”. As an example of recent progress on positive results we

mention that the BMV-conjecture was shown to hold true in an average sense in

[4]. Originally the BMV-conjecture was formulated more generally, namely, that

z 7→ 〈e, exp(A− zB)e〉 is completely monotone for each eigenvector e of B. This

first conjecture was seen to be wrong immediately (see final part of [2]). In the

appendix we provide a simple counter-example for the sake of completeness. For a

deep equivalence to the validity of the BMV-conjecture see [9].

The remainder of this introductory section reviews some simple known facts on

the BMV-conjecture.

Proposition 1. Let A,B be hermitian d × d matrices, B ≥ 0, then φA,B(z) ≥ 0

for z ≥ 0 and

d

dz
φA,B(z) = − tr(exp(A− zB)B)

d2

dz2
φA,B(z) = tr

(∫ 1

0

exp(−s(A− zB))B exp(s(A− zB))B ds exp(A− zB)
)

for z ≥ 0. Hence − d
dzφ

A,B(z) ≥ 0 and d2

dz2φ
A,B(z) ≥ 0 for z ≥ 0.

Proof. The first assertion follows from the fact that the eigenvalues of exp(A− zB)

are non-nenagtive and the second from the derivative of the function exp off 0 (see

for instance [8], Theorem 38.2),

d

dz
exp(A− zB) = − exp(A− zB)

∫ 1

0

exp(−s(A− zB))B exp(s(A− zB))ds.

Hence

d

dz
φA,B(z) = − tr

(
exp(A− zB)

∫ 1

0

exp(−s(A− zB))B exp(s(A− zB))ds
)

= −
∫ 1

0

tr (exp(A− zB) exp(−s(A− zB))B exp(s(A− zB))) ds

= −
∫ 1

0

tr(exp(A− zB)B)ds

= − tr(exp(A− zB)B).
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The second formula follows by a similar reasoning. We conclude the inequalities in

a ”moving frame” associated to the eigenbasis of exp [s(A− zB)]. �

Bernstein’s Theorem (see for instance [6]) asserts that a smooth function φ :

R≥0 → R is the Laplace-transform of a non-negative measure µ on R≥0 if and

only if (−1)nφ(n)(z) ≥ 0 for z ≥ 0. For the BMV-function φA,B we know by the

previous Lemma at least, that the Bernstein condition holds for n = 0, 1, 2. For

dimension d ≥ 3 the case n = 3 is unknown in general. Having Bernstein’s Theorem

in mind, we see that the validity of the BMV-conjecture is equivalent to a sequence

of interesting trace inequalities for hermitian matrices.

The following simple transformation properties are immediately proved.

(1) Given a unitary matrix U in dimension d, then µUAU
T

,UBU
T

= µA,B . This

is due to the unitary invariance of the trace functional.

(2) Let Id denote the identity matrix in dimension d. Then µA+λ1Id,B =

exp(λ1)µA,B for all real λ1, since the identity matrix commutes with A,B.

(3) µA,B+λ2Id = µA,B(.+ λ2) for λ2 ≥ −bmin, where bmin denotes the minimal

eigenvalue ofB, since a translation ofB by λ2Id corresponds to a translation

of the measure by λ2.

Furthermore the following cases are known, where the BMV-conjecture holds

true.

(1) If A and B commute, the BMV-conjecture holds true.

(2) If d = 1, 2, the BMV-conjecture holds true.

(3) If B has at most two different eigenvalues, the BMV-conjecture holds true.

(4) Let B be a diagonal matrix. If the off-diagonal elements of A are non-

negative, the Dyson expansion (see Section 2) yields that the BMV-conjecture

holds true.

In view of all these well-known facts (for more investigations in these directions

see [5]), the first non-trivial case, which appears in lowest non-trivial dimension, is

the following. Take d = 3 and let without loss of generality B = diag(b1, b2, b3) be

a diagonal matrix and A = (aij), and assume a12a13a23 < 0. In this article we give

– by hyper-geometric methods – a partial positive answer in this case.
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We first analyse a representation of the measure µA,B arising from the Dyson

expansion. Our original approach was a stochastic one, but since we are able to

draw our conclusion directly from the Dyson expansion, we leave away the stochastic

reasonings (see the working paper [3]).

In Section 3 we concentrate on the 3-dimensional case, where we meet an impor-

tant combinatorial simplification, which then leads to a summation problem in the

theory of hyper-geometric series. Finally we are able to prove the following result.

Theorem 1. Given a real, symmetric 3×3 matrix A = (aij) and a diagonal matrix

B = diag(b1, b2, b3) with diagonal elements 0 ≤ b1 < b3 < b2. We assume that the

following two conditions hold true:

(1) |a12|√
b2−b1

≥ |a13|√
b3−b1

and |a12|√
b2−b1

≥ |a23|√
b2−b3

.

(2) a11(b2 − b3) + a22(b3 − b1) + a33(b1 − b2) ≥ 0.

Then the function φA,B(z) := tr(exp(A − zB)) is completely monotone and the

BMV-conjecture holds.

Remark 1. The unusual order b1 < b3 < b2 is due to the structure of our proof,

see Section 3. Later we shall assume b1 = 0, which is possible without restriction

of generality as we have noted above under transformation property (3).

Remark 2. The two conditions in (1) are related to positivity of µA,B on the

intervals ]0, b3[ and ]b3, b2[, respectively (in this order). The second condition is a

linear functional on the diagonal values of A.

Remark 3. The proof of Theorem 1 will be given in Section 5.

Remark 4. Furthermore the BMV-conjecture holds (trivially) if two of the three

eigenvalues b1, b2, b3 agree or a12a13a23 ≥ 0. Indeed, assume that a12a13a23 ≥

0, then we can make a change of coordinates such that aij ≥ 0 (for i 6= j) by

multiplying two coordinates by −1. If aij ≥ 0 holds for i 6= j, then by Theorem 2 the

measure µA,B is a sum of non-negative measures, hence non-negative. If b2 = b3,

then B has a 2-dimensional eigenspace, where we can rotate without changing B,

consequently we can find an orthogonal matrix U such that (UTAU)23 = 0 and

UTBU = B. The trace is invariant under rotations, so

φA,B(z) = tr(exp(A− zB)) = tr(exp(UTAU − zUTBU)),
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hence we find ourselves in the first trivial case.

