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Abstract. We present recently developed geometric methods for the anal-

ysis of finite dimensional term structure models of the interest rates. This
includes an extension of the Frobenius theorem for Fréchet spaces in particu-

lar. This approach puts new light on many of the classical models, such as the

Hull-White extended Vasicek and Cox-Ingersoll-Ross short rate models. The
notion of a finite dimensional realization (FDR) is central for this analysis:

we motivate it, classify all generic FDRs and provide some new results for the
corresponding factor processes, such as hypoellipticity of its generators and
the existence of smooth densities. Furthermore we include finite dimensional

external factors, thus admitting a stochastic volatility structure.

1. Introduction

¿From the point of view of mathematics the present article treats a stochastic
invariance problem which has been motivated by mathematical finance. In general
we consider a stochastic equation

dht = (Aht + Θ(ht)) dt+
d∑

j=1

Σj(ht) dW
j
t

h0 ∈ U

(1.1)

on some convex open subset U in a separable Hilbert space H, in the spirit of
Da Prato and Zabczyk [6]. The operator A : D(A) ⊂ H → H generates a strongly
continuous semigroup (Tt)t≥0 on H. Here d ∈ N, and W = (W 1, . . . ,W d) denotes
a standard d-dimensional Brownian motion defined on a fixed reference probability
space (Ω,F ,P) (see [6]). The mappings

Θ : U ⊂ H → H and Σ = (Σ1, . . . ,Σd) : U ⊂ H → Hd

satisfy appropriate regularity conditions (e.g. are smooth, which means C∞) on U .
We distinguish, in decreasing order of generality, between (local) mild, weak and
strong solutions of equation (1.1). The reader is referred to [6] or [9] for the precise
definitions. We provide necessary and sufficient conditions for the existence of
finite dimensional invariant manifolds for (1.1). Since A is an unbounded operator
in general, this requires an extension of the classical Frobenius theorem for Fréchet
spaces.
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¿From the point of view of financial mathematics we provide the characterization
of all finite dimensional Heath–Jarrow–Morton (henceforth HJM) [17] interest rate
models which admit arbitrary initial yield curves. This is an extension and com-
pletion of a series of results obtained by Björk et al. [1, 2, 4, 3] and [9, 11, 12, 35].
It is well known that affine term structure models with time-dependent coefficients
(such as the Hull–White extension of the Vasicek short rate model [21]) perfectly
fit any initial term structure. Under reasonable assumptions on the volatility struc-
ture, we find that such affine models are in fact the only finite-factor term structure
models with the aforementioned property. We also show that there is usually an
invariant singular set of initial yield curves where the affine term structure model
becomes time-homogeneous. This is again well known for the classical Vasicek [34]
and Cox–Ingersoll–Ross (CIR) [5] short rate models, where the set of consistent
inital curves is given explicitely by the model parameters.

Below we shall say a bit more about the motivation for finite dimensional re-
alizations and give the general setup for the corresponding stochastic invariance
problem.

1.1. Finite Dimensional Term Structure Models. An HJM model for the
forward curve, x 7→ rt(x), is determined by the volatility structure and the market
price of risk (see [17]). Here rt(x) denotes the forward rate at time t for date
t + x (this is the Musiela [28] parameterization). That is, the price at time t of a
zero-coupon bond maturing at date T ≥ t is given by

P (t, T ) = exp

(
−
∫ T−t

0

rt(x) dx

)
.

It is shown in [9] that essentially every (classical) HJM model can be realized as a
stochastic equation

drt =
(
d

dx
rt + αHJM (rt)

)
dt+

d∑
j=1

σj(rt) dW
j
t

r0 ∈ U

(1.2)

on some open convex subset U in a Hilbert space H of forward curves (U is for
example the halfspace {r ∈ H | r(0) > 0}). We will enlarge the model (1.2) by
adding an external m-dimensional factor process (m ∈ N), admitting a stochastic
volatility structure. That is, we let b, c1, . . . , cd : U × Rm → Rm be smooth vector
fields and 

drt =
(
d

dx
rt + αHJM (rt, Yt)

)
dt+

d∑
j=1

σj(rt, Yt) dW
j
t

dYt = b(rt, Yt)dt+
d∑

j=1

cj(rt, Yt) dW
j
t

r0 ∈ U , Y0 ∈ Rm.

(1.3)

This extension has recently been introduced and studied by Björk et al. [3] (there
however Y was Markov, that is, b and cj were only Y -dependent).

Equation (1.3) is obviously of the form (1.1) with H = H × Rm and U replaced
by U ×Rm (the precise setup is given below in Subsection 1.3). The process Y can
stand for an abstract latent factor but also for an observable quantity such as (the
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logarithm of) an index or stock price, or a combination of such. In any case we
require that (1.3) is an arbitrage-free model and that P already is the risk neutral
measure. This means that the HJM drift condition holds

αHJM (r, Y, x) =
d∑

j=1

σj(r, Y, x)
∫ x

0

σj(r, Y, η) dη,

and if Y i is the log-price process of a tradable asset for some i then necessarily
(since the return of S has to the risk-free rate)

bi(r, Y ) = r(0)− 1
2

d∑
j=1

c2ji(r, Y ). (1.4)

In general, the solution process r of (1.3) cannot be realized by a finite dimen-
sional Markov state process. An HJM is said to admit a finite dimensional re-
alization (FDR) at the initial forward curve r0 if, roughly speaking, there exists
an n-dimensional diffusion state process Z and a map φ : Rn → H such that
rt = φ(Zt). Notice that n, Z and φ may depend on r0 and Y0. We will investi-
gate those HJM models that admit a generic FDR, that is, an FDR of the same
dimension at every initial state (r0, Y0) in an open set of H.

Practitioners and academics alike have a vital interest in finite-factor term struc-
ture models, and the distinction of time-homogenous and inhomogeneous ones. Ac-
cording to [18] there are two groups of practitioners in the fixed income market.

Fund managers trade on the yield curve (buy and sell swaps at different matu-
rities), trying to make money out of it. They do not believe that all the interest
rate market quotes are “correct”. Instead, they in general use a time-homogeneous
two- or three-factor model, estimate the model parameters from long time series
data, and then update the state variables (factors) each day to fit the current term
structure. Hence the term structure is considered as a derivative based on more
fundamental state variables (factors), such as in an equilibrium model. The dis-
crepancies between the fitted term structure and the market prices are perceived
as potential trading opportunities. For example, if the fitted curve is above the
two year and ten year swap rates, but is below the five year swap rate. Then one
does a butterfly trade: receiving the five year rate (as one thinks it is high) and
delivering the two year and ten year rates (as one thinks they are low compared to
the five year rate). After this trade, one usually needs to wait for six months or
longer for the rates to “reverse” (as predicted by the model) so that one can make
money. Since this is a long term game, the model parameters must not change
every day. Parameters have to be constant. If a parameter is time-varying, it is a
factor and one needs to specify its dynamics so that one can make corresponding
adjustments for the hedging. A state variable (factor) is time-varying, but since
one has a stochastic model for its evolution, one can check on a daily basis whether
its realized value lies within a statistical confidence interval or not.

Interest rate option traders, on the other hand, often take the quoted yield curve
data, with minimal or no smoothing, as model input. To fit the observed yield curve
perfectly, they allow some of the model parameters to be time-inhomogeneous.
They intend to hedge away instantly all the risks on the yield curve and only
worry about the risk in the implied volatility structure. Yet, low-dimensionality of
the model is desirable, since the number of factors usually equals the number of
instruments one needs to hedge in the model. And the daily adjustment of a large
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number of instruments becomes infeasible in practice due to transaction costs. Of
course, the model factors have to represent tradable values. This can usually be
achieved by a coordinate transformation.

Given the above considerations there are three main points which speak for a
deeper analysis of finite dimensional structures.

Consistency: A curve-fitting procedure should be consistent with an arbi-
trage-free stochastic model, that is, the model output curves should be of
the curve-fitting type. Only such models can give a reasonable framework
for the statistical comparison of the curve-fitting data over time.

Model calibration: Finite dimensional models with identifiable factors are
inevitable for model calibration. Hence, given an arbitrary initial curve, the
possible finite factor models evolving from this curve should be completely
understood.

Analytical and computational tractability: For the purpose of calculat-
ing derivatives prices, the stochastic characteristics of the factor processes
have to be known.

1.2. Stochastic Invariance Problems . . . We go back to the general setup (1.1)
and recall

Definition 1.1. A subset K of U is called locally invariant for (1.1) if, for every
initial point h0 ∈ K, there exists a continuous local weak solution h to (1.1) with
strictly positive lifetime τ > 0 such that ht∧τ ∈ K, for all t ≥ 0.

We are going to address the problem: given A, Θ and Σ, do there exist locally
invariant submanifolds with boundary M of U for arbitrary initial values h0 ∈ U?
For the notion of a (smooth) finite dimensional submanifold with boundary M of
a Hilbert space (Fréchet space) and its tangent spaces ThM, h ∈ M, we refer to
[14] or to Section 3. Submanifolds with boundary appear naturally since the vector
field Ξ in (1.5) below only generates a semiflow (see the Frobenius Theorem 3.14
below), so one direction is distinguished.

Finite dimensional locally invariant submanifolds (without boundary) have been
characterized in [11], see also [9, 12]. These results carry over to submanifolds with
boundary. For example [9, Theorem 6.2.3]:

Theorem 1.2. Suppose that Θ is locally Lipschitz continuous and locally bounded,
and Σ is C1. Let M be an n-dimensional submanifold with boundary of U . Then
the following conditions are equivalent:

i) M is locally invariant for (1.1)
ii) M⊂ D(A) and

Ξ(h) := Ah+ Θ(h)− 1
2

d∑
j=1

DΣj(h)Σj(h) ∈ ThM (1.5)

Σj(h) ∈ ThM, j = 1, . . . , d, (1.6)

for all h ∈M, where Ξ(h) is inward pointing and the Σj(h) are parallel to
the boundary for h ∈ ∂M.

The proof is essentially the same as for [9, Theorem 6.2.3]. Indeed, the only
geometric difference is that now the local coordinates of M vary in open sets of the



ON GEOMETRY OF THE TERM STRUCTURE 5

half-space

Rn
≥0 := {z ∈ Rn | zn ≥ 0}.

The coordinate process of h is thus a diffusion

dZt = β(Zt) dt+
d∑

j=1

ρj(Zt) dW
j
t

in some open V ⊂ Rn
≥0 (see [9, p. 109]). A stochastic viability result in [26] yields

that β(z) ∈ Rn
≥0 (inward pointing) and ρj,n(z) = 0 (parallel) for all z ∈ ∂V .

Whence the last statement in Theorem 1.2.
An FDR is essentially equivalent to a finite dimensional invariant submanifold

with boundary in the following sense. If φ : Rn → U is an FDR for (1.1) at
some h0 ∈ U , then there exists an open neighborhood V0 of φ−1(h0) in Rn

≥0 such
that φ(V0) is an n-dimensional submanifold with boundary of U , which is locally
invariant for (1.1). The converse is given by the following result, which is a straight-
forward modification of [9, Theorem 6.4.1].

Theorem 1.3. Let Θ, Σ and M be as in Theorem 1.2. Suppose M is locally
invariant for (1.1). Then, for any h0 ∈M, there exists an FDR φ : V ⊂ Rn

≥0 → H
for (1.1) at h0 such that φ(V ) = V ∩M, where V is an open set in H.

Hence the stochastic (local) invariance problem for (1.1) is equivalent to the
deterministic invariance problems related to the vector fields Ξ,Σ1, . . . ,Σd.

