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Abstract. We apply methods from Malliavin Calculus in the spirit of Fourny
et al. in order to calculate Taylor expansion of model prices with respect to

perturbation parameters. The methods allow to calculate certain random vari-

ables, so called weights, explicitly, which serve to prove analytically tractable
formulas approximating actual model prices. We focus on hypo-elliptic rather

than elliptic equations such as the Hobson-Rogers model.

This approach is then applied to investigate whether complete stochastic
volatility models like the Hobson-Rogers model can produce appropriate smiles

or not. Furthermore we suggest generalizations of the Hobson-Rogers model

which remain complete, but fit the features of actual market data much better.

1. Introduction and Results

Most common stochastic volatility models for asset prices, such as [15, 11, 23],
for example, include a non-traded source of risk, see also [17, 13, 22, 28, 19]. Thus,
the corresponding markets are incomplete and option prices are not uniquely de-
termined by no arbitrage arguments. An alternative approach models volatility as
a deterministic function of the underlying, see for example [19]. In such models
instantaneous volatility is perfectly correlated with the underlying price process.
Recent empirical evidence in [25] for stock index options and [25], [27] for bond
options and foreign exchange options does not support this hypothesis.

To overcome the deficiencies of deterministic stochastic volatility models Hobson
and Rogers [12] introduce a class of complete stochastic volatility models, where
the volatility is a function of the past (logarithms of) underlying prices. Related
work is [30], and, slightly different in spirit, [31].

A concrete example from Hobson and Rogers [12] will be the starting point
for the empirical part of this research. For brevity we call this model simply the
Hobson-Rogers model (HR). In their paper the authors observe that the model
effectively accounts for the possibilities of smiles, and illustrate this with several
graphs, produced by numerically solving the corresponding partial differential equa-
tion. Recent work on the numerics of the model and variants is di Francesco et al.
(see for instance [8]).

Despite of its attractive features, there is little echo in empirical research. We
found only [29], where the ideas are extended to term-structure modeling.

In this paper we calibrate the Hobson-Rogers model to actual option prices using
an analytical approximation, see below. We compare volatility surfaces produced
by that model to actual volatility surfaces.

To this end, we considered options on British Pound/US Dollar futures, where
we had settlement prices for the market for all traded options from 1996 to 2002.
Using this data, we selected a number of (typical) days and estimated the implied
volatility surface by numerically inverting the Barone-Adesi Whaley model (as these
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Figure 1

options are American style options on futures, see [2]) and then expressing the result
in terms of the Black implied volatilities (European style options on futures, see
[3]). The underlying asset price was the settlement price of the futures contract
at the same moment as the settlement of all the options contracts and the interest
rate used was the US Dollar Libor interpolated for the expiration of the options
contract. As representative, we selected one day, 11 February 2002, and found
five maturities were available, March 2002, April 2002, May 2002, June 2002 and
September 2002. For each of these maturities, we had quoted call and put options
in a fairly wide range and we determined the Black implied volatilities and plotted
these across striking price and time to expiration (see Figure 1). We confirm, that
the Hobson and Rogers model will produce what appears to be smiles and term
structure effects for implied volatilities qualitatively (see Figure 2a). However, when
the scale is chosen to match that of observed option implied volatility surfaces, the
Hobson and Rogers surfaces appear to be almost flat (see Figure 2b). While this is
just one particular instance, it seems quite intuitive, that the volatility process in the
Hobson-Rogers model, being of moving average type, in general is not sufficiently
wild to produce volatility smiles of the order of magnitude corresponding to the
observed option prices, unless we allow unreasonable values of the parameters, that
defy the original idea that the model is a correction to Black-Scholes. We claim
that a simple generalisation of the Hobson and Rogers model, referred to as the
generalised Hobson Rogers model (GHR) can do the job (see Figure 3).