2. Representation of µA,B

In this section we fix d ≥ 2 and a d×d hermitian matrix A. We shall derive a se-

ries representation of the measure µA,B applying Dyson’s expansion (see for instance

[10], p.624). We define a set Cn ⊂ {1, . . . , d}n+1 of finite sequences (γ1, . . . , γn+1),

which is characterized as set of all n-tuples such that no neighbors are equal, i.e.

γi 6= γi+1 for i = 1, . . . , n, but γn+1 = γ1. Notice that C0 = {{1}, . . . , {d}} and

C1 = ∅. We denote C := ∪n≥0Cn. Elements γ ∈ Cn are called favorable paths of

length n. The map ord associates to γ ∈ Cn a monomial in the variables aij , which

is called order of the path. The quantities lij(γ) are the respective powers of aij

in the monomial ord(γ): for γ ∈ Cn we define

ord(γ) := aγ1γ2aγ2γ3 . . . aγn−1γn
aγnγ1(2.1)

=
∏
i<j

a
lij(γ)
ij .(2.2)

The characteristic char(γ) = (k1(γ), . . . , kd(γ)) of a path γ ∈ Cn is defined by

the number kj(γ) of visits in state j (with at least one jump)

kj(γ) := #{1 ≤ l ≤ n such that γl = j}.

Notice that the following formula holds for γ ∈ Cn,

(2.3)
1
2

∑
j 6=i

lij(γ) = ki(γ),

which leads in dimension 2 and 3 to one-to-one relations between char(γ) and ord(γ)

(see Lemma 1).

We shall denote by ∆n the n-simplex in Rn+1, i.e. the set of vectors (t1, . . . , tn+1) ∈

Rn+1 with
∑n+1

i=1 ti = 1 and ti ≥ 0. On the n-simplex we shall consider the nor-

malized uniform law λn, i.e. λn(∆n) = 1. On the simplex ∆n with uniform law we

define for a vector h ∈ Rn+1 the real-valued random variable Yh =
∑n+1

i=1 tihi, and

for g ∈ Rn+1 the measure Qg with

dQg

dλn
:= exp(

n+1∑
i=1

tigi)

with respect to the uniform distribution λn on ∆n. The image measure of Qg under

Yh is denoted by ηg;h, which is a measure on R with support in the convex hull of

h1, . . . , hn+1.
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Theorem 2. Let A be a hermitian matrix, B a diagonal matrix with non-negative,

mutually different entries b1, . . . , bd. The diagonal elements of A are denoted by

a1, . . . , ad. Then the measure (see Definition 1) µA,B is a signed measure decom-

posing into an absolutely continuous and singular part

(2.4) µA,B(dx) =
d∑

i=1

exp(ai)δbi(dx) + ψA,B(x)dx.

The singular part corresponds to paths γ ∈ C with n = 0. ψA,B is a piece-

wise continuous function with possible discontinuities at bi and with support in

[mini bi,max bi]. We have

(2.5) ψA,B(x) =
∑
n≥2

∑
γ∈Cn

φ(γ, x) ord(γ),

where the density φ(γ, x) is defined by

(2.6) φ(γ, x)dx :=
1
n!
ηaγ1 ,...,aγn ,aγn+1 ;bγ1 ,...,bγn ,bγn+1 (dx)

for γ ∈ Cn.

Proof. By the calculation of ([10], p. 624) we obtain in our notation that

tr(exp(A− zB))

=
∑
γ∈C

1
n!

∫
∆n

exp(−z
n+1∑
i=1

bγi + aγi)λn(dt1, . . . , dtn+1) ord(γ)

=
∑
γ∈C

∫ ∞

0

exp(−zx) 1
n!
ηaγ1 ,...,aγn ,aγn+1 ;bγ1 ,...,bγn ,bγn+1 (dx) ord(γ)

=
d∑

i=1

exp(ai)δbi(dx) + ψA,B(x)dx

holds true. Here it remains to show that the measure ηaγ1 ,...,aγn ,aγn+1 ;bγ1 ,...,bγn ,bγn+1 (dx)

has a density. This can be seen from the fact that the intersection of ∆n and of

the set {
∑n+1

i=1 bγi
ti = x} depends in a differentiable way on x. The sum for ψA,B

starts with n = 2, since there are no loops with only one jump. �

Example 1. We illustrate the stochastic approach by the case d = 2. Since a loop

γ ∈ Cn only appears if n is even and has the form 121 . . . or 212 . . . , the con-

tributions in the above series are necessarily non-negative: indeed for a hermitian

2 × 2 matrix A we must have that ord(γ) ≥ 0 for all loops γ and the measures η
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are non-negative either. Hence the density is non-negative. Again we note that the

validity of the BMV-conjecture for d = 2 is well-known (see e.g. [2]).

Remark 5. We have formulated Theorem 2 for Hermitian matrices A as this is

presently our natural framework. We note that it may as well be formulated for

general d× d matrices A.

3. The case d = 3

From now on we assume d = 3 and w.l.g. b1 = 0, we shall write ai = aii for

i = 1, 2, 3. In particular all matrices will be real from now on. We aim to calculate

the measures ηaγ1 ,...,aγn ,aγn+1 ;bγ1 ,...,bγn ,bγn+1 for γ ∈ C, n ≥ 2.

We fix 0 < b3 ≤ b2 and x ∈]0, b3[. Due to the following choice of parameters

we choose the unusual convention b3 ≤ b2. The intersection of ∆2 with the line∑3
i=1 biξi = x will be parametrized by

t 7→ ((1− x2) + t(x2 − x3), x2(1− t), x3t)

with real numbers 0 < x2 ≤ x3 < 1 and t ∈ [0, 1]. We shall denote this line segment

by Lx2,x3 and we obtain the relations

b2x2 = x,

b3x3 = x.

In particular we observe that – for given x – the numbers b2, b3 and x2, x3 determine

each other. In order to obtain x2 ≤ x3 we have been choosing b3 ≤ b2.

We apply the notions of the previous section. The characteristic char(γ) =

(k1(γ), k2(γ), k3(γ)) of a path γ ∈ C is the number of visits in the points 1, 2, 3

(where at least one jump appears, otherwise ki(γ) = 0). Clearly k1 + k2 + k3 = n.

We shall observe in the following Lemma that in dimension 3 the characteristic

already determines the number of jumps between 1 − 2, 1 − 3 and 2 − 3, denoted

by l12, l13 and l23. These quantities are defined via

a
l12(γ)
12 a

l13(γ)
13 a

l23(γ)
23 := aγ1γ2aγ2γ3 . . . aγn−1γn

aγnγ1 = ord(γ)

and the numbers lij(γ) of jumps between i and j only depend on char (γ) =

(k1(γ), k2(γ), k3(γ)) for γ ∈ Cn.
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Lemma 1. The characteristic char(γ) = (k1(γ), k2(γ), k3(γ)) of a path γ ∈ C and

the powers (l12(γ), l13(γ), l23(γ)) of the order ord(γ) are in one-to-one relation. By

abuse of notation we may therefore write lij(γ) = lij(k1(γ), k2(γ), k3(γ)).