Theorem 1.2 provides conditions for the local invariance of a given submanifold
with boundary M. However, it does not say anything about the existence of an
FDR for (1.1). Conclusions on the existence can be drawn by Frobenius type the-
orems, which allow to answer the question whether there is a submanifold tangent
to a given set of vector fields in a space. We have to face the problem that the
vector field Ξ is neither continuous nor everywhere defined on H. This fundamen-
tal problem has to be taken fully into account (compare [4]) to solve this problem
completely. This means that we have to find a better space of definition for the
geometric problem without loosing solutions of it. The Fréchet space

D(A∞) := ∩n∈ND(An)

fulfills these requirements. It is explained in Section 2 why all FDRs can be found
in D(A∞) and in Section 3 why geometric questions can be solved thereon.

1.3. . . . Applied to HJM Models. In view of the preceding subsection it is now
clear how we tackle the issue of finite dimensional HJM interest rate models.

The rigorous setup for (1.3), extending [9], is given by the following structure.
The Hilbert space H is axiomatically characterized by the properties

(H0): H = H × Rm, where m is the dimension of the external factor influ-
encing the interest rate market.

(H1): H is a separable Hilbert space continuously embedded in C(R≥0; R)
(that is, for every x ∈ R≥0, the pointwise evaluation evx : r 7→ r(x) is a
continuous linear functional on H), and 1 ∈ H (the constant function 1).

(H2): The family of right-shifts Str = r(t+ ·), for t ∈ R≥0, forms a strongly
continuous semigroup S on H with generator denoted by d/dx.
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(H3): There exists a closed subspace H0 of H such that

M(r1, r2)(x) := r1(x)
∫ x

0

r2(η) dη,

defines a continuous bilinear mapping M : H0 ×H0 → H.
Equation (1.3) is obviously of the form (1.1) with coefficients

A =
(

d
dx 0
0 0

)
, Θ(r, Y ) =

(
αHJM (r, Y )
b(r, Y )

)
, Σj(r, Y ) =

(
σj(r, Y )
cj(r, Y )

)
, (1.7)

for j = 1, . . . , d, on the separable Hilbert space H. Assuming (H0)–(H3) we see
that A generates a strongly continuous semigroup t 7→ (Str, Y ) on H, and D(A) =
D(d/dx)×Rm. If we further assume that the volatility coefficients Σj map H into
H0 := H0 × Rm then the HJM drift coefficient

Θ =
(
αHJM

b

)
:=
(∑d

j=1M(σj , σj)
b

)
: H → H (1.8)

is a well-defined map. Hence any HJM model is uniquely determined by the speci-
fication of its volatility structure Σ = (Σ1, . . . ,Σd) and the vector field b.

As an illustration we shall always have the following example in mind (see [9,
Section 5]).

Example 1.4. Let w : R≥0 → [1,∞) be a non-decreasing C1-function such that
w−1/3 ∈ L1(R≥0). We may think of w(x) = eαx or w(x) = (1 + x)α, for α > 0 or
α > 3, respectively. The space H consisting of absolutely continuous functions h
on R≥0 and equipped with the norm

‖h‖2w := |h(0)|2 +
∫

R≥0

|∂xh(x)|2 w(x) dx

is a Hilbert space satisfying (H1)–(H2). Property (H3) is satisfied for H0 := {h ∈
H | limx→∞ h(x) = 0}.

It is easy to see that D(d/dx) ⊂ {h ∈ H∩C1(R≥0; R) | ∂xh ∈ H} and (d/dx)h =
∂xh (differentiation). Without much loss of generality we shall in fact assume

(H4): D(d/dx) = {h ∈ H ∩ C1(R≥0; R) | ∂xh ∈ H}.
Also (H4) is satisfied for the spaces H from Example 1.4.

Denote by A0 : D(A0) ⊂ H0 → H0 the restriction of A to H0. That is, D(A0) =
{h ∈ D(A) ∩H0 | Ah ∈ H0}. This induces a Fréchet subspace

D(A∞0 ) := ∩n∈ND(An
0 )

of H0. As a consequence of (H0)-(H4) we have that

(r1, Y1, r2, Y2) 7→
(
M(r1, r2)

0

)
: D(A∞0 )×D(A∞0 ) → D(A∞)

is a continuous bilinear mapping.
The preceding specifications for Σ are still too general for concrete implementa-

tions onD(A∞). We actually have the idea of Σ(r, Y ) being sensitive with respect to
Y and functionals of the forward curve r. That is, Σj(r, Y ) = φj(`1(r), . . . , `p(r), Y ),
for some p ≥ 1, where φj : Rp+m → D(A∞0 ) is a smooth map and `1, . . . , `p denote
continuous linear functionals on H. We may think of `i(r) = (1/xi)

∫ xi

0
r(η) dη
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(benchmark yields), or `i(r) = r(xi) (benchmark forward rates). This idea is (gen-
eralized and) expressed in terms of the following regularity and non-degeneracy
assumptions:

(A1): We have

Σi(r, Y ) = φi(`(r), Y ), 1 ≤ i ≤ d,

where ` ∈ L(H,Rp), for some p ∈ N, and φ1, . . . , φd : Rp+m → D(A∞0 ) are
smooth and pointwise linearly independent maps. Moreover

b(r, Y ) = φ0(`(r), Y ),

where φ0 : Rp+m → Rm is smooth (in view of (1.4) we usually have to
assume `1(r) = r(0)). Hence

Σj : H → D(A∞0 ) and Θ : H → D(A∞)

are Banach maps (see Section 3).
(A2): For every q ≥ 0, the map

(`, ` ◦ (d/dx), . . . , ` ◦ (d/dx)q) : D ((d/dx)∞) → Rp(q+1)

is open.
(A3): A is unbounded; that is, D(A) is a strict subset of H. Equivalently,
A : D(A∞) → D(A∞) is not a Banach map (see Section 3).

Anticipating the results of Section 2 the problem of finding FDRs for (1.3) is
now reduced to the following question (recall the definitions (1.7)): do there exist
at most n-dimensional submanifolds with boundary M of D(A∞) ∩ U such that
(1.5)– (1.6) hold for all h ∈ M, where Ξ(h) is inward pointing and the Σj(h) are
parallel to the boundary for h ∈ ∂M?

Remark 1.5. Replacing the generator d
dx by other generators in (H1)–(H4) is

in principle no problem and one can easily formulate the appropriately adapted
conditions (A1)–(A3). Then the conclusions of Section 4 hold, too. This is partly
worked out in [14].

2. Finite dimensional Realizations

Identifying finite dimensional realizations with submanifolds with boundary M
of the respective Hilbert space H has lead to deterministic consistency problems
as outlined in Thereom 1.2. To solve these consistency problems we are going
to apply Frobenius type Theorems. We are therefore forced to look for a better
adapted space of definition for the vector fields in question, which – in our setting
– will be given by the Fréchet space D(A∞).

Nevertheless we have to face the problem, that there might exist locally invariant
submanifolds with boundary outside D(A∞). That this is impossible will be the
first part of this section. This is essentially a review of [12]. In the second part
we introduce the notion of generic finite dimensional realizations in contrast to
accidental ones.

Let k ≥ 1 be given. We consider a Banach space X and a continuous local
semiflow Fl of Ck-maps on it, i.e.

i) There is ε > 0 and V ⊂ X open with Fl : [0, ε[×V → X a continuous map.
ii) Fl(0, x) = x and Fl(s, F l(t, x)) = Fl(s + t, x) for s, t, s + t ∈ [0, ε[ and

x, F l(t, x) ∈ V .
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iii) The map Flt : V → X is Ck for t ∈ [0, ε[.
Continuous local semiflows of Ck-maps appear naturally as mild solutions of non-
linear evolution equations. The continuous local semiflow Fl is called local Ck-
semiflow or simply Ck if Fl : [0, ε[×V → X is Ck.

Let X be a Banach space, S a strongly continuous semigroup on X with infini-
tesimal generator A, and P : R≥0×X → X a continuous map. The basic existence,
uniqueness and regularity results for the evolution equation

d

dt
x(t) = Ax(t) + P (t, x(t)). (2.1)

is the following (see [30, Theorem 1.2, Chapter 6]).
We say that P : R≥0 ×X → X is locally Lipschitz continuous on X if for every

T ≥ 0 and K ≥ 0 there exists C = C(T,K) such that

‖P (t, x)− P (t, y)‖ ≤ C‖x− y‖

for all t ∈ [0, T ], and x, y ∈ X with ‖x‖ ≤ K and ‖y‖ ≤ K.

Theorem 2.1. Suppose P : R≥0 ×X → X is locally Lipschitz continuous on X.
Let x0 ∈ X. Then there exist a neighborhood U of x0 and T > 0 such that, for every
x ∈ U , equation (2.1) has a unique mild solution x(t), t ∈ [0, T ], with x(0) = x. If
x(t) and y(t) are two mild solutions of (2.1) with x(0) = x ∈ U and y(0) = y ∈ U
then

sup
t∈[0,T ]

‖x(t)− y(t)‖ ≤MeMCT ‖x− y‖, (2.2)

holds, where
M := sup

t∈[0,T ]

‖St‖ (2.3)

with some C = C(T,U).

Here is the announced regularity result.

Theorem 2.2. Let k ≥ 1. Suppose P : R≥0 ×X → X is Ck in x, Dk
xP is locally

Lipschitz continuous on X and Dr
xP is continuous on R≥0 ×X, for all r ≤ k. Let

x0 ∈ X. Then there exists an open neighborhood U of x0 and T > 0, and a map
F ∈ C([0, T ]×U,H) such that, for every x ∈ U , F (·, x) is the unique mild solution
of (2.1) with F (0, x) = x. Moreover F (t, ·) ∈ Ck(U,X) for all t ∈ [0, T ].

This regularity result together with the following fundamental generalization of
results from [27] constitutes the final result, for the proofs see [12]:

Theorem 2.3. Let k ≥ 1 be given and let Fl : [0, ε[×U →M be a local semiflow
on a finite-dimensional Ck-manifold M with boundary, which satisfies the following
conditions:

i) The semiflow Fl : [0, ε[×U →M is continuous with U ⊂M open.
ii) The mapping Fl(t, .) is Ck.
iii) For fixed x ∈ U there exists εx > 0 such that TxFl(t, .) is invertible for

0 ≤ t ≤ εx.
Then Fl is Ck and for any x ∈ U \∂M there is a local Ck-flow F̃ l :]−δ, δ[×V →M
with V ⊂ U \ ∂M open around x and δ ≤ ε such that Fl(y, t) = F̃ l(y, t) for y ∈ V
and 0 ≤ t ≤ δ.
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Now we trace back to our original problem. We assume (A1)–(A3). Given
M ⊂ H such that the vector fields Ξ,Σ1, . . . ,Σd are tangent to M. By Theorem
2.2 and 2.3 we see that Ξ restricts to a smooth vector field along M, in particular
by Theorem 3.1 of [12] we obtain M⊂ D(A∞).

Now we assume additionally that we are given P1, . . . , PN Banach map vector
fields (see Section 3.3) such that pointwise the tangent space of M is spanned by
Ξ, P1, . . . , PN . In particular Σ1, . . . ,Σd can be represented as linear combinations of
Pi along M. Under the assumption that the dimension of M equals the dimension
of DLA at a point h ∈ M (see section 4), we can construct the vector fields Pi

by iterated Lie brackets of Ξ,Σ1, . . . ,Σd, which are defined on D(A∞). These Lie
brackets are tangent to M in the differentiable structure as submanifold of H by
representing them as derivatives of smooth pullbacks with respect to the local flows
FlΣ1 , . . . , F lΣd , which leave M locally invariant by assumption, i.e.

d

dt
|t=0((FlX−t)

∗)Y (h) = [X,Y ](h)

for X,Y : U ⊂ D(A∞) → D(A∞) vector fields, where X admits a smooth local
flow, and h ∈ U . The same formula holds for vector fields on M. Hence the Lie
brackets restrict to smooth vector fields on M in the differentiable structure as
submanifold of H and the procedure can be iterated. Finally the Lie brackets span
the tangent space at every point.