In mathematical finance we model price behaviour by semi-martingales (S(ε)
t )t≥0,

which often depend on additional parameters, here denoted by ε ≥ 0. We propose a
method (inspired by the successful approach [10]), which allows to calculate deriva-
tives of the function ε 7→ E(φ(S(ε)

T )) efficiently. To be more precise, we are able to
prove that – under some technical assumptions – there exist random variables π(n)

such that

∂n

∂εn
E(φ(S(ε)

T )) = E(φ(S(ε)
T )πn).
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Figure 2

These results and particular methods how to calculate the weights πn are proved
in Theorem 1 and Theorem 2. In contrast to [10] we are interested in hypo-elliptic
equations rather than elliptic ones, as for instance the Hobson-Rogers model. Addi-
tionally to the well-known PDE methods for expansions with respect to parameters
(private communication with Sam Howison), the Malliavin Calculus approach pro-
vides

• explicit algorithms how to calculate the weights, even if the functions in
question are not real analytic.

• probabilistic approaches for approximations of model prices, which allow
efficient Monte-Carlo evaluations.

Hence we are able to calculate Taylor expansions of model prices to obtain an-
alytically tractable approximations of the actual model prices. These analytically



4 FRIEDRICH HUBALEK, JOSEF TEICHMANN, ROBERT TOMPKINS

Figure 3

tractable approximations are then applied to the determination of model parame-
ters, which yields an efficient method how to determine approximatively if a model
works or not. The demonstration of this approach is exemplified in the previous
Hobson-Rogers models.

The article is structured as follows: in Section 2 we introduce the main tools from
1-dimensional Malliavin Calculus and prove the main theorems. Furthermore we
prove that the weights πn can be calculated as polynomials of integrated Gaussian
polynomials (see Remark 1). Two examples are added which correspond precisely
to the model proposed by [12] and our generalisation of it. In Section 3 we introduce
the models in question and calculate the respective approximative prices applying
Theorem 1.

2. Partial Integration and Taylor expansion of Prices

We shall analyse models for the price returns, which are given as parameter-
dependent stochastic processes (Xx,ε

t )0≤t≤T for a parameter ε ≥ 0: for ε = 0 we
find ourselves in a well-known model (for instance the Black-Scholes model). We
are interested in Taylor expansions of prices E(φ(Xx,ε

T )) with respect to the param-
eter ε (the risk neutral measure does not depend on ε!). Therefore we introduce a
convenient class of families (Fε)ε≥0 of random variables, whereon we can apply par-
tial integration techniques. For more general considerations and additional results,
see [24].

We shall apply the following techniques derived from Malliavin Calculus (see [18]
and [21]), which are inspired by [10]. The method allows to write approximations
of model prices by ordinary integration of polynomials with respect to a Gaussian
density along simple subsets. We present the method in the simplest setting, i.e. a
Gaussian probability space generated by a one dimensional Brownian motion.

Let (Ω,F , P ) be a probability space, which is generated by a one-dimensional
Brownian motion (Bt)0≤t≤T for some T > 0, i.e. F = FT . For the reader who is
familiar with Ito-integration, but does not feel comfortable with Malliavin Calculus,
we list the following simple rules, which allow to follow all calculations which are
done in the article:
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(1) The Malliavin derivative associates to random variables (in its domain
of definition) X ∈ dom(D) ⊂ L2(Ω) a not necessarily adapted process
(DsX)0≤s≤T ∈ L2([0, T ]×Ω). The Malliavin derivative is a closed, densely
defined, unbounded linear operator and the following rules hold,

Ds(1Ω) = 0 (2.1)

Ds(
∫ T

0

σ(s)dBs) = σ(s)1[0,T ](s), (2.2)

Ds(φ(X1, . . . , Xn)) =
n∑

i=1

∂

∂xi
φ(X1, . . . , Xn)DsXi (2.3)

for Xi ∈ dom(D), i = 1, . . . , n and σ a square-integrable, deterministic
function on [0, T ]. φ is given as a C1-function on Rn.