Proof. We take formula (2.3) and solve it for lij given char(γ), we obtain

l12 = k1 + k2 − k3

l13 = k1 + k3 − k2

l23 = k2 + k3 − k1,

which yields the result. �

Next we calculate in our particular setting (recall that d = 3 and b1 = 0)

explicitly the density of ηaγ1 ,...,aγn ,aγ1 ;bγ1 ,...,bγn ,bγ1 at x.

Lemma 2. Define a probability density f on ∆2 (with respect to uniform distribu-

tion 1
2λ2 on ∆2 of total mass 1

2) given through

(3.1) f(ξ1, ξ2, ξ3) = β(k1, k2, k3)ξk1−1
1 ξk2−1

2 ξk3−1
3 exp(a1ξ1 + a2ξ2 + a3ξ3),

where

β(k1, k2, k3) =
(k1 + k2 + k3 − 1)!

(k1 − 1)!(k2 − 1)!(k3 − 1)!

for ki ≥ 1. We fix n ≥ 2, a path γ ∈ C with characteristic char(γ) = (k1, k2, k3),

n := k1 + k2 + k3, and define

prγ : ∆n → ∆2

through ξi(γ) := (prγ(t1, . . . , tn+1))i =
∑n+1

j=1
γj=i

tj for i = 1, 2, 3. Then the following

assertions hold true:

(1) Assume ki ≥ 1, for i = 1, 2, 3, then the law of the random variable prγ has

density

(3.2) (k1 + k2 + k3)
ξγ1

kγ1

f(ξ1, ξ2, ξ3) = n
ξγ1

kγ1

f(ξ1, ξ2, ξ3)

with respect to the measure 1
2λ2 on ∆2. Notice that the state appearing in

γ1 is counted twice in the density.
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(2) For ki ≥ 1, i = 1, 2, 3, and x ∈ ]0, b3[

φ(γ, x) =
1

(n− 1)!

√
1
b2b3

∫ 1

0


(1−x2)+t(x2−x3)

k1
x2(1−t)

k2
x3t
k3

(3.3)

f(1− x2) + t(x2 − x3), x2(1− t), x3t)
√
x2x3dt(3.4)

at 0 < x < b3, where the cases in {} pertain to γ1 = 1, 2, 3. Notice the

relations b2x2 = b3x3 = x.

(3) Assume k1 = 0, and x ∈]0, b3[, then φ(γ, x) = 0 for all n ≥ 2.

(4) Assume k2 = 0, and x ∈]0, b3[, then

(3.5)

φ(γ, x) =
1

(n− 1)!
(k1 + k3 − 1)!

(k1 − 1)!(k3 − 1)!
exp [a1(1− x3) + a3x3]


(1−x3)

k1x
k3−1
3

k1b3
if γ1 = 1

(1−x3)
k1−1x

k3
3

k3b3
if γ1 = 3

and n ≥ 2 is necessarily even.

(5) Assume k3 = 0, and x ∈]0, b3[, then

(3.6)

φ(γ, x) =
1

(n− 1)!
(k1 + k2 − 1)!

(k1 − 1)!(k2 − 1)!
exp [a1(1− x2) + a2x2]


(1−x2)

k1x
k2−1
2

k1b2
if γ1 = 1

(1−x2)
k2−1x

k2
2

k2b2
if γ1 = 2

and n ≥ 2 is necessarily even.

Proof. Fix , n ≥ 2 and ki ≥ 1 for i = 1, 2, 3. Fix furthermore γ ∈ Cn and let

(γ1, . . . , γn, γn+1) ∈ Cn. We first set ai = 0 for i = 1, 2, 3. By direct computation

we verify that now f indeed defines a probability measure on ∆2, hence the norming

factor is correct (the actual form of f stems from pushing forward with prγ and

simply observing that a sum of independent uniformly distributed variables in the

simplex leads to a β-distribution). In the chart π12 (projection from ∆2 on the first

two components in R3) the volume element 1
2λ2(dξ) equals dξ1dξ2 on {(ξ1, ξ2) ∈

R2, ξ1, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1}.

1
2

∫
∆2

f(ξ1, ξ2, ξ3)λ2(dξ) = β(k1, k2, k3)
∫ 1

0

∫ 1−ξ2

0

ξk1−1
1 ξk2−1

2 (1− ξ1 − ξ2)k3−1dξ1dξ2

= β(k1, k2, k3)
∫ 1

0

ξk2−1
2 (1− ξ2)k1+k3−1

∫ 1−ξ2

0

ξk1−1
1

(1− ξ2)k1−1
(1− ξ1

1− ξ2
)k3−1d(

ξ1
1− ξ2

)dξ2

= β(k1, k2, k3)
∫ 1

0

ξk2−1
2 (1− ξ2)k1+k3−1

∫ 1

0

ηk1−1(1− η)k3−1dηdξ2

= β(k1, k2, k3)
(k2 − 1)!(k1 + k3 − 1)!

(k1 + k2 + k3 − 1)!
(k1 − 1)!(k3 − 1)!

(k1 + k3 − 1)!
= 1.
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We continue now with general ai. Calculating the formula of the density φ(γ, x) at

x ∈]0, b3[ amounts to calculating the mass of prγ passed by the line Lx2,x3 through

variations in x. Fixing b2, b3 we thus fix x2, x3. The area of the quadrangle with

corners at e1 + xi(ei − e1), e1 + (xi + dxi)(ei − e1), for i = 2, 3, with respect to the

measure 1
2λ2(dξ) – under a small variation dx of x – is given by

1
2
(x3dx2 + x2dx3) =

1
b3b2

xdx

=
1
b3b2

√
b2b3x2x3dx

=
√

1
b2b3

√
x2x3dx.

Shrinking the side conv{e1+x2(e2−e1), e1+x3(e3−e1)} to an infinitesimal element

at the point ((1− x2) + t(x2 − x3), x2(1− t), x3t), for t ∈ [0, 1], on Lx2,x3 leads to

the appropriate area element √
1
b2b3

√
x2x3dxdt.