The Banach map principle ([16, Theorem 5.6.3] or Theorem 3.18) yields that
each Banach map vector field Pi generates a local flow FlPi on D(A∞). Given
h0 ∈M ⊂ D(A∞), the composition

(u0, . . . , uN ) 7→ FlΞu0
◦ FlP1

u1
◦ · · · ◦ FlPN

uN
(h0)

then yields a chart for M since the map is smooth to D(A∞) ⊂ H, so a smooth
map to H, and as a smooth map to H it is an immersion locally onto M, so in
particular locally one-to-one.

Theorem 2.4. Let M⊂ U be a (N +1)-dimensional C∞-submanifold with bound-
ary of H. If M is locally invariant for FlΞ, FlP1 , . . . , F lPN , then M is a C∞-
submanifold with boundary of D(A∞).

In Section 1 we have argued that finite dimensional realizations can essentially
be seen as locally invariant submanifolds with boundary of D(A∞). We now make
this more precise. Let r∗0 ∈ U ∩D(A∞) and n ∈ N.

Definition 2.5. We say that (1.1) admits a generic n-dimensional realization
around r∗0 if there exists an open neighborhood V of r∗0 in U ∩ D(A∞), an open
set U in Rn

≥0, and a C∞-map α : U × V → U ∩D(A∞) such that

i) r ∈ α(U, r) for all r ∈ V,
ii) Dzα(z, r) : Rn → D(A∞) is injective for every (z, r) ∈ U × V,
iii) α(z1, r1) = α(z2, r2) implies Dzα(z1, r1)(Rn) = Dzα(z2, r2)(Rn) for all

(zi, ri) ∈ U × V,
iv) for every r∗ ∈ V there exists a U -valued diffusion process Z and a stopping

time τ > 0 such that

rt∧τ = α(Zt∧τ , r
∗) (2.4)

is the (unique) local solution of (1.1) with r0 = r∗.
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Definition 2.5 states that a generic n-dimensional realization around r∗0 implies
the existence of an FDR at every point r∗ in a neighborhood of r∗0 , and these
FDRs have a smooth dependence on r∗. In fact, by i) and ii), each α(·, r∗) :
U → U ∩D(A∞) is (after a localization) the parametrization of an n-dimensional
submanifold with boundary, say Mr∗ , of U ∩D(A∞), and (2.4) says that

rt∧τ ∈Mr∗ for all t ≥ 0.

Condition iii) implies that two such leafs Mr1 and Mr2 can only intersect at points
where their tangent spaces coincide. According to [14], the family {Mr}r∈V is
called an n-dimensional weak foliation on V.

In contrast to a generic n-dimensional realizations we call one single submanifold
with boundary M⊂ U , locally invariant with respect to (1.1), an accidental finite
dimensional realization if there exists an r∗0 ∈ M that does not admit a generic
FDR around r∗0 .

3. Geometric and Analytic Methods

We are treating the problem of existence of finite dimensional realizations for
equations of the type (1.1). In Section 2 we explained that it is sufficient to solve
the deterministic consistency problem on the Fréchet space D(A∞). Besides the
precise analytical formulation of equations of type (1.1) the methods of this section
are crucial for the analysis. We shall sketch several ideas to provide a feeling for
this analysis, the details can be found in [14]. First we give a guided tour through
the proof:

Analysis: Analysis on Fréchet spaces is a subtle subject since – given a map
f : E → F on Fréchet spaces with derivative Df : U → L(E,F ) – it is not
clear how to define the second derivative consistently due to the fact that
L(E,F ) is no more a Fréchet space in general. Therefore some new con-
cepts enter the scenery, which are even for classical analysis a considerable
simplification.

Geometry: Given vector fields Ξ,Σ1, . . . ,Σd on an open subset U with asso-
ciated flows Fl, the map

(u0, . . . , ud) 7→ FlΞu0
◦ · · · ◦ FlΣ

d

ud
(r∗)

is the obvious candidate for a parametrization of a submanifold with bound-
ary at r∗ ∈ U tangent to Ξ,Σ1, . . . ,Σd, if we expect the dimension to be
d + 1. To formulate the algebraic obstructions for this assertion, namely
that the Lie brackets of the involved vector fields lie in the span of the
vector fields, e.g.

[Ξ,Σ](r) = λ0(r)Ξ(r) +
d∑

i=0

λi(r)Σi(r)

for some smooth, real valued functions λi, we need an applicable analysis
at hand.

Synthesis: To be able to apply the geometric results reasonably to our prob-
lem we have to reinvestigate the ingredients of equation (1.1), namely the
class of involved vector fields, to obtain finally a fairly general classification
result. We shall see that the vector fields Ξ and Σj have different analytic
properties and are rarely linearly dependent under conditions (A1)–(A3).
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3.1. Analysis. For the purposes of analysis on open subsets of Fréchet spaces we
shall follow two equivalent approaches. The classical Gateaux-approach as outlined
in [16] and so called “convenient analysis” as in [23]. On Fréchet spaces these two
notions of smoothness coincide and convenient calculus is the appropriate exten-
sion of analysis to more general locally convex spaces. The combinations of these
methods allow simple and elegant calculations. The main advantage of convenient
calculus is however, that one can give a precise analytic meaning (in simple terms)
to geometric objects on Fréchet spaces such as vector fields or differential forms (see
[23]), which do not lie in Fréchet spaces generically. First we recall the definitions
of Gateaux-Cn-calculus.

Definition 3.1. Let E,F be Fréchet spaces and U ⊂ E an open subset. A map
P : U → F is called Gateaux-C1 if

DP (f)h := lim
t→0

P (f + th)− P (f)
t

exists for all f ∈ U and h ∈ E and DP : U × E → F is a continuous map.

For the definition of Gateaux-C2-maps the ambiguities of calculus on Fréchet
spaces already appear. Since there is no Fréchet space topology on the vector space
of continuous linear mappings L(E,F ) one has to work by point evaluations:

Definition 3.2. Let E,F be Fréchet spaces and U ⊂ E an open subset. A map
P : U → F is called Gateaux-C2 if

D2P (f)(h1, h2) := lim
t→0

DP (f + th2)h1 −DP (f)h1

t

exists for all f ∈ U and h1, h2 ∈ E and D2P : U×E×E → F is a continuous map.
Higher derivatives are defined in a similar way. A map is called Gateaux-smooth
or Gateaux-C∞ if it is Gateaux-Cn for all n ≥ 0.

For the construction of differential calculus on locally convex spaces we need
the concept of smooth curves into locally convex spaces and the concept of smooth
maps on open subsets of locally convex spaces. We remark that already on Fréchet
spaces the situation concerning analysis was complicated and unclear until conve-
nient calculus was invented (see [23], pp. 73–77, for extensive historical remarks).
The reason for inconsistencies can be found in the fundamental difference between
bounded and open subsets on locally convex vector spaces.

We denote the set of continuous linear functionals on a locally convex space E
by E′c. A subset B ⊂ E is called bounded if l(B) is a bounded subset of R for all
l ∈ E′c. A multilinear map m : E1 × ...×En → F is called bounded if bounded sets
B1× ...×Bn are mapped onto bounded subsets of F . Continuous linear functionals
are clearly bounded. The locally convex vector space of bounded linear operators
with uniform convergence on bounded sets is denoted by L(E,F ), the dual space
formed by bounded linear functionals by E′. These spaces are locally convex vector
spaces, which we shall need for analysis (see [23], 3.17).

Definition 3.3. Let E be a locally convex space, then c : R → E is called smooth
if all derivatives exist as limits of difference quotients. The set of smooth curves is
denoted by C∞(R, E).

A subset U ⊂ E is called c∞-open if c−1(U) is open in R for all c ∈ C∞(R, E).
The generated topology on E is called c∞-topology and E equiped with this topology
is denoted by c∞E.
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If U is c∞-open, a map f : U ⊂ E → R is called smooth if f ◦ c ∈ C∞(R,R) for
all c ∈ C∞(R, E).

These definitions work for any locally convex vector space, but for the following
theorem we need a weak completeness assumption. A locally convex vector space
E is called convenient if the following property holds: a curve c : R → E is smooth
if and only if it is weakly smooth, i.e. l ◦ c ∈ C∞(R,R) for all l ∈ E′. This is
equivalent to the assertion that any smooth curve c : R → E can be (Riemann-)
integrated in E on compact intervals (see [23], 2.14). The spaces L(E,F ) and E′

are convenient vector spaces (see [23], 3.17), if E and F are convenient.

Theorem 3.4. Let E,G,H be convenient vector spaces, U ⊂ E, V ⊂ G c∞-open
subsets:

i) Smooth maps are continuous with respect to the c∞-topology.
ii) Multilinear maps are smooth if and only if they are bounded.
iii) If P : U → G is smooth, then DP : U → L(E,G) is smooth and bounded

linear in the second component, where

DP (f)h :=
d

dt
|t=0P (f + th).

iv) The chain rule holds.
v) Let [f, f + h] := {f + sh for s ∈ [0, 1]} ⊂ U , then Taylor’s formula is true

at f ∈ U , where higher derivatives are defined as usual (see iii.),

P (f + h) =
n∑

i=0

1
i!
DiP (f)h(i) +

∫ 1

0

(1− t)n

n!
Dn+1P (f + th) (h(n+1))dt

for all n ∈ N.
vi) There are natural convenient locally convex structures on C∞(U,F ) and we

have cartesian closedness

C∞(U × V,H) ' C∞(U,C∞(V,H)).

via the natural map f 7→ f̌ : U → C∞(V,H) for f ∈ C∞(U × V,H). This
natural map is well defined and a smooth linear isomorphism.

vii) The evaluation and the composition

ev : C∞(U,F )× U → F, (P, f) 7→ P (f)

. ◦ . : C∞(F,G)× C∞(U,F ) → C∞(U,G), (Q,R) 7→ Q ◦R

are smooth maps.
viii) A map P : U ⊂ E → L(G,H) is smooth if and only if (evg ◦P ) is smooth

for all g ∈ G.

Proof. For the proofs see [23] in Subsections 3.12, 3.13, 3.18, 5.11, 5.12, 5.18. �

Convenient Calculus is an extension of the Gateaux-Calculus to locally convex
spaces, where all necessary tools for analysis are preserved. Since typically vector
spaces like C∞(U,F ) or L(E,F ) are not Fréchet spaces, this extension is very useful
for the analysis of the geometric objects in Section 3.

Theorem 3.5. Let E,F be Fréchet spaces and U ⊂ E a c∞-open subset, then U
is open and P : U ⊂ E → F is Gateaux-smooth if and only if P is smooth (in the
convenient sense).
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Concerning differential equations, there are possible counterexamples on non-
normable Fréchet spaces in all directions, which causes some problems in the foun-
dations of differential geometry (see [23] and the review article [25]).

If not otherwise stated, E and F denote Fréchet spaces and B a Banach space
in what follows. A vector field P on an open subset U ⊂ E is a smooth map
P : U → E. We denote by X(U) the convenient space of all vector fields on an open
subset of a Fréchet space E. Given P : U ⊂ E → E a vector field on U . We are
looking for solutions of the ordinary differential equation with initial value g ∈ U

f :]− ε, ε[→ U smooth
d

dt
f(t) = P (f(t))

f(0) = g ∈ U.