(2) The adjoint of the Malliavin derivative is the Skorohod integral δ, which
associates to a not necessarily adapted process (Ys)0≤s≤T ∈ dom(δ) ⊂
L2([0, T ]×Ω) a random variable δ(s 7→ Ys) ∈ L2(Ω). The Skorohod integral
is a closed, densely defined, unbounded linear operator and the following
basic partial integration formula holds true

E(Xδ(s 7→ Ys)) = E(
∫ T

0

(DsX)Ysds) (2.4)

on the respective domains. The most important, non-trivial assertion on
Skorohod integration is the relation to Ito-integration: namely, for all
square-inegrable, predictable processes (Ys)0≤s≤T we obtain that (Ys)0≤s≤T ∈
dom(δ) and

δ(s 7→ Ys) =
∫ T

0

YsdBs. (2.5)

(3) By extension of the derivative operator D on Lp-spaces we obtain domains
of definition Dp,1 ⊂ Lp(Ω). By definition of iterated derivatives on the
respective domains we obtain domains of definition Dp,n ⊂ Lp(Ω), where
the Malliavin-derivative can be applied n times. Smooth random variables
are those which lie in the domain of each derivative operator in each Lp,
i.e.

D∞ = ∩p≥1 ∩n≥0 Dp,n. (2.6)

A fortiori smooth random variables are closed under composition with
smooth, polynomially bounded functions and allow Skorohod integration
up to arbitrary orders (see [18]).

(4) For Skorohod integrable process (us)0≤s≤T and F ∈ D∞ with E(
∫ T

0
F 2u2

sds) <
∞, the process (Fus)0≤s≤T is Skorohod-integrable and

δ(s 7→ usF ) = Fδ(s 7→ us)−
∫ T

0

usDsFds (2.7)

holds true.
(5) The Malliavin covariance matrix is a real-valued random variable in the

one-dimensional case,

γ(X) :=
∫ T

0

(DsX)2ds. (2.8)

If γ(X) is invertible almost surely, then X has a density with respect to
Lebesgue’s measure.

We shall deal with families of random variables ε 7→ Gε such that
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• for all ε ≥ 0 the random variable and all its derivatives with respect to ε are
smooth, i.e. ∂k

∂εk Gε ∈ ∩p≥1 ∩n≥0Dp,n for k ≥ 0, together with all Malliavin
derivatives. The derivatives are taken with respect to the topology of D∞,
which is equivalent to the assertion that the maps ε 7→ η(Gε) are smooth,
for all continuous linear functionals η : D∞ → R.

We denote this space by C∞(R≥0,D∞). Notice in particular that this space is
a (smooth) algebra of random variables (see [18], Ch. II, 5.8), where the Skorohod
integral and the Malliavin derivative are well-defined (see [18]). In particular the
constant curve ε 7→ 1 satisfies the requirements. Observe the following rules of
differentiation:

• Malliavin derivatives and Skorohod integrals commute with derivatives with
respect to ε.

• all Malliavin derivatives of derivatives with respect to ε are Skorohod inte-
grable.

Definition 1. A family (ε 7→ Fε) ∈ C∞(R≥0,D∞), which additionally satisfies
that the (Malliavin) covariance matrix γ(Fε) is almost surely invertible for ε ≥ 0
and at ε = 0 (but not necessarily off 0)

1
γ(F0)

∈ D∞ = ∩p≥1 ∩n≥0 Dp,n, (2.9)

is called a family with regular density.

Example 1. We shall provide the following characteristic (and useful!) example
for families with regular density: given a continuous Gaussian process (St)t≥0 with

dSt = (a(t)− λSt)dt + b(t)dBt (2.10)

with continuous (deterministic), square integrable functions a, b : R≥0 → R, we
define the family (Fε)ε≥0 for a fixed number T > 0 and show by simple calculations
that (Fε)ε≥0 ∈ C∞(R≥0,D∞),

Fε := z − η2

2

∫ T

0

(1 + εS2
t )2dt + η

∫ T

0

(1 + εS2
t )dBt, (2.11)

DsFε = η(1 + εS2
s )− 2εη2

∫ T

s

(1 + εS2
t )St exp(−λ(T − t))b(t)dt+

+ 2εη

∫ T

s

St exp(−λ(T − t))b(t)dBt, (2.12)

DsFε|ε=0 = η, (2.13)

∂

∂ε
Fε = −η2

∫ T

0

(1 + εS2
t )S2

t dt + η

∫ T

0

S2
t dBt, (2.14)

γ(Fε)|ε=0 = η2T.

This example will be applied for the generalized Hobson-Rogers model (GHR).