Hence we can determine φn(γ, x) through equation (2.6) and formula (3.2) evaluated

at ((1− x2) + t(x2 − x3), x2(1− t), x3t), for t ∈ [0, 1],

Pγ(b2ξ2 ◦ pn + b3ξ3 ◦ pn ∈ [x, x+ dx])

=
√

1
b2b3

√
x2x3dx

1
(n− 1)!

β(k1, k2, k3)
∫ 1

0


(1−x2)+t(x2−x3)

k1
x2(1−t)

k2
x3t
k3


f(1− x2 + t(x2 − x3), x2(1− t), x3t)dt.

For the degenerate cases (n ≥ 2, k2 = 0 or k3 = 0), we perform the same

program. We first calculate the density of the law of prγ if one of the ki is zero,

which is a density supported by one edge of the simplex ∆2. Assume k3 = 0. With

respect to the uniform distribution with total mass 1 on the edge conv{e1, e2} of

∆2 we obtain for k1, k2 ≥ 1

(k1 + k2)
ξγ1

kγ1

(k1 + k2 − 1)!
(k1 − 1)!(k2 − 1)!

ξk1−1
1 ξk2−1

2 exp(a1ξ1 + a2ξ2)

and similar for the other case. A small variation dx in x leads via dx
bi

= dxi for

i = 2, 3 to the desired results. �
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In order to write the above densities in a more compact way we shall apply the

well-known formula
1

Γ(α)

∫ 1

0

g(t)tα−1 → g(0)

as α ↓ 0 for any continuous function g : [0, 1]→ R. Hence we can apply (k − 1)! =

Γ(k) for k ≥ 0 and obtain the following proposition:

Lemma 3. For γ ∈ Cn, n ≥ 2 and x ∈]0, b3[, we obtain in the sense of Gamma-

functions

φ(γ, x) =
1

(n− 1)!

√
1
b2b3

∫ 1

0


(1−x2)+t(x2−x3)

k1
x2(1−t)

k2
x3t
k3


f(1− x2 + t(x2 − x3), x2(1− t), x3t)

√
x2x3dt,

for char(γ) = (k1, k2, k3), k1 + k2 + k3 = n, and ki ≥ 0, where the cases in {}

pertain to γ1 = 1, 2, 3.

Proof. For ki ≥ 1 there is nothing to prove. Assume now that we take the limit

k2 ↓ 0, hence γ2 = 1 or 3, since the vertex 2 cannot be starting point. We introduce

furthermore

λ := a1(x2 − x3)− a2x2 + a3x3

µ := a1(1− x2) + a2x2

as in Remark 6. Hence the limit yields

lim
α↓0

1
(n− 1)!

(k1 + k3 − 1)!
(k1 − 1)!(k3 − 1)!

√
1
b2b3

1
Γ(α)

∫ 1

0

{
(1−x2)+t(x2−x3)

k1
if γ1 = 1

x3t
k3

if γ1 = 3

}
((1− x2) + t(x2 − x3))k1−1(x2(1− t))α−1(x3t)k3−1√x2x3dt

=
exp(λ+ µ)

(n− 1)!
(k1 + k3 − 1)!

(k1 − 1)!(k3 − 1)!
1
x2

√
x2x3

b2b3


(1−x3)

k1x
k3−1
3

k1
if γ1 = 1

(1−x3)
k1−1x

k3
3

k3
if γ1 = 3

=
exp(λ+ µ)

(n− 1)!
(k1 + k3 − 1)!

(k1 − 1)!(k3 − 1)!


(1−x3)

k1x
k3−1
3

k1b3
if γ1 = 1

(1−x3)
k1−1x

k3
3

k3b3
if γ1 = 3

,

since x2b2 = x3b3 = x. Similarly for the third case. �

For the calculation of the BMV-measure µA,B we can make an essential further

simplification: it turns out that if we average over all paths γ with fixed characteris-

tic char(γ) (and varying the first entry γ1) formulas (3.3)-(3.6) appear in a simpler
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form, which only depends on the characteristic. For n ≥ 2 we define the density

χ(k1, k2, k3, x) :=
1

#{γ ∈ C : char(γ) = (k1, k2, k3)}
∑
γ∈C

char(γ)=(k1,k2,k3)

φ(γ, x),

i.e. the average of the densities φ(γ, x) where γ ranges through the paths with fixed

characteristic (k1, k2, k3).

Lemma 4. We fix a path γ ∈ C with characteristic char(γ) = (k1, k2, k3) for n ≥ 2.

Then the following assertion holds,

(3.7) χ(k1, k2, k3, x) =
√

1
b2b3

1
n!

∫ 1

0

f(1− x2 + t(x2 − x3), x2(1− t), x3t)
√
x2x3dt

in the sense of Gamma-functions.

Remark 6. The exponential term in (3.1) simplifies to eλt+µ with λ = a1(x2 −

x3) − a2x2 + a3x3 and µ = a1(1 − x2) + a2x2. Hence we obtain, for a path with

characteristic char(γ) = (k1, k2, k3), n ≥ 2, by the binomial theorem and the Beta

integral that

χ(k1, k2, k3, x) =
(1− x2)k1−1xk2

2 x
k3
3

nx

×
∑
L≥0

k1−1∑
r=0

eµλ
L

L!

(
k1 − 1
r

) (
x2 − x3

1− x2

)r (k3)L+r

(k1 − 1)!(k2 + k3 + L+ r − 1)!
,

holds true, or — by using t = 1− s — an alternate representation,

χ(k1, k2, k3, x) =
(1− x3)k1−1xk2

2 x
k3
3

nx

×
∑
L≥0

k1−1∑
r=0

(
k1 − 1
r

)
eµ+λ (−λ)L

L!

(
x3 − x2

1− x3

)r (k2)L+r

(k1 − 1)!(k2 + k3 + L+ r − 1)!
.

Here we apply the notation (k)r := Γ(r+k)
Γ(k) .

Proof of Lemma 4. Fix n ≥ 2. For the proof we apply the representations of the

densities (3.3)-(3.6), and the fact that among all paths γ ∈ Cn with characteristic

char(γ) = (k1, k2, k3) the path with γ1 = i appear with relative frequency ki

n , hence

absolutely

#{γ ∈ C : char(γ) = (k1, k2, k3)}
ki

n



A HYPER-GEOMETRIC APPROACH TO THE BMV-CONJECTURE 13

times. We calculate the density χ(k1, k2, k3, x) at x ∈]0, b3[. This leads for ki ≥ 1

to

χ(k1, k2, k3, x) =
1

#{γ ∈ C : char(γ) = (k1, k2, k3)}
∑
γ∈C

char(γ)=(k1,k2,k3)

φ(γ, x)

=
1

(n− 1)!