If for any initial value g in a small neighborhood V of f0 ∈ U there is a unique
smooth solution t 7→ fg(t) for t ∈] − ε, ε[ depending smoothly on the initial value
g, then Fl(t, g) := fg(t) defines a local flow, i.e. a smooth map

Fl :]− ε, ε[×V → E

Fl(0, g) = g

F l(t, F l(s, g)) = Fl(s+ t, g)

if s, t, s + t ∈] − ε, ε[ and Fl(s, g) ∈ V . If there is a local flow around f0 ∈ U
(this shall mean once and for all: “in an open, convex neighborhood of f0”), the
differential equation is uniquely solvable around f0 ∈ U and the dependence on
initial values is smooth (see Lemma 3.6 for the proof). Notice at this point that it
is irrelevant if we define “smooth dependence” on initial values via smooth maps
V → C∞(] − ε, ε[, E) or V×] − ε, ε[→ E by cartesian closedness. We shall denote
fg(t) = Flt(g) = Fl(t, g).

We can replace in the above definition of a local flow the interval ]−ε, ε[ by [0, ε[
to obtain local semiflows. The initial value problem

f : [0, ε[→ U smooth
d

dt
f(t) = P (f(t))

f(0) = g ∈ U.

admits unique solutions around an initial value depending smoothly on the initial
values if and only if a local semiflow exists. Here we need convenient analysis of
non-open domains, see [14] or [23]. The notion of a local semiflow is redundant on
Banach spaces.

Lemma 3.6. Let Fl be a local semiflow on [0, ε[×U → E, then the map P (f) :=
d
dt |t=0Fl(t, f) is a well defined smooth vector field. We obtain

DFlt(f)P (f) = P (Flt(f))

and the initial value problem has unique solutions for small times which coincide
with the given semiflow.
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3.2. Geometry. We are interested in the geometry generated by a finite number
of vector fields given on an open subset of a Fréchet space E. Therefore we need
the notions of finite-dimensional submanifolds (with boundary) of a Fréchet space
(see [23] for all details and more). Here and subsequent E denotes a Fréchet space.
From the classical definition we can conclude the following Lemma (see [14]):

Lemma 3.7 (Submanifolds by Parametrization). Let E be a Fréchet space and
φ : U ⊂ Rn

≥0 → E a smooth immersion, i.e. for u ∈ U the map Dφ(u) is injective,
then for any u0 ∈ U there is a small open neighborhood V of u0 such that φ(V ) is
a submanifold with boundary of E, φ|V is a called a parametrization.

Definition 3.8 (Lie bracket). The Lie bracket of two vector fields X,Y ∈ X(U) is
defined by the following formula:

[X,Y ](f) = DX(f) · Y (f)−DY (f) ·X(f)

and is a bounded, skew-symmetric bilinear map from X(U)× X(U) into X(U).

Definition 3.9. Let φ : U ⊂ Rn
≥0 → E be a smooth parametrization of a subman-

ifold with boundary M ⊂ E, i.e. φ(U) = M. A vector field X : U → Rn is called
φ-related to Y : V ⊂ E → E if Tuφ(Xu) = Yφ(u) for all u ∈ U . This is denoted by
X∼φY .

Proposition 3.10. Let U be an open set in E, and M⊂ U be a submanifold with
boundary. If two vector fields X1, X2 ∈ X(U) are tangent to M, then [X,Y ](h) ∈
ThM for h ∈ U .

Proof. Take a parametrization φ : U ⊂ Rn
≥0 → E of M around h0 ∈ M. By

[23] we obtain, that if two vector fields are φ-related, then their Lie bracket is φ-
related, too. Given two vector fields X1, X2 : U → E such that for all h ∈ M we
have Xi(h) ∈ ThM for i = 1, 2. Then we can define vector fields Y1, Y2 on U by
restriction and pulling back to U such that

Tuφ(Yi(u)) = Xi(φ(u))

for i = 1, 2 and u ∈ U . So Xi is φ-related to Yi for i = 1, 2 and therefore their Lie
bracket as well. Consequently all Lie brackets take along M values in its tangent
space, since we can choose a parametrization around any point h0 ∈M. �

¿From this observation Frobenius theory can be built up. We denote by 〈. . .〉
the generated vector space over the reals R.

Definition 3.11. Let E be a Fréchet space, U an open subset. A distribution on
U is a collection of vector subspaces D = {Df}f∈U of E. A vector field X ∈ X(U)
is said to take values in D if X(f) ∈ D(f) for f ∈ U . A distribution D on U is
said to be involutive if for any two locally given vector fields X,Y with values in D
the Lie bracket [X,Y ] takes values in D.

A distribution is said to have constant rank on U if dimR Df is locally constant
for f ∈ U . A distribution is called smooth if there is a set S of locally defined
vector fields on U such that

Df = 〈{X(f)|(X : UX → E) ∈ S and f ∈ UX}〉.

We say that the distribution admits local frames on U if for any f ∈ U there is an
open neighborhood f ∈ V ⊂ U and n smooth, pointwise linearly independent vector
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fields X1, ..., Xn on V with

〈X1(g), ..., Xn(g)〉 = Dg

for g ∈ V .

Remark 3.12. Given a distribution D on U generated by a set of local vector fields
S, such that the dimensions of Df are bounded by a fixed constant N . Let f ∈ U
be a point with maximal dimension nf = dimR Df , then there are nf smooth local
vector fields X1, ..., Xnf

∈ S with common domain of definition U ′ such that

〈X1(f), ..., Xn(f)〉 = Df .

Choosing nf continuous linear functionals l1, ..., lnf
∈ E′ with li(Xj(f)) = δij, then

the continuous mapping M : U ′ → L(Rnf ), g 7→ (li(Xj(g))) has range in the
invertible matrices in a small neighborhood of f . Consequently in this neighborhood
the dimension of Dg is at least nf . It follows by maximality of nf that it is exactly
nf . In particular the distribution admits a local frame at f .

The concept of weak foliations will be perfectly adapted to the FDR-problem:

Definition 3.13. A weak foliation F of dimension n on an open subset U of a
Fréchet space E is a collection of submanifolds with boundary {Mr}r∈U such that

i) For all r ∈ U we have r ∈Mr and the dimension of Mr is n.
ii) The distribution

D(F)(f) := 〈TfMr for all r ∈ U with f ∈Mr〉

has dimension n for all f ∈ U , i.e. given f ∈ U the tangent spaces TfMr

agree for all Mr 3 f . This distribution is called the tangent distribution
of F .

Given any distribution D we say that D is tangent to F if D(f) ⊂ D(F)(f) for all
f ∈ U .

Theorem 3.14. Let D be an smooth distribution of constant rank n on an open
subset U of a Fréchet space E. Assume that for any point f0 the distribution admits
a local frame of vector fields X1, ..., Xn, where X1, ..., Xn−1 admit local flows FlXi

t

and Xn admits a local semiflow FlXn
t . Then D is involutive if and only if it is

tangent to an n-dimensional weak foliation.

For details on Frobenius theorems in the classical setting see [22]. The phenom-
enon that there is no Frobenius chart is due to the fact that there is one vector
field among the vector fields X1,...,Xn (generating the distribution D) admitting
only a local semiflow. If all of them admitted flows, there would exist a Frobenius
chart, which can be given by a construction outlined in [33]. The non-existence of
a Frobenius-chart means that the leafs cannot be parallelized, since they follow a
semiflow, which means in turn that ”gaps” between two leafs can occur and leafs
can touch. This is an infinite dimensional phenomenon, which does not appear in
finite dimensions.

3.3. Synthesis. From the geometric considerations we can conclude the existence
of FDRs if

1: the distributionDLA generated by Ξ,Σ1, . . . ,Σd and all mutually generated
Lie brackets has locally constant dimension NLA ≥ 1.
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2: there is a frame of vector fields X1, . . . , XNLA
for DLA around any point,

such that X1, . . . , XNLA−1 admit local flows and XNLA
admits a local semi-

flow.
Applying Theorem 3.14 then yields the existence of NLA-dimensional locally in-
variant submanifolds with boundary. For an interesting application one has to
investigate the meaning of 1. closely and guarantee 2. in as many situations as
possible. In this subsection the conditions (A1)–(A3) are applied such that only
the algebraic condition remains and one can nicely distinguish between the vector
fields admitting flows and the one only admitting a semiflow.

Definition 3.15. Given a Fréchet space E, a smooth map P : U ⊂ E → E is called
a Banach map if there are smooth (not necessarily linear) maps R : U ⊂ E → B
and Q : V ⊂ B → E such that P = Q ◦R, where B is a Banach space and V ⊂ B
is an open set.

We denote by B(U) the set of Banach map vector fields on an open subset of a
Fréchet space E.

Theorem 3.16. B(U) is a C∞(U,R)-submodule of X(U).

Proof. We have to show that for ψ, η ∈ C∞(U,R) and P1, P2 ∈ B(U) the linear
combination ψP1 + ηP2 ∈ B(U). Given Pi = Qi ◦Ri for i = 1, 2 with intermediate
Banach spaces Bi, then ψP1+ηP2 = Q◦R with Q : R2×V1×V2 ⊂ R2×B1×B2 → E
and R : U → R2 ×B1 ×B2 such that

Q(r, s, v1, v2) = rQ1(v1) + sQ2(v2)

R(f) = (ψ(f), η(f), R1(f), R2(f))

So the sum ψP1 + ηP2 is a Banach map and therefore the set of all Banach map
vector fields carries the asserted submodule structure. �

Lemma 3.17. Let U be an open set in a Fréchet space E, then B(U) is a subalgebra
with respect to the Lie bracket. Let A be a bounded linear operator on E, then
[A,B(U)] ⊂ B(U). Consequently the Lie algebra L(E) acts on B(U) by the Lie
bracket.

Proof. Given two Banach maps P1 and P2, DP1(f) ·P2(f) = DQ1(R1(f)) ·DR1(f) ·
P2(f) holds, which can be written as composition of DQ1(v) · w for v, w ∈ B and
(R1(f), DR1(f)·P2(f)) for f ∈ U . So the Lie bracket lies in B(U). Given A ∈ L(E),
we see that AP1(f)−DP1(f)·Af is a Banach map by an obvious decomposition. �

Banach map vector fields admit solutions of initial value problems.

Theorem 3.18 (Banach map principle). Let P : U ⊂ E → E be a Banach map,
then P admits a local flow around any point g ∈ U .

Proof. For the proof see [16], Theorem 5.6.3. �

We are in particular interested in special types of differential equations on Fréchet
spaces E, namely Banach map perturbed bounded linear equations. Given a
bounded linear operator A : E → E, the abstract Cauchy problem associated
to A is given by the initial value problem associated to A. We assume that there
is a smooth semigroup of bounded linear operators S : R≥0 → L(E,E) such that

lim
t↓0

St − id

t
= A
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which is a global semiflow for the linear vector field f 7→ Af . Notice that the
theory of bounded linear operators on Fréchet spaces contains as a special case
Hille-Yosida-Theory of unbounded operators on Banach spaces (see for example
[32]).

Given a strongly continuous semigroup St for t ≥ 0 of bounded linear operators
on a Banach space B, then D(An) with the respective operator norms pn(f) :=∑n

i=0 ||Aif || for n ≥ 0 and f ∈ D(An) is a Banach space, where the semigroup
restricts to a strongly continuous semigroup S(n). Consequently the semigroup
restricts to the Fréchet space D(A∞). This semigroup is now smooth.

Given a Banach map P : U ⊂ E → E, we want to investigate the solutions of
the initial value problem

d

dt
f(t) = Af(t) + P (f(t)), f(0) = f0.

Theorem 3.19. Let E be a Fréchet space and A be the generator of a smooth
semigroup S : R → L(E) of bounded linear operators on E. Let P : U ⊂ E → E
be a Banach map. For any f0 ∈ U there is ε > 0 and an open set V containing f0
and a local semiflow Fl : [0, ε[×V → U satisfying

d

dt
F l(t, f) = AFl(t, f) + P (Fl(t, f))

Fl(0, f) = f

for all (t, f) ∈ [0, ε[×V .