√
1
b2b3

∫ 1

0

(k1

n

(1− x2) + t(x2 − x3)
k1

+

+
k2

n

x2(1− t)
k2

+
k3

n

x3t

k3

)
f(1− x2 + t(x2 − x3), x2(1− t), x3t)

√
x2x3dt

=
1
n!

√
1
b2b3

∫ 1

0

f(1− x2 + t(x2 − x3), x2(1− t), x3t)
√
x2x3dt.

For k1 = 0 we conclude directly, since the density vanishes. For k2 = 0 we use

χ(k1, 0, k3, x) =
1

(n− 1)!
k1

n

(k1 + k3 − 1)!
k1!(k3 − 1)!

xk3−1
3 (1− x3)k1

b3
exp(a1(1− x3) + a3x3)+

+
1

(n− 1)!
k3

n

(k1 + k3 − 1)!
(k1 − 1)!k3!

xk3
3 (1− x3)k1−1

b3
exp(a1(1− x3) + a3x3)

=
1
n!

(k1 + k3 − 1)!
(k1 − 1)!(k3 − 1)!

xk3−1
3 (1− x3)k1−1

b3
exp(a1(1− x3) + a3x3)

and analogously for k3 = 0. �

For the case x ∈]b3, b2[ we shall apply the following parametrization

t 7→ ((1− t)y1, (1− y1) + t(y1 − y3), ty3)

for 0 ≤ y1 ≤ y3 ≤ 1 satisfying the relations

b2y1 = b2 − x

(b2 − b3)y3 = b2 − x.

This leads as in the proof of Lemma 5 to the volume element

1√
b2(b2 − b3)

√
y1y3dx

under variations of x, hence the respective densities χ satisfy the following relations:

we fix a path γ ∈ Cn with characteristic char(γ) = (k1, k2, k3), k1 + k2 + k3 = n for

n ≥ 2, hence

(3.8)

χ(k1, k2, k3, x) =

√
1

b2(b2 − b3)
1
n!

∫ 1

0

f((1− t)y1, 1− y1 + t(y1 − y3), ty3)
√
y1y3dt

in the sense of Gamma-functions.
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Remark 7. Notice that the case x ∈]b3, b2[ is deduced from the case x ∈]0, b2[

when the permutation 1←→ 2 is performed. One replaces then x2 by y1, x3 by y3,

performs the permutation for aij, and replaces b2 by b2and b3 by b2 − b3. All the

necessary relations maintain and the first case in full generality then implies the

second one.

4. Combinatorial Sums

Our next goal is to represent ψA,B(x) := ψ(x) in the following way. By Remark

7 it suffices to consider the interval ]0, b3[.

Proposition 2. Suppose that b2 > b3. Then, for x ∈]0, b3[, we have

ψ(x) =
∑
γ∈C

χ(k1, k2, k3, x) ord(γ)

=
1
x

∑
k≥1

∑
m≥0

∑
l≥0,l≡m mod 2

(1− x3)k−1eλ+µ
∑
L≥0

(−λ)L

L!

×
k−1∑
r=0

(
k − 1
r

) (
x3 − x2

1− x3

)r
(

2k+m−l
2

)
r+L

k!(k +m+ r + L− 1)!

×
∑

0≤j≤k,j≡m mod 2

(
k

j

)(m−j
2 + k − 1
k − 1

)(
k − j

l−j
2

)
2j

× (a12
√
x2)2k−l (a13

√
x3)l (a23

√
x2x3)m

The proof of Proposition 2 is just a direct combination of Remark 6, the following

Lemma 5 and the representations l12 = 2k−l, k2 = (2k−l+m)/2, and k3 = (l+m)/2

when k1 = k, l13 = l, and l23 = m are given.

However, the representation of ψ(x) in Proposition 2 has to be transformed in

a proper way to observe that it is non-negative. For this purpose we will further

introduce the hypergeometric function F (a, b; c; z) and use certain hypergeometric

identities in order to simplify the above representation.

4.1. Counting paths on the triangle.

Lemma 5. The number of paths γ in C with k1(γ) = k, l13(γ) = l, l23(γ) = m

and l ≡ m mod 2 is given through

(4.1)
2k +m

k

∑
0≤j≤k,j≡m mod 2

(
k

j

)(m−j
2 + k − 1
k − 1

)(
k − j

l−j
2

)
2j .
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If l 6≡ m mod 2, then the number of paths vanishes (if n = 0, one has to ”interpret”
2k+m

k as 3).

Proof. From [7] we get that the generating function of ord(γ) of all paths γ with

γ1 = 1 is given by

∑
γ,γ1=1

ord(γ) =

∣∣∣∣ 1 −a23

−a23 1

∣∣∣∣∣∣∣∣∣∣
1 −a12 −a13

−a12 1 −a23

−a13 −a23 1

∣∣∣∣∣∣
=

1− a23

1− 2a12a13a23 − a2
12 − a2

13 − a2
23

.

Hence, if P1(k, l,m) denotes the number of paths γ in C with k1(γ) = k, l13(γ) = l,

l23(γ) = m, and γ1 = 1 we have∑
k,l,m

P1(k, l,m)xkal
13a

m
23 =

1− a2
23

1− a2
23 − x(2a13a23 + a2

13 + 1)
.

From that we immediately get (if l ≡ m mod 2)

P1(k, l,m) =
∑

0≤j≤k,j≡m mod 2

(
k

j

)(m−j
2 + k − 1
k − 1

)(
k − j

l−j
2

)
2j .

Finally, if we denote by P (k, l,m) the total number of paths γ in C with k1(γ) = k,

l13(γ) = l, and l23(γ) = m then

1
k
P1(k, l,m) =

1
n
P (k, l,m),

where n = 2k +m = k1 + k2 + k2. This proves (4.1). �

4.2. Hypergeometric identities. The hypergeometric function F (a, b; c; z) is de-

fined (for complex |z| < 1) by

F (a, b; c; z) =
∑
n≥0

(a)n(b)n

(c)nn!
zn,

where (x)n = Γ(x+ n)/Γ(x) = x(x+ 1) · · · (x+ n− 1) denote the rising factorials.

There are lots of identities (see [1, Chapter 15]) for these kinds of functions. Some of

them will be used in the sequel. For example one has Euler’s integral representation

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− zt)−atb−1(1− t)c−b−1 dt

if |z| < 1 and <(c) > <(b) > 0. Furthermore, it was already known to Gauss that

(4.2) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

if <(c− a− b) > 0.
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We start with a lemma, where we use the identity

(4.3) F (a, b; c; z) = (1− z)−aF

(
a, c− b; c, z

z − 1

)
.