Proof. For the proof see [14]. �

For the purposes of classification we shall need the following result, see [14].

Lemma 3.20. Let A be the generator of a strongly continuous semigroup S on a
Banach space B, then the operator A : D(A∞) → D(A∞) is a Banach map if and
only if A : B → B is bounded.

Now we can formulate the following conclusions from (A1)–(A3), which makes
the geometric conditions applicable:

1: The vector fields Σi and Θ are Banach map vector fields for i = 1, . . . , n.
2: The Lie brackets [Ξ,Σi] and [Σi,Σj ] are Banach maps for i, j = 1, . . . , n.

Any further Lie bracket with a Banach map vector field yields a Banach
map vector field. This is due to Lemma 3.17.

3: The vector field Ξ is not a Banach map due to (A3) and Lemma 3.20, but
generates a local semiflow due to Theorem 3.19.

4. Results on the Existence of Finite dimensional Realizations

Now we can derive several results with the developed geometric tools. We con-
sider the setup from Section 1.3 and shall always assume (H0)–(H4) and (A1)–(A3).
This is an extension of what we derived in [14], therefore all proofs are given here.

Lemma 4.1. Let X1, . . . , Xk be pointwise linearly independent Banach maps on
an open set V in D(A∞), for some k ∈ N. Then the set

N = {h ∈ V | Ξ(h) ∈ 〈X1(h), . . . , Xk(h)〉}

is closed and nowhere dense in V.
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Proof. Clearly, N is closed by continuity of Ξ and X1, . . . , Xk. Now suppose there
exists a set W ⊂ N which is open in D(A∞), such that for every h ∈ W there exist
unique numbers c1(h), . . . , ck(h) such that

Ξ(h) =
k∑

j=1

cj(h)Xj(h). (4.1)

We can choose linear functionals ξ1, . . . , ξk on D(A∞) such that the k × k-matrix
Mij(h) := ξi(Xj(h)) is smooth and invertible on W (otherwise we choose a smaller
open subset W). Hence

ci(h) =
k∑

j=1

M−1
ij (h)ξj(Ξ(h))

are smooth functions on W. Then (4.1) implies that A is a Banach map on W.
But this contradicts (A3), whence the claim. �

The vector fields Ξ,Σ1, . . . ,Σd induce two distributions on D(A∞): their linear
span D = 〈Ξ,Σ1, . . . ,Σd〉, and the distribution DLA generated by all multiple Lie
brackets of these vector fields. As a consequence of (A1) and Lemma 4.1 there
exists a closed and nowhere dense set N in D(A∞) such that

dimDLA(h) ≥ dimD(h) = d+ 1 for h ∈ D(A∞) \ N . (4.2)

Remark 4.2. The preceding observation proves a conjecture in [4], namely that
every nontrivial generic short rate model is of dimension 2 (see [4, Remark 7.1]).

The following is a modification of the necessary condition in Theorem 3.14.

Proposition 4.3. Let V be an open set in D(A∞), and M ⊂ V be a submanifold
with boundary. If D is tangent to M, then DLA(h) ⊂ ThM for h ∈ V.

Proof. See Proposition 3.10. �

Let V denote an open connected set in D(A∞) in what follows. Proposition 4.3
tells us that boundedness of dimDLA on V is a necessary condition for the existence
of a finite-dimensional weak foliation on V. To avoid the difficulties in the analysis
of degenerate situations where dimDLA is not constant on V, we only consider the
non-degenerate case. This is our appropriate Frobenius condition

(F): DLA has constant finite dimension NLA on V.

Here and subsequently, we let (F) be in force. In view of (4.2) we have NLA ≥
d+ 1 and the following proposition holds.

Proposition 4.4. We have

Ξ(h) /∈ 〈Σ1(h), . . . ,Σd(h)〉, for all h ∈ V. (4.3)

Moreover, for any h0 ∈ V there exists an open neighborhood W and Banach maps
Xd+1, . . . , XNLA−1 on W such that

DLA = 〈Ξ,Σ1, . . . ,Σd, Xd+1, . . . , XNLA−1〉 on W.

In particular, DLA is tangent to an NLA-dimensional weak foliation F on V.
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Proof. Suppose Ξ(h0) ∈ 〈Σ1(h0), . . . ,Σd(h0)〉, for some h0 ∈ V. By the definition
of DLA and Lemma 3.17 there exist NLA − d Banach maps Xd+1, . . . , XNLA

on V
such that

DLA(h) = 〈Σ1(h), . . . ,Σd(h), Xd+1(h), . . . , XNLA
(h)〉,

for h = h0, and hence for all h in a neighborhood of h0, by continuity. But
this implies that Ξ(h) lies in the span of Banach maps, for all h in an open set.
This contradicts Lemma 4.1, whence (4.3). The rest of the proposition follows by
Remark 3.12 and Theorem 3.14. �

The following theorem provides a strong necessary condition for the structure
of DLA, which leads to a full classification of F in the case where m = 0 (see
Section 5).

Theorem 4.5. Under the above assumption (F) there exist pointwise linearly in-
dependent vector fields λ1, . . . , λNLA−1 ∈ C∞(V,D(A∞0 )) such that

DLA(r, Y ) = 〈Ξ(r, Y ), λ1(Y ), . . . , λNLA−1(Y )〉

and
Σj(r, Y ) ∈ 〈λ1(Y ), . . . , λNLA−1(Y )〉 , 1 ≤ j ≤ d, (4.4)

for all (r, Y ) ∈ V.
Thus, if m = 0 then the range of Σj is the constant finite-dimensional subspace

〈λ1, . . . , λNLA−1〉 in D(A∞0 ).

Proof. Let 1 ≤ i, j ≤ d, recall (A1)–(A3) and calculate

DΣi(r, Y ) ·
(
r
Y

)
= Dφi(`(r), Y ) ·

(
`(r)
Y

)
(4.5)

(here the linearity of ` is essential!), hence

DΣi(r, Y ) · Σj(r, Y ) = Dφi(`(r), Y ) ·

(
`(φ(1)

j (`(r), Y ))
φ

(2)
j (`(r), Y )

)
, (4.6)

where we use the notation

h = (h(1), h(2)) ∈ H × Rm = H.

In view of (1.5), (1.8) and (4.6)we define the smooth map

Γ :=
d∑

j=0

Γj : Rp+m → D(A∞)

by Γ0(y, Y ) :=
(

0
φ0(y, Y )

)
and, for 1 ≤ j ≤ d,

Γj(y, Y ) :=
(
M(φ(1)

j (r, Y ), φ(1)
j (r, Y ))

0

)
− 1

2
Dφi(y, Y ) ·

(
`(φ(1)

j (y, Y ))
φ

(2)
j (y, Y )

)
,

such that we can write

Ξ(r, Y ) =
(

d
dxr
0

)
+ Γ(`(r), Y ). (4.7)
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We already know from Lemma 3.17 that [Σi,Σj ] and [Ξ,Σj ] are Banach maps. In
fact, combining (4.5)–(4.7) yields the decompositions

[Σi,Σj ](r, Y ) = Υij(`(r), Y ),

[Ξ,Σj ](r, Y ) = Φj(`(r), `((d/dx)r), Y ),

for some smooth maps Υij : Rp+m → D(A∞) and Φj : R2p+m → D(A∞) and
(r, Y ) ∈ V.

Now fix (r∗, Y ∗) ∈ V. By induction of the preceding argument and Proposi-
tion 4.4 there exists an open neighborhood of the product form (this we can assume
without loss of generality)

V∗ = U∗ × V ∗ ∈ D((d/dx)∞)× Rm

of (r∗, Y ∗), an integer q ≥ −1, and Banach maps X1, . . . , XNLA−1 with decomposi-
tion

Xi(r, Y ) = Ψi (`(r), `((d/dx)r), . . . , `((d/dx)qr), Y ) , (4.8)

for pointwise linearly independent smooth maps Ψi : Rp(q+1)×Rm → D(A∞) such
that

DLA = 〈Ξ, X1, . . . , XNLA−1〉 on V∗. (4.9)
Notice that the case q = −1 is included in a consistent way: it simply means that
Ψi in (4.8), and hence Xi, does only depend on Y .

There exists a minimal integer, still denoted by q, with the above properties. We
shall show that q = −1.

We argue by contradiction and suppose that q ≥ 0. We claim that then there
exists smooth maps Ψ̃i : Rpq ×Rm → D(A∞) such that we can replace Xi in (4.9)
with X̃i = Ψ̃i ◦ (`, . . . , ` ◦ (d/dx)q−1, idRm). Indeed, since [Ξ, Xi] is a Banach map
on V∗ (see Lemma 3.17), for every (r, Y ) ∈ V∗ there exists numbers cij(r, Y ) such
that

[Ξ, Xi](r, Y ) =
NLA−1∑

j=1

cij(r, Y )Xj(r, Y ), 1 ≤ i ≤ NLA − 1. (4.10)

By explicit calculation we obtain

[Ξ, Xi] = ∆i ◦ (`, . . . , ` ◦ (d/dx)q+1, idRm), (4.11)

where

∆i(y, z, Y ) = AΨi(y, Y ) +DΓ(y0, Y ) ·

(
`(Ψ(1)

i (y, Y ))
Ψ(2)

i (y, Y )

)

−DΨi(y, Y ) ·




y1
...
yq

z
0

+


`(Γ(1)(y0, Y ))

...
` ◦ (d/dx)q−1(Γ(1)(y0, Y ))
` ◦ (d/dx)q(Γ(1)(y0, Y ))

Γ(2)(y0, Y )



 ,

(4.12)
for (y, z, Y ) = (y0, . . . , yq, z, Y ) ∈ Rp(q+1)×Rp×Rm. As in the proof of Lemma 4.1
we find linear functionals ξ1, . . . , ξNLA−1 on D(A∞) such that the (NLA − 1) ×
(NLA − 1)-matrix Mij(y, Y ) := ξi(Ψj(y, Y )) is smooth and invertible on

(`, . . . , ` ◦ (d/dx)q)(U∗)× V ∗ =: W × V ∗,
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which is an open set in Rp(q+1)×Rm by (A2). Equating (4.10) and (4.11), applying
the functionals ξk and inverting gives that

(y, z, Y ) 7→ γij(y, z, Y ) :=
NLA−1∑

k=1

M−1
jk (y, Y )ξk(∆i(y, z, Y ))

are smooth functions from

(`, . . . , ` ◦ (d/dx)q+1)(U∗)× V ∗ =: W ′ × V ∗ ⊂ Rp(q+2) × Rm

into R, and they satisfy

cij(r, Y ) = γij ◦ (`(r), . . . , `((d/dx)q+1r), Y )

on V∗, hence

∆i(y, z, Y ) =
NLA−1∑

j=1

γij(y, z, Y )Ψj(y, Y ), ∀(y, z, Y ) ∈W ′ × V ∗. (4.13)

Differentiating (4.13) with respect to z (which makes sense since W ′ is open by
(A2)) yields, see (4.12),

DyqΨi(y, Y ) =
NLA−1∑

j=1

Ψj(y, Y )Dzγij(y, z, Y ), ∀(y, z, Y ) ∈W ′ × V ∗.

Arguing again by linear independence of Ψ1, . . . ,ΨNLA−1 we see that the maps

Dzγij(y, z, Y ) ≡: βij(y, Y )

depend only on (y, Y ). We may assume that W = W0 ×W1 where W0 ⊂ Rpq and
W1 ⊂ Rp are open such that (y∗0 , . . . , y

∗
q ) := (`, `◦(d/dx), . . . , `◦(d/dx)q)(r∗) ∈W0×

W1, and W1 is star-shaped with respect to y∗q (otherwise replace U∗ accordingly).
Now let (y, Y ) ∈W0 ×W1 × V ∗ and define

ψi(t) := Ψi(y0, . . . , yq−1, y
∗
q + t(yq − y∗q ), Y ).

Then there exists an open interval I containing [0, 1] such that

d

dt
ψi(t) =

NLA−1∑
j=1

(
βij(y0, . . . , yq−1, y

∗
q + t(yq − y∗q ), Y ) · (yq − y∗q )

)
ψj(t)

ψi(0) = Ψi(y0, . . . , yq−1, y
∗
q , Y ), i = 1, . . . , NLA − 1,

for t ∈ I. This system of differential equations has a unique solution, which is of
the form

ψi(t) =
NLA−1∑

j=1

αij(t)ψj(0),

for some smooth curves αij : I → R. In particular, for t = 1,

Ψi(y0, . . . , yq, Y ) = ψi(1) =
NLA−1∑

j=1

αij(1)Ψj(y0, . . . , yq−1, y
∗
q , Y ).

This way we find a smooth real-valued matrix-valued map, again denoted by (αij),
on W0 ×W1 × V ∗ such that

Ψi(y, Y ) =
NLA−1∑

j=1

αij(y, Y )Ψj(y0, . . . , yq−1, y
∗
q , Y ), ∀(y, Y ) ∈W0 ×W1 × V ∗.
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But this implies that Ξ and the Banach maps Ψj(·, y∗q , ·)◦(`, . . . , `◦(d/dx)q−1, idRm)
span the Lie algebra DLA on V∗. Whence the claim.

But q was supposed to be minimal – a contradiction. Hence q = −1; that is,
X1, . . . , XNLA−1 in (4.9) can be chosen to depend only on Y in some neighborhood
of (r∗, Y ∗). Since (r∗, Y ∗) ∈ V was arbitrary and V is connected, the theorem now
follows by a continuity argument. �

5. Properties of the Factor processes

5.1. Finite dimensional HJM-models. Throughout this section we let m = 0.
That is, H = H and U is a convex open set in H where equation (1.2) is defined.
Moreover, (1.7) now reads

A =
d

dx
, Θ(r) = αHJM (r) =

d∑
j=1

M(Σj(r),Σj(r)), Σj(r) = σj(r), (5.1)

for j = 1, . . . , d. At this point we also recall (1.5)

Ξ(r) = Ar + Θ(r)− 1
2

d∑
j=1

DΣj(r)Σj(r) (5.2)

=
d

dx
r + αHJM (r)− 1

2

d∑
j=1

Dσj(r)σj(r)

and introduce
Π(r) := Ar + Θ(r). (5.3)

for r ∈ D(A). We shall provide a nice representation for generic finite dimensional
realizations and the associated factor processes Z and prove a support theorem for
the solution of equation (1.2).

Theorem 4.5 tells us that, under the assumption (F), there exist λ1, . . . , λNLA
∈

D(A∞0 ) such that
DLA(r) = 〈Ξ(r), λ1, . . . , λNLA

〉
and

Σj(r) ∈ 〈λ1, . . . , λNLA
〉 (5.4)

for all r ∈ V. Theorem 4.5 is a global result in so far as it holds for every open
connected set V ⊂ U ∩D(A∞) where (F) is satisfied. We now are interested in the
question whether there exist a priori structural restrictions on the choice of V. In
view of (F) and Theorem 4.5 it is clear that V must not intersect with the singular
set

S := {h ∈ U ∩D(A∞) | Ξ(h) ∈ 〈λ1, . . . , λNLA−1〉}. (5.5)

By Lemma 4.1, S is closed and nowhere dense in D(A∞).

Lemma 5.1. If (5.4) holds on the open connected set V ⊂ U ∩D(A∞), then

S ∩ V (V=closure of V)

lies in a finite-dimensional linear subspace O in D(A∞) with NLA ≤ dimO ≤
NLA + (NLA − 1)2.
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Proof. Since Σ is continuous, (5.4) holds on V. Assumption (A1) yields

〈Σ1(h), . . . ,Σd(h)〉 ⊂ D(A∞0 ), for all h ∈ H.

Hence there exists d ≤ d∗ ≤ NLA − 1 such that (after a change of coordinates if
necessary) λ1, . . . , λd∗ ∈ D(A∞0 ), and

Σi(h) =
d∗∑

j=1

βij(h)λj , 1 ≤ i ≤ d, for all h ∈ V, (5.6)

for smooth functions βij : H → R. Moreover, DΣi(h)Σi(h) ∈ 〈λ1, . . . , λNLA−1〉, for
all h ∈ V. By (5.2)–(5.3) hence

S ∩ V = {h ∈ D(A∞) | Π(h) ∈ 〈λ1, . . . , λNLA−1〉} ∩ V. (5.7)

Since Λij := M(λi, λj) is a well-defined element in D(A∞), for all 1 ≤ i, j ≤ d∗, we
obtain

Π(h) = Ah+
d∗∑

i,j=1

aij(h)Λij , for all h ∈ V, (5.8)

where aij(h) :=
∑d

k=1 βki(h)βkj(h), see (5.1). Hence h ∈ S∩V if and only if there
exist real numbers c1(h), . . . , cNLA−1(h) such that

Ah+
d∗∑

i,j=1

aij(h)Λij =
NLA−1∑

i=1

ci(h)λi. (5.9)

Let R be the subspace spanned by λ1, . . . , λNLA−1 and Λ11,Λ12 . . . ,Λd∗d∗ , and
let I be a set of indices (i, j) such that {λ1, . . . , λNLA−1,Λij | (i, j) ∈ I} is linear
independent and spansR. In view of (5.9) it is clear that S∩V lies in O := A−1(R).
Since the kernel of A = d/dx is spanned by 1 (see (H1)), the dimension of O is
1 + dimR = NLA + |I|. �

The maximal possible choice of V is U ∩ D(A∞) \ S. In this case we can say
more about S.

Lemma 5.2. Suppose that V = U ∩D(A∞) \S. Then h ∈ S implies

U ∩ (h+ 〈λ1, . . . , λNLA−1〉) ⊂ S.

Proof. By Theorem 4.5 and since [Ξ, λi] is a Banach map on V (see Lemma 3.17),
we have

[Ξ, λi](h) = DΞ(h)λi ∈ 〈λ1, . . . , λNLA−1〉, (5.10)

for all h ∈ U ∩ D(A∞) \ S, and hence for all h ∈ U ∩ D(A∞), by smoothness
of Ξ. Now let h ∈ S and u ∈ RNLA−1. Using Taylor’s formula we calculate for
h+

∑NLA−1
i=1 uiλi ∈ U

Ξ

(
h+

NLA−1∑
i=1

uiλi

)
= Ξ(h) +

NLA−1∑
i=1

ui

∫ 1

0

DΞ

(
h+ t

NLA−1∑
i=1

uiλi

)
λi dt, (5.11)

which lies in 〈λ1, . . . , λNLA−1〉 by (5.10), and the lemma follows. �

We now can give the classification of the corresponding finite dimensional real-
izations as well.
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Theorem 5.3. Suppose (F) holds on V = U ∩ D(A∞) \ S, where S is given by
(5.5). Then, for every h0 ∈ U ∩ D(A∞), there exists an RNLA−1-valued diffusion
process Z with Z0 = 0 such that

rt = FlΞt (h0) +
NLA−1∑

i=1

Zi
tλi (5.12)

is the unique continuous local solution to (1.1) with r0 = h0. If h0 ∈ S∩ U we can
even choose Z such that

rt = h0 +
NLA−1∑

i=1

Zi
tλi. (5.13)

In particular, S is locally invariant for (1.1).

The coordinate process Z will be explicitely constructed in the proof below
(see (5.18)).

Remark 5.4. There is a straightforward modification of the process Z such that the
semiflow FlΞ generated by Ξ in (5.12) can be replaced by the semiflow FlΠ generated
by Π. This follows since Ξ(r)−Π(r) ∈ 〈λ1, . . . , λd〉 for all r ∈ U ∩D(A∞).

Remark 5.5. HJM models that satisfy (5.12), or (5.13), are known in the finance
literature as affine term structure models. Hence Theorem 5.3 can be roughly re-
formulated in the following way: HJM models that admit an FDR at every inital
point h0 ∈ U ∩D(A∞) are necessarily affine term structure models.

Affine term structure models have been extensively studied in [8], [9], [7] (see also
references therein).

Proof. By smoothness of Σ and Ξ, (5.4) and (5.10) hold on U and U ∩ D(A∞),
respectively. Let h0 ∈ U ∩ D(A∞) \ S and Mh0 a leaf of the weak foliation
F through h0 (see Proposition 4.4). As in the proof of Theorem 3.14 (see [14,
Theorem 3.9]) we obtain a parametrization of Mh0 at h0 by

α(u, h0) = FlΞu0
(h0) +

NLA−1∑
i=1

uiλi, u = (u0, . . . , uNLA−1) ∈ [0, ε)× V, (5.14)

for some ε > 0 and some open neighborhood V of 0 in RNLA−1, where FlΞ is the
local semiflow induced by Ξ. (Strictly speaking, α(·, h0) is a parametrization of a
submanifold with boundary of Mh0 .) Now we proceed as in [9, Section 6.4] to find
the appropriate coordinate process Z. Using Taylor’s formula we obtain as in (5.11)

Ξ(α(u, h0)) = Ξ
(
FlΞu0

(h0)
)

+
NLA−1∑

i=1

b̃i(u, h0)λi

= Dα(u, h0) · (1, b̃1(u, h0), . . . , b̃NLA−1(u, h0)),

(5.15)

where b̃i(·, h0) : [0, ε)× V → R are smooth maps well specified by
NLA−1∑

i=1

b̃i(u, h0)λi :=
NLA−1∑

i=1

ui

∫ 1

0

DΞ

(
FlΞu0

(h0) + t

NLA−1∑
i=1

uiλi

)
λi dt.

On the other hand, we have

Σi(α(u, h0)) = Dα(u, h0) · (0, ρi(u, h0), 0, . . . , 0), 1 ≤ i ≤ d, (5.16)
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where ρi(·, h0) = (ρi1(·, h0), . . . , ρid∗(·, h0)) : [0, ε) × V → Rd∗ are smooth maps
given by

ρij(u, h0) := βij(α(u, h0)),

see (5.6). Define the smooth map bi(·, h0) : [0, ε)× V → R by

bi(u, h0) :=

{
b̃i(u, h0) + 1

2

∑d
j=1Dρji(u, h0) · ρj(u, h0), 1 ≤ i ≤ d∗,

b̃i(u, h0), d∗ < i ≤ NLA − 1.
(5.17)

Then the stochastic differential equation
dZi

t = bi((t, Zt), h0) dt+
d∑

j=1

ρji((t, Zt), h0) dW
j
t , 1 ≤ i ≤ d∗,

dZi
t = bi((t, Zt), h0) dt, d∗ < i ≤ NLA − 1,

Z0 = 0,

(5.18)

has a unique V -valued continuous local solution. By Itô’s formula it follows that
rt = α((t, Zt), h0) is the unique continuous local solution to (1.1), see [9, Sec-
tion 6.4], whence the theorem is proved for h0 ∈ U ∩D(A∞) \S.