Lemma 6. Suppose that j ≡ m mod 2. Then

2j
∑

l≥j,l≡j mod 2

(
k − j

l−j
2

) (
2k +m− l

2

)
r

ClD2k−l

= (C2 +D2)kvj
r∑

ρ=0

(−1)ρ

(
r

ρ

) (
2k +m− j

2

)
r−ρ

(k − j)!
(k − j − ρ)!

(
C

2D
v

)ρ

,

where v = 2CD/(C2 +D2).

Proof. We note that the left hand side of the above equation can be represented as

2j(CD)jd2(k−j)

(
2k +m− j

2

)
r

× F
(
−(k − j),−

(
2k +m− j

2
− 1

)
;−

(
2k +m− j

2
+ r − 1

)
;−C

2

D2

)
and the right hand side as

(C2 +D2)k−j(2CD)j

(
2k +m− j

2

)
r

× F
(
−(k − j),−r;−

(
2k +m− j

2
+ r − 1

)
;

C2

C2 +D2

)
.

By using (4.3) with

a = −(k − j), b = −
(

2k +m− j
2

− 1
)
, c = −

(
2k +m− j

2
+ r − 1

)
and z = −C2/D2 we directly get a proof of the lemma. �

4.3. Further Hypergeometric Identities. In this section we present a proof

of rather strange identities that seem to be new in the context of hypergeometric

series.

We set

Ar(k; v, ξ) :=
∑
m≥0

k∑
j=0

(
k

j

)2k+r−1
(

m−j+2
2

)
k+r−1

(m+ 1)k+2r−1
vj ξ

m

m!
,

where r a is non-negative integer.
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Lemma 7. We have

A0(k; v, ξ) = (1 + v)keξ

+
∫ 1

0

∑
`≥0

k!
`!(`+ 1)!(k − 2`− 2)!

(1 + sv)k−2`−2

(
1− v2

2

)`+1 (
1− s2

2

)`

esξ ds

= (1 + v)keξ

+
(
k

2

)
(1− v2)

∫ 1

0

(1 + sv)k−2F

(
−k − 2

2
,−k − 3

2
; 2;

(1− v2)(1− s2)
(1 + sv)2

)
esξ ds

and

Ar(k; v, ξ)

=
∫ 1

0

∑
`≥0

k!
`!(`+ r − 1)!(k − 2`)!

(1 + sv)k−2`

(
1− v2

2

)` (
1− s2

2

)`+r−1

esξ ds

=
∫ 1

0

(1 + sv)k

(r − 1)!

(
1− s2

2

)r−1

F

(
−k

2
,−k − 1

2
; r;

(1− v2)(1− s2)
(1 + sv)2

)
esξ ds,

where r a is positive integer.

Remark 8. Note that the right hand sides of these identities are non-negative if

|v| ≤ 1. Hence, we have Ar(k; v, ξ) ≥ 0.

In fact, we are more interested in sums of the form

Ãr(k; v, ξ) =
1
2

(Ar(k; v, ξ) +Ar(k;−v,−ξ))

=
∑
m≥0

∑
0≤j≤k, j≡m mod 2

(
k

j

)2k+r−1
(

m−j+2
2

)
k+r−1

(m+ 1)k+2r−1
vj ξ

m

m!
.

Since Ar(k; v, ξ) ≥ 0 and Ar(k;−v,−ξ) ≥ 0(for |v| ≤ 1) we also have Ãr(k; v, ξ) ≥ 0

and the representations

Ã0(k; v, ξ) =
(1 + v)k

2
eξ +

(1− v)k

2
e−ξ

+
(
k

2

)
1− v2

2

∫ 1

−1

(1 + sv)k−2F

(
−k − 2

2
,−k − 3

2
; 2;

(1− v2)(1− s2)
(1 + sv)2

)
esξ ds

and

Ãr(k; v, ξ)

=
1
2

∫ 1

−1

(1 + sv)k

(r − 1)!

(
1− s2

2

)r−1

F

(
−k

2
,−k − 1

2
; r;

(1− v2)(1− s2)
(1 + sv)2

)
esξ ds,

where r a is positive integer.
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Proof. 1 We prove first the case of positive r. Both sides of the identity are power

series in v and ξ. Thus, it is sufficient to compare coefficients. The coefficient of

vjξm/m! of the right hand side is given by

[vj ]
∫ 1

0

∑
`≥0

k!
`!(`+ r − 1)!(k − 2`)!

(1 + sv)k−2`

(
1− v2

2

)` (
1− s2

2

)`+r−1

sm ds

=
∫ 1

0

∑
`≥0

k!
`!(`+ r − 1)!(k − 2`)!

×
∑
i≥0

(−1)i

(
`

i

)
1
2`

(
k − 2`
j − 2i

)
sj−2i

(
1− s2

2

)`+r−1

sm ds

By applying the substitution s =
√
t, integrating the corresponding Beta integrals

and rewriting the sum over ` in hypergeometric notation we thus get∫ 1

0

∑
`≥0

k!
`!(`+ r − 1)!(k − 2`)!

×
∑
i≥0

(−1)i

(
`

i

)
1

22i+r

(
k − 2`
j − 2i

)
tm/2+j/2−i−1/2(1− t)`+r−1 dt

=
∑
`≥0

k!
`!(`+ r − 1)!(k − 2`)!

×
∑
i≥0

(−1)i

(
`

i

)
1

22i+r

(
k − 2`
j − 2i

)
Γ(m/2 + j/2− i+ 1/2)Γ(`+ r)
Γ(`+ r +m/2 + j/2− i+ 1/2)

=
∑
i≥0

(−1)i(1 + i)k−i

22i+r(j − 2i)!(k − j)!( 1
2 + i+ j

2 + m
2 )i+r

× F
(
j

2
− k

2
,
1
2

+
j

2
− k

2
;
1
2

+
j

2
+
m

2
+ r; 1

)
.

Next we use formula (4.2) and obtain (after rewriting the remaining sum in hyper-

geometric notation)(
k

j

)
Γ

(
1
2 + j

2 + m
2

)
Γ

(
− j

2 + k + m
2 + r

)
2rΓ

(
k
2 + m

2 + r
)
Γ

(
1
2 + k

2 + m
2 + r

)F (
− j

2
,
1
2
− j

2
;
1
2
− j

2
− m

2
; 1

)
.

In order to avoid difficulties with zero-cancellations we interpret this sum as a limit,

use again formula (4.2) and obtain (after some algebra)

lim
ε→0

(
k

j

)
Γ

(
1
2 + j

2 + m
2

)
Γ

(
− j

2 + k + m
2 + r

)
2rΓ

(
k
2 + m

2 + r
)
Γ

(
1
2 + k

2 + m
2 + r

)F (
− j

2
,
1
2
− j

2
;
1
2
− j

2
− m

2
+ ε; 1

)
= lim

ε→0

(
k

j

)
2k+r+2ε−2Γ

(
− j

2 + k + r + m
2

)
Γ (m− 2ε+ 1) sin(π(2ε−m))

(k +m+ 2r)!Γ
(
1− j

2 + m
2 − ε

)
sin

(
π

(
1
2 −

j
2 −

m
2 + ε

))
sin

(
π

(
j
2 −

m
2 + ε

)) .
1This nice proof was pointed out to us by Christian Krattenthaler and is considerably easier

than our first one.
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Now note that the limit of the sin-terms is always 2. Hence, we finally obtain

2k+r−1
(

m−j+2
2

)
k+r−1

(m+ 1)k+2r−1

as proposed.

The proof for the case r = 0 runs along similar lines. The only difference is the

singular term
(
k
j

)
in front. However, after integrating the Beta integrals we can

rewrite the corresponding sum as(
k

j

)
+

∑
`≥0

k!
`!(`+ 1)!(k − 2`− 2)!

×
∑
i≥0

(−1)i

(
`+ 1
k

)
1

22`+2

(
k − 2`− 2
j − 2i

)
Γ(m/2 + j/2− i+ 1/2)Γ(`+ 1)

Γ(`+m/2 + j/2− i+ 3/2)

=
∑

`≥−1

k!
`!(`+ 1)!(k − 2`− 2)!

×
∑
i≥0

(−1)i

(
`+ 1
k

)
1

22`+2

(
k − 2`− 2
j − 2i

)
Γ(m/2 + j/2− i+ 1/2)Γ(`+ 1)

Γ(`+m/2 + j/2− i+ 3/2)

=
∑
i≥0

(−1)i(1 + j − 2i)k−j+2i

22i(k − j)!i!( 1
2 − i+

j
2 + m

2 )i

F

(
j

2
− k

2
,
1
2

+
j

2
− k

2
;
1
2

+
j

2
+
m

2
; 1

)
and proceed as above. �

Lemma 8. Set

(4.4)

T (k, r, ρ; v, ξ) :=
∑
m≥0

k∑
j=0

(
k

j

)2k+r−ρ−1
(

m−j+2
2

)
k+r−ρ−1

(m+ 1)k+r−1

(k − j)!
(k − j − ρ)!

vj ξ
m

m!

and

(4.5) S(k, r, ρ; v, ξ) :=
r−ρ∑
τ=0

(−1)r−ρ−τ

(
r − ρ
τ

)
T (k, r, ρ+ τ ; v, ξ).

Then

(4.6) T (k, r, ρ; v, ξ) =
r−ρ∑
τ=0

(
r − ρ
τ

)
S(k, r, ρ+ τ ; v, ξ)

and

(4.7) S(k, r, ρ; v, ξ) =
k!

(k − ρ)!
∑
a≥0

(
r − ρ
2a

)
(2a)!
2aa!

Aa+ρ(k − ρ; v, ξ).

In particular we have S(k, r, ρ; v, ξ) ≥ 0 and T (k, r, ρ; v, ξ) ≥ 0 if |v| ≤ 1.
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Remark 9. If we set T̃ (k, r, ρ; v, ξ) = 1
2 (T (k, r, ρ; v, ξ) + T (k, r, ρ;−v,−ξ)) and

S̃(k, r, ρ; v, ξ) = 1
2 (S(k, r, ρ; v, ξ) + S(k, r, ρ;−v,−ξ)) then we have (of course) cor-

responding representations in terms of Ãr(k; v, ξ) and also S̃(k, r, ρ; v, ξ) ≥ 0 and

T̃ (k, r, ρ; v, ξ) ≥ 0 if |v| ≤ 1.

Proof. First note that (4.5) and (4.6) are equivalent. Thus, it remains to prove

(4.7) or equivalently

T (k, r, ρ; v, ξ)

=
r−ρ∑
τ=0

(
r − ρ
τ

)
k!

(k − ρ− τ)!
∑
a≥0

(
r − ρ− τ

2a

)
(2a)!
2aa!

Aa+ρ+τ (k − ρ− τ ; v, ξ).

By expanding both sides with respect to vjξm/m! this identity is equivalent to

(
k

j

)2k+r−ρ−1
(

m−j+2
2

)
k+r−ρ−1

(m+ 1)k+r−1

(k − j)!
(k − j − ρ)!

=
∑

τ,a≥0

(
r − ρ
τ

)
k!

(k − ρ− τ)!

(
r − ρ− τ

2a

)
(2a)!
2aa!

(
k − ρ− τ

j

)2k+a−1
(

m−j+2
2

)
k+a−1

(m+ 1)k+2a+ρ+τ−1

By rewriting the sum over τ of the right hand side in hypergeometric notation and

by using (4.2) we get

∑
a≥0

(r − ρ)!k!2k−1
(

m−j+2
2

)
k+a−1

j!(k − ρ− j)!(r − ρ− 2a)!a!(m+ 1)k+2a+ρ−1

× F (−(r − ρ− 2a),−(k − ρ− j);m+ k + 2a+ ρ; 1)

=
∑
a≥0

(r − ρ)!k!2k−1
(

m−j+2
2

)
k+a−1

j!(k − ρ− j)!(r − ρ− 2a)!a!(m+ 1)k+2a+ρ−1

× Γ(m+ k + 2a+ ρ)Γ(m+ 2k + r − ρ− j)
Γ(m+ k + r)Γ(m+ 2k + 2a− j)

Next this sum can be also written in hypergeometric notation. Further, a second

use of (4.2) and some simplifications (using the duplication formula of the Gamma
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functions) yield

k!2k−1
(

m−j+2
2

)
k−1

m!Γ(m+ 2k + r − ρ− j)
j!(k − ρ− j)!Γ(m+ k + r)Γ(m+ 2k − j)

× F
(
−r − ρ

2
,−r − ρ− 1

2
;
m+ 2k − j + 1

2
; 1

)
=

(
k

j

) (k − j)!2k−1
(

m−j+2
2

)
k−1

Γ(m+ 2k + r − ρ− j)
(k − ρ− j)!(m+ 1)k+r−1Γ(m+ 2k − j)

×
Γ

(
k + m

2 −
j
2 + 1

2

)
Γ

(
k + m

2 −
j
2 + r − ρ− 1

)
Γ

(
k + m

2 −
j
2 + r

2 −
ρ
2 −

1
2

)
Γ

(
k + m

2 −
j
2 + r

2 −
ρ
2 − 1

)
=

(
k

j

)2k+r−ρ−1
(

m−j+2
2

)
k+r−ρ−1

(m+ 1)k+r−1

(k − j)!
(k − j − ρ)!

as proposed. �

5. Proof of Theorem 1

First we use the results of the previous section to obtain another representation

for ψ(x).