Now let h0 ∈ S∩U . By Lemma 5.2, the (NLA−1)-dimensional affine submanifold
Nh0 := U ∩ (h0 + 〈λ1, . . . , λNLA−1〉) lies in S. Since (1.5) and (1.6) are clearly
satisfied for all h ∈ M = Nh0 , Theorem 1.2 gives that Nh0 is locally invariant for
(1.1). Replace α in (5.14) by

α̃(u, h0) := h0 +
NLA−1∑

i=1

uiλi, u = (u1, . . . , uNLA−1) ∈ RNLA−1,

which is a parametrization of Nh0 . A similar procedure as above yields an RNLA−1-
valued diffusion process Z such that rt = α̃(Zt, h0) is the unique continuous lo-
cal solution to (1.1), whence (5.13). (Notice that, by construction, Z is time-
homogeneous.) Since FlΞt (h0) ∈ Nh0 , for all t ≥ 0 where it is defined, it is easy to
modify Z such that (5.12) is satisfied too. �

We remark that the form of the FDRs, (5.12) and (5.18), has already been
derived in [2] and [4] under the assumption of (5.4) and DLA = 〈Ξ, λ1, . . . , λNLA−1〉.
Above we have provided the sufficiency and necessity of these conditions and its
consequences in a more general (and appropriate) functional-analytic setup.

5.2. Distributional Properties. In the sequel we shall argue why under the hy-
potheses of Theorem 5.3 the stopped factor process Zt∧τ has nice distributional
properties. We could argue by stochastic methods such as Malliavin Calculus (out-
lined in [15]), but here we argue directly by arguments on hypoelliptic differential
operators as outlined in [19].

Given U ⊂ Rn open and d + 1 smooth vector fields V0, . . . , Vd : U → Rn and a
smooth function c : U → R, then the second order differential operator

L(f) :=
1
2

d∑
i=1

V 2
i (f) + V0(f) + cf
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for smooth f : U → R is said to be of sum of the squares type. The action of a
vector field V = (V 1, . . . , V n)ᵀ on f is defined via

V (f)(x) =
n∑

i=1

V i(x)
∂

∂xi
f(x)

for x ∈ U and f : U → R smooth. The formal adjoint of L, denoted by L∗, is also
of this type

L∗ =
1
2

d∑
i=1

V 2
i − V0 +

d∑
i=1

φiVi + ψ,

with smooth functions φ1, . . . , φd, ψ : U → R, only drift and potential are changed.
This is due to the formula V ∗ = −V −

∑n
i=1

∂
∂xi

V i(x), where the second term acts
as multiplication operator on smooth functions.

The second order differential operator is said to be hypoelliptic if for all u ∈
D′(U) with Lu ∈ C∞(U) the conclusion u ∈ C∞(U) holds. We now state Lars
Hörmander’s famous Theorem on sum of the squares operators (see [19], also for
the notions on distributions):

Theorem 5.6. Given smooth vector fields V0, . . . , Vd : U → Rn and assume that
the involutive distribution generated by V0, . . . , Vd, [Vi, Vj ], . . . for i, j = 0, . . . , d has
full rank at all points of U , then the operator L = 1

2

∑d
i=1 V

2
i +V0 +c is hypoelliptic

for any smooth function c : U → R.

Remark 5.7. Notice that on could replace V0 by −V0+
∑d

i=1 φiVi without changing
the generated distribution. This means that – under the above assumptions – also
L∗ is hypoelliptic.

Given smooth vector fields X0, . . . , Xd : U → Rn. The generator of a Rn-valued
Ito diffusion Zt on U

dZt = X0(t, Zt) +
d∑

i=1

Xi(t, Zt) ◦ dW i
t ,

written in Stratonovich form, is a sum of the squares operator namely

L =
1
2

d∑
i=1

X2
i +X0.

Theorem 5.8. Given the assumptions of Theorem 5.3, h0 ∈ U ∩D(A∞) \S and
in particular the parametrization (5.14). For K ⊂ V a compact neighborhood of
0 ∈ V , we define the stopping time τ := inf{t ≥ 0, Zt /∈ K} ∧ ε, then the solution
of equation (1.1) with initial value h0 satisfies

rt = FlΞt (h0) +
NLA−1∑

i=1

Zi
tλi

for 0 ≤ t ≤ τ . The distribution of the factor process Zt∧τ can be decomposed
according to

((Zt∧τ )∗P )(A) := P (Zt∧τ ∈ A) =
∫

A

λt(x)dx+ µ∂K,t(A),

for 0 < t < ε and A ⊂ K. Here λ ∈ C∞(]0, ε[×K◦,R) is a non-negative function
and µ∂K,t is a positive measure on K with support in ∂K for 0 ≤ t < ε. In
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particular µ∂K,t(A) = P ({Zt∧τ ∈ A} ∩ {τ ≤ t}) and P ({(Zt∧τ ) ∈ A} ∩ {τ > t}) =∫
A
λt(x)dx.

Proof. We only have to prove that P ({(Zt∧τ ) ∈ A}∩{τ > t}) admits the described
representation with λ ∈ C∞(]0, ε[×K◦,R). We first define a time dependent distri-
bution on K◦, namely

u(t, f) := E(f(Zt∧τ )| τ > t)P (τ > t)

for any test functions f ∈ D(K◦) and t ∈ [0, ε[. For the notations of distributions
see [19]. We observe that u(0) = δ0, the Dirac distribution at 0 ∈ K◦ ⊂ V . From
classical stochastic analysis we know that

∂

∂t
E(f(Zτ∧t)) = E((Ltf)(Zτ∧t)),

where Lt denotes the (time-dependent) generator of the process Zτ∧t on K◦ and
f ∈ D(K◦). Translated to distributions we obtain

∂

∂t
u(t) = L∗tut

for t ∈ [0, ε[, since the support of f lies in K◦. Now we can identify the operator
− ∂

∂t + L∗t = ( ∂
∂t + Lt)

∗
on ]0, ε[×K◦ with the adjoint of the L̃ := ( ∂

∂t + Lt). But L̃
is the generator of the process [0, ε[×V -valued diffusion Z̃t defined by

Z̃0
t = t, Z̃i

t = Zi
t for i = 1, . . . , NLA.

This is seen by directly calculating the generator L̃ of Z̃, compare also the proof of
Theorem 5.3. Hence we have to prove that L̃ is hypoelliptic. The involved vector
fields X̃0, . . . , X̃d are α-related to the vector fields µ, σ1, . . . , σd, where α denotes
the parametrization from (5.14).

dZ̃t = X̃0(Z̃t)dt+
d∑

i=1

X̃i(Z̃t)dW i
t

X̃0∼αΞ, . . . X̃d∼αΣd

By the assumptions (F ) the operator L̃ and L̃∗ are seen to satisfy the assumptions
of Theorem 5.6 (see also Theorem 22.2.1 of [19]), since by the proof of Proposition
3.10 the Lie brackets of α-related vector fields are α-related. Therefore by L̃∗u = 0
and hypoellipticity of L̃∗ we obtain u(t, f) =

∫
K
λ(t, x)f(x)dx for all f ∈ D(K◦)

and 0 < t < ε with stated regularity for λ. �

5.3. Classification of the manifolds. We finally show that λ1, . . . , λNLA−1 have
to satisfy a functional relation which depends on βij (see (5.6)). Let the assumptions
of Theorem 5.3 be in force. As shown in the proof of Lemma 5.1 we obtain DLA =
〈Π, λ1, . . . , λNLA−1〉 on U∩D(A∞). Hence, as in (5.10), there exist smooth functions
cij on U ∩D(A∞) such that, for all h ∈ U ∩D(A∞),

DΠ(h)λi = Aλi +
d∗∑

k,l=1

(Dakl(h)λi) Λkl =
NLA−1∑

j=1

cij(h)λj . (5.19)
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Here we have used the notation from the proof of Lemma 5.1, see (5.8). Now fix
h ∈ U ∩D(A∞). Expressed as a point-wise equality for functions, (5.19) reads

∂x

λi(x) +
1
2

d∗∑
k,l=1

(Dakl(h)λi) Λk(x)Λl(x)

 =
NLA−1∑

j=1

cij(h)λj(x), ∀x ∈ R≥0,

where Λi(x) :=
∫ x

0
λi(η) dη. Integration with respect to x yields

∂xΛi(x) = −1
2

d∗∑
k,l=1

(Dakl(h)λi) Λk(x)Λl(x) +
NLA−1∑

j=1

cij(h)Λj(x) + λi(0),

for all x ∈ R≥0. Thus every h ∈ D(A∞) implies a system of ODEs (Riccati
equations) for the functions Λ1, . . . ,ΛNLA−1, which have to hold simultaneously for
all h ∈ D(A∞).

Remark 5.9. As a simple remark we can state that the long rates rL
t := limx→∞ rt(x)

are deterministic in the case of a finite dimensional realization, which is due to the
fact that limx→∞ λi(x) = 0, compare with [20].

6. Applications

In the seminal papers [4] and [2] finite-dimensional realizations, in particular the
Hull-White extensions of the Vasicek and CIR-model, are considered for the first
time from the geometric point of view. In addition to their excellent treatment
(compare Section 5 of [2] or Section 7 of [4]), we prove that the Hull-White exten-
sions of the Vasicek and CIR model are the only 2-dimensional local HJM models
and we demonstrate the importance of the corresponding singular sets. The same
type of analysis can also be performed in higher dimensional cases, which will be
done elsewhere. At the end of this section we provide an example of how to em-
bed the Svensson family as a leaf of a weak foliation associated to a functional
dependent volatility structure.

As in Section 5 we let m = 0 and here also d = 1 (dimension of the Brownian
motion), hence NLA = 2. We let (F) be in force on V = U ∩D(A∞). Hence (5.4)
tells us that

Σ(r) = Φ(r)λ, r ∈ U ,
for some λ ∈ D(A∞0 ) \ {0} and a smooth map Φ : U → R (which is of the form
Φ = φ ◦ ` by (A1)). Without loss of generality we can assume that Φ > 0, since
(A1) requires “linear independence” of Φ which here simply means Φ 6= 0. We want
to specify under which conditions this volatility structure admits 2-dimensional
realizations and how they look like. We shall show that it has to be either of the
Vasicek or CIR type. This is already done in Section 7.3 of [4], however, their
special setting does not allow to treat the CIR-case.

Writing ψ(r) := Φ(r)(DΦ(r) · λ), we obtain for r ∈ U ∩D(A∞)

DΣ(r) · h = (DΦ(r) · h)λ
DΣ(r) · Σ(r) = Φ(r)(DΦ(r) · λ)λ = ψ(r)λ

Ξ(r) =
d

dx
r + Φ(r)2λ

∫
λ− 1

2
ψ(r)λ

DΞ(r) · h =
d

dx
h+ 2Φ(r)(DΦ(r) · h)λ

∫
λ− 1

2
(Dψ(r) · h)λ.
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Consequently we can calculate the Lie bracket

[Ξ,Σ](r) = Φ(r)
d

dx
λ+ 2Φ(r)ψ(r)λ

∫
λ− 1

2
Φ(r)(Dψ(r) · λ)λ−

− (DΦ(r) · d
dx
r)λ− Φ(r)2(DΦ(r) · λ

∫
λ)λ+

1
2
ψ(r)(DΦ(r) · λ)λ.

As in (5.10) we have [Ξ,Σ](r) ∈ 〈λ〉 on U ∩ D(A∞). We can divide by Φ(r) and
obtain an equation

d

dx
λ+ 2ψ(r)λ

∫
λ− θ(r)λ = 0

with some smooth function θ : U ∩D(A∞) → R. There are consequently two cases:
i) If λ and λ

∫
λ are linearly independent in D(A∞), then by derivation with

respect to r we obtain that ψ and θ are constant, say 2ψ(r) = a and θ(r) = b
with real numbers a and b. Defining Λ :=

∫
λ we obtain finally a Riccati

equation for Λ, which yields the CIR-type if a 6= 0 or the Vasicek-type if
a = 0:

d

dx
Λ +

a

2
Λ2 + bΛ = λ(0), Λ(0) = 0. (6.1)

The Ho-Lee model is considered as particular case of the Vasicek model for
b = 0.

ii) If λ and λ
∫
λ are linearly dependent in D(A∞), then we necessarily obtain

an equation of the type

d

dx
λ+ bλ = 0,

which yields that λ is vanishes identically, since otherwise λ and λ
∫
λ are

linearly independent. This case was excluded at the beginning.
Notice that by (6.1), λ(0) = 0 if and only if λ = 0, which is not possible. Hence
a fortiori we have λ(0) 6= 0, such that by rescaling we always can assume that
λ(0) = 1. This observation slightly improves the discussion in Section 7.3 in [4].

By the definition of ψ we have DΦ2(r) · λ = a, hence we obtain the following
representation for Φ. We split D(A∞) into Rλ+E, where E := ker ev0. We denote
by pr : D(A∞) → E the corresponding projection. Then

Φ(h) =
√
a(ev0(h)) + η(pr(h)), (6.2)

where η : pr(U∩D(A∞)) ⊂ E → R is a smooth function (compare with Proposition
7.3 of [4]).

In view of (5.7) we have

S =
{
h ∈ U ∩D(A∞) | Π(h) = Ah+ Φ(h)2λ

∫
λ ∈ 〈λ〉

}
,

see (5.5). Thus, if λ and λ
∫
λ are linearly independent in D(A∞) then any h ∈ S

is necessarily of the form
h = a1 + a2Λ2 + a3Λ

in all cases for some real numbers ai. By the particular representation of Φ we
obtain that a2 = aa1 + g(a3), where g is some smooth real function derived from

aa1 + η(a2Λ2 + a3Λ) = a2.
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By FlX we denote the local (semi-)flow of a vector field X on U ∩D(A∞). The
leaves through r∗ of the weak foliation are given by the local parametrization

(u0, u1) 7→ FlΠu0
(r∗) + u1

d

dx
Λ

if r∗ does not lie in the singular set S. If r∗ ∈ S, then the leaf is a one dimensional
immersed submanifold of 〈1,Λ,Λ2〉. Notice that the stochastic evolution of the
factor process takes place in the u1-component, see Theorem 5.3 and Remark 5.4.

We summarize the preceding results in the following theorem.

Theorem 6.1. Let S and U be as above. Assume that Σ admits a 2-dimensional
realization around any initial curve r∗ ∈ U ∩ D(A∞) \ S. Then there exists λ ∈
D(A∞0 ) and a function Φ : U → R>0 of the form (6.2) such that Σ(h) = Φ(h)λ.
The singular set S is a (possibly empty) subset of 〈1,Λ,Λ2〉, where Λ =

∫
λ satisfies

the Riccati equation (6.1). The local HJM model is an affine short rate model. That
is, for every initial curve r∗ ∈ U ∩D(A∞) there exist functions b : R≥0 × R → R,
θ : R≥0 → R and a stopping time τ > 0 such that

rt∧τ = FlΠt∧τ (r∗) +Rt∧τ λ (6.3)

is the unique U-valued local solution to (1.2) and the short rates Rt = rt(0) follow,
locally for t ≤ τ , a time-inhomogeneous diffusion process

dRt = b(t, Rt) dt+
√
aRt + θ(t) dWt.

This process becomes time-homogeneous if and only if r∗ ∈ S, and then rt∧τ ∈ S
for all t ≥ 0.

Proof. We know that λ(0) 6= 0. Hence (6.3) follows from (5.12) and Remark 5.4.
The rest of the theorem is a consequence of Theorem 5.3 and the preceding discus-
sion. �

6.1. The Hull-White extension of the Vasicek model. We consider the vola-
tility structure of the Vasicek model: Σ(r)(x) = ρ exp(−βx) = ρλ with ρ > 0 and
β > 0, for r ∈ U ∩D(A∞) = D(A∞) and x ≥ 0. Then by the above formulas

[Ξ,Σ] = −βρλ.
The singular set S is characterized by

d

dx
h+

ρ2

β
exp(−βx)(1− exp(−βx)) = c exp(−βx)

for some real c. Therefore a2 is some fixed value, namely a2 = ρ2

2 and a1, a3 are
arbitrary. Consequently the singular S set is an affine subspace for the fixed values
ρ, β:

h = a1 −
ρ2

2
Λ2 + a3Λ.

Going back to traditional notations for the Vasicek model we write

Λ(x) =
1
β

(1− exp(−βx))

BV (x) = Λ′(x) = e−βx

AV (x) = bΛ(x)− ρ2

2
Λ(x)2,
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then h lies in the singular set S if and only if

h ∈ AV + 〈BV 〉

for some value b (which becomes an additional parameter in the short rate equation).
The solution for r∗ in the singular set reads as follows

rt = AV +BV Rt

dRt = (b− βRt) dt+ ρ dWt,

where Rt = ev0(rt) denotes the short rate, which is the Vasicek short rate model.
Outside the singular set S we have a 2-dimensional realization. First we calculate

the deterministic part of the dynamics

FlΠu0
(r∗)(x) = Su0r

∗(x) +
∫ u0

0

Su0−s(
ρ2

β
exp(−βx)(1− exp(−βx)) ds

= Su0r
∗(x) +

ρ2

2

∫ u0

0

d

dx
(Λ)2(x+ u0 − s) ds

= r∗(x+ u0) +
ρ2

2
Λ(x+ u0)2 −

ρ2

2
Λ(x)2.

If we identify u0 with the time variable t, which is possible since the stochastics
only occurs in direction of BV (see Remark 5.4), we obtain by direct calculations
for (5.12)

rt(x) = r∗(x+ t) +
ρ2

2
Λ(x+ t)2 − ρ2

2
Λ(x)2 + Λ′(x)Zt

dZt = −βZt dt+ ρ dWt.

A parameter transformation yields the customary form, namely

Rt = e−βtr∗(0) +
∫ t

0

e−β(t−s)b(s) ds+ Zt.

This yields the following expressions:

AHWV (t, x) = r∗(x+ t) +
ρ2

2
Λ(x+ t)2 − ρ2

2
Λ(x)2−

− Λ′(x)Λ′(t)r∗(0)− Λ′(x)
∫ t

0

e−β(t−s)b(s) ds

BHWV (x) = BV (x) = Λ′(x)

dRt = (b(t)− βRt) dt+ ρ dWt

rt = AHWV (t) +BHWV Rt

b(t) =
d

dt
r∗(t) + βr∗(t) +

ρ2

2β
(1− exp(−2βt)).

The functions AHWV and BHWV are solutions of time-dependent Riccati equations
constructed by geometric methods. The equation for b follows from the fact that
AHWV (t, 0) = 0.
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6.2. The Hull-White extension of the CIR model. We proceed in the same
spirit: Σ(r) := ρ

√
ev0(r)λ for ρ > 0. The volatility structure is defined on the

convex open set U = {ev0(r) > ε} for some ε > 0. The function Λ :=
∫
λ satisfies

(in certain normalization) a Riccati equation, namely

d

dx
Λ +

ρ2

2
Λ2 + βΛ = 1, Λ(0) = 0.

We obtain the solution (see e.g. [9, Section 7.4.1])

Λ(x) =
2(exp(x

√
β2 + 2ρ2)− 1)

(
√
β2 + 2ρ2 − β)(exp(x

√
β2 + 2ρ2)− 1) + 2

√
β2 + 2ρ2

.

Under this assumption we can proceed as above: the singular set S is determined
by the equation

Π(h) =
d

dx
h+ ρ2ev0(h)ΛΛ′ ∈ 〈λ〉 ,

hence

h = a1 +
ρ2

2
a1Λ2 + a3Λ.

Again a1 and a3 can be chosen freely, which completely determines S. Traditionally
one writes the singular set in the following form:

ACIR = bΛ

BCIR = 1− βΛ− ρ2

2
Λ2 = Λ′

with some additional parameter b and we obtain equally that h lies in S if and only
if

h ∈ ACIR + 〈BCIR〉 .
The short rate dynamics follows the known pattern:

rt = ACIR +BCIRRt

dRt = (b− βRt) dt+ ρ
√
Rt dWt

for r∗ ∈ S. Outside the singular set we have a 2-dimensional realization. First we
calculate the deterministic part, by the variation of constants formula,

FlΠu0
(r∗)(x) = Su0r

∗(x) + ρ2

∫ u0

0

FlΠs (r∗)(0)(Su0−s(Λ′Λ))(x) ds.

Identifying u0 with the time parameter yields the following formula 2-dimensional
realization, which is derived by direct calculations,

rt = FlΠt (r∗) + Λ′Zt

dZt = −βZt dt+ ρ
√
c(t) + Zt dWt,

where c(t) = FlΠt (r∗)(0). The short rate is given through Rt = c(t) + Zt and

dRt = (c′(t)− βZt) dt+ ρ
√
Rt dWt

= (b(t)− βRt) dt+ ρ
√
Rt dWt.

Notice that λ(0) = Λ′(0) = 1 by the Riccati equation and b(t) = c′(t) + βc(t).
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This formula closes the circle with the classical Hull-White extension of the
CIR-model:

AHWCIR(t, x) = FlΠt (r∗)(x)− c(t)Λ′(x)

BHWCIR = BCIR = Λ′

dRt = (b(t)− βRt) dt+ ρ
√
Rt dWt

rt = AHWCIR(t) +BHWCIRRt

b(t) = βc(t) +
d

dt
c(t)

c(t) = r∗(t) + ρ2

∫ t

0

c(s)(ΛΛ′)(t− s) ds.

Again this is a geometrical construction of solutions of time-dependent Riccati
equations.

6.3. Fitting procedures as leaves of foliations. A popular forward curve-fitting
method is the Svensson [31] family

GS(x, z) = z1 + z2e
−z5x + z3xe

−z5x + z4xe
−z6x.

It is shown in [10] that the only non-trivial interest rate model that is consistent
with the Svensson family is of the form

rt = Z1
t g1 + · · ·+ Z4

t g4, (6.4)

where

g1(x) ≡ 1, g2(x) = e−αx, g3(x) = xe−αx, g4(x) = xe−2αx,

for some fixed α > 0. Moreover,

Z1
t ≡ Z1

0 , Z3
t = Z3

0e
−αt, Z4

t = Z4
0e
−2αt (Z4

0 ≥ 0)

and Z2 satisfies

dZ2
t =

(
Z3

t + Z4
t − αZ2

t

)
dt+

√
αZ4

t dWt. (6.5)

As above, W is a real-valued Brownian motion.
We now shall find a 2-dimensional local HJM model that is of the form (6.4)

whenever r0 =
∑4

j=1 zjgj with z4 ≥ 0. In view of (6.5), a candidate for Σ is given
on the half space U := {` > 0} by

Σ(h) =
√
α`(h)g2,

where ` is some continuous linear functional on H with `(g1) = `(g2) = `(g3) = 0
and `(g4) = 1. Straightforward calculations show, for h ∈ U ∩D(A∞),

Ξ(h) =
d

dx
h+ `(h)g2 − `(h)g2

2

[Ξ,Σ](h) = −α
√
α`(h)g2 −

`(Ξ(h))
2
√
α`(h)

g2.

(the clue is that ` ◦ Σ ≡ 0). Hence indeed the Lie algebra generated by Σ and Ξ
has dimension 2 on U ∩D(A∞) \S.
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[7] D. Duffie, D. Filipović, and W. Schachermayer, Affine processes and applications in finance,

Annals of applied probability, to appear (2003).

[8] D. Duffie and R. Kan, A yield-factor model of interest rates, Math. Finance 6 (1996), no. 4,
379–406.
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