Lemma 9. Suppose that b2 > b3 and set

A12 = a12
√
x2 = a12

√
x

b2
,

A13 = a13
√
x3 = a13

√
x

b3
,

v =
2A12A13

A2
12 +A2

13

,

ξ = a23
√
x2x3,

w1 =
(1− x3)

2
(A2

12 +A2
13),

w2 =
x3 − x2

2(1− x3)

ω = 1− A13

A12
v =

A2
12 −A2

13

A2
12 +A2

13

.

Then for x ∈]0, b3[ we have

ψ(x) =
2eλ+µ

x(1− x3)

∑
k≥1

wk
1

k!(k − 1)!

k−1∑
r=0

(
k − 1
r

)
wr

2

∑
L≥0

(−λ)L

L!

×
r+L∑
ρ=0

(
r + L

ρ

)
S̃(k, r + L, ρ; v, ξ)ωρ.
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Proof. With help of Proposition 2 and Lemma 6 we get

ψ(x) =
2eλ+µ

x(1− x3)

∑
k≥1

wk
1

k!

k−1∑
r=0

(
k − 1
r

)
wr

2

∑
L≥0

(−λ)L

L!

×
∑
m≥0

∑
0≤j≤k,j≡m mod 2

(
k

j

)(m−j
2 + k − 1
k − 1

)

×
r+L∑
ρ=0

(−1)ρ

(
r + L

ρ

)
2k+r+L−ρ−1

(
2k +m− j

2

)
r+L−ρ

(k − j)!
(k − j − ρ)!

× vj

(
A13

A12
v

)ρ
ξm

(m+ k + r − 1)!

=
2eλ+µ

x(1− x3)

∑
k≥1

wk
1

k!(k − 1)!

k−1∑
r=0

(
k − 1
r

)
wr

2

∑
L≥0

(−λ)L

L!

×
r+L∑
ρ=0

(−1)ρ

(
r + L

ρ

) (
A13

A12
v

)ρ

×
∑
m≥0

∑
0≤j≤k,j≡m mod 2

(
k

j

)2k+r+L−ρ−1
(

m−j+2
2

)
k+r+L−ρ−1

(m+ 1)k+r+L−1

(k − j)!
(k − j − ρ)!

vj ξ
m

m!

=
2eλ+µ

x(1− x3)

∑
k≥1

wk
1

k!(k − 1)!

k−1∑
r=0

(
k − 1
r

)
wr

2

∑
L≥0

(−λ)L

L!

×
r+L∑
ρ=0

(−1)ρ

(
r + L

ρ

) (
A13

A12
v

)ρ

T̃ (k, r + L, ρ; v, ξ)

Finally by using (4.6) we directly derive the proposed representation. �

Note that |v| ≤ 1. Thus this lemma shows that ψ(x) ≥ 0 if ω ≥ 0 and λ ≤ 0 or

equivalently |A12| ≥ |A13| and a1(b2 − b3) + a2b3 − a3b2 ≥ 0. This is satisfied by

assumptions of Theorem 1. Hence we have proved Theorem 1 for x ∈]0, b3[. The

case x ∈]b3, b2[ is done by exchanging indices 1 and 2 and b3 by b2 − b3 (compare

with Remark 7).

6. Appendix: the first conjecture

We provide a counter-example for the original version of the BMV-conjecture as

stated in [2]. We work with the notations of Section 3. Given the matrices

A =

 0 ε2

2 ε
ε2

2 0 −ε
ε −ε 0





A HYPER-GEOMETRIC APPROACH TO THE BMV-CONJECTURE 23

and

B =

 0 0 0
0 1 0
0 0 0

 ,

we define the signed measure µA,B
1 (dx) as inverse Laplace transform of the function

z 7→ 〈e1, exp(A− zB)e1〉 .

In the notations of Section 3 we have b1 = b3 = 0 and b2 = 1. We calculate the

sign of the absolutely continuous part of µA,B
1 asymptotically in ε and show that

we obtain a negative sign for small ε and x ∈]0, 1[. We apply the formulas in the

sense of Remark 7. We notice that y1 = y3 = 1 − x for 0 ≤ x ≤ 1, which leads to

the formula

φ(k1, k2, k3, x) =
1− x

(n− 1)!

∫ 1

0

f((1− t)(1− x), x, t(1− x)) (1− t)(1− x)
k1

dt,

for trajectories γ and γ1 = 1, hence by following the lines of the proof of Theorem

2 we obtain

ψ1(x) =
∑
γ∈C

n≥2,γ1=1

φ(k1, k2, k3, x)al12
12 a

l13
13 a

l23
23 .

We only have to calculate the following cases up to order ε4, where # denotes

the number of possible paths γ with given lij , where we apply Lemma 5, hence

k1 = l12+l13
2 ≥ 1 and 2l12 + l13 + l23 ≤ 4. We leave away paths γ with k2 = 0, since

those cannot contribute to a density for x ∈]0, 1[. This leads to the following table,

l12 l13 l23 #
2 0 0 P1(1, 0, 0) = 1
1 1 1 P1(1, 1, 1) = 2
0 2 2 P1(1, 2, 2) = 1

associated to the paths 121; 1321, 1231; 13231 (see Lemma 5, 3. in the appropriate

translation as in Remark 7). Hence we obtain up to order ε4 the following density

for the absolutely continuous part

ψA,B
1 (x) = (1− x)(ε

2

2
)2 − 2(1− x)2ε2 ε

2

2
1
2

+ (1− x)3ε4 1
6

+O(ε5),

consequently

12ψA,B
1 (x)
ε4

= 3(1− x)− 6(1− x)2 + 2(1− x)3 +O(ε)

where we obtain a negative sign if x is near 0.
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