Example 2. A more sophisticated example is given by the following structure,
which resembles a slightly modified version of the original Hobson-Rogers model
(HR):

Fε := z − 1
2

∫ T

0

σ(St)2dt +
∫ T

0

σ(St)dBt, (2.15)

dSt = (−1
2
σ(St)2 − λSt)dt + σ(St)dBt (2.16)
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with σ(s) = η
√

1 + εs2 exp(− ε2s2

M ) for some large constant M . Hence σ is C∞-
bounded and bounded and we obtain (Fε)ε≥0 ∈ C∞(R≥0,D∞) (see [18] or [21]).
The relevant derivatives at ε = 0 read as follows.

DsFε|ε=0 = η,

∂

∂ε
Fε|ε=0 = −

∫ T

0

η2S2
t |ε=0

2
dt +

∫ T

0

ηS2
t |ε=0

2
dBt,

γ(Fε)|ε=0 = η2T,

where (St)t≥0 at ε = 0 is particularly simple, namely a mean-reverting Gaussian
process,

dSt = (−1
2
η2 − λSt)dt + ηdBt.

Theorem 1. Given a family (Fε)ε≥0 ∈ C∞(R≥0,D∞) with regular density. Then
there exist random variables πm ∈ D∞ such that for all φ ∈ C∞

0 (R)

∂m

∂εm
E(φ(Fε))|ε=0 = E(φ(F0)πm) (2.17)

holds true for n ≥ 0.

Definition 2. The random variable πn ∈ D∞ is called nth Malliavin weight for
differentiation with respect to the parameter ε.

Proof. We fix m ≥ 0. For the general construction of the weights we apply the
Faa-di-Bruno formula (see for instance [6]), which calculates the coefficients of the
series

∂m

∂εm
φ(Fε) =

m∑
n=0

φ(n)(Fε)Gn
ε ,

where in Gn
ε polynomials of derivatives of Fε appear. We apply multi-index notation

here,

Gn,m
ε =

∑
λα∈NN\{0}∑
α∈N\{0} λα=n∑

α∈N\{0} αλα=m

m!
λ!

∏
α∈N\{0}

(
1
α

∂α

∂εα
Fε)λα

The following simple consideration, for Gn
0 ∈ D∞ then yields the result,

E(φ(n)(F0)Gn
0 ) = E(φ(n)(F0)

∫ T

0

DsF0DsF0

γ(F0)
dsGn

0 )

= E(
∫ T

0

Dsφ
(n−1)(F0)

DsF0

γ(F0)
Gn

0ds)

= E(φ(n−1)(F0)δ(s 7→
DsF0

γ(F0)
Gn

0 ))

for m ≥ n ≥ 1. By induction we can prove the result. �

We define – in view of the previous proof – the following iterative procedure: let
(Fε)ε≥0 ∈ C∞(R≥0,D∞) be a family with regular density, then

divF (G) := δ(7→ DsF0

γ(F0)
G) (2.18)

for G ∈ D∞, which is an element of D∞ by property 4. of the primer.
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Lemma 1. Let (Fε)ε≥0 ∈ C∞(R≥0,D∞) be family with regular density, such that
F0 is Gaussian, i.e. DsF0 is deterministic and the covariance matrix γ(F0) is
constant. Let furthermore P

(j)
u ∈ R[Rn], for j = 1, 2 be polynomials with contin-

uously time-dependent coefficients on [0, T ] in n variables, and let (Xu)0≤u≤T =
(g1(u) +

∫ T

0
f1(u, t)dBt, . . . , gn(u) +

∫ T

0
fn(u, t)dBt)0≤s≤T be continuous Gaussian

process in Rn, where gi and fi are continous functions on the respective domains.
Then the following assertions hold.

(1) The random variable G :=
∫ T

0
P

(1)
u (Xu)du

∫ T

0
P

(2)
u (Xu)du ∈ D∞, in fact

arbitrary polynomials in such random variables are smooth.
(2) The F -divergence of G is of the same form

divF (G) =
∫ T

0

P (1)
u (Xu)du

∫ T

0

P (2)
u (X)

∫ T

0

DtF0

γ(F0)
dBtdu−

−
n∑

i=1

∫ T

0

∫ T

0

∂

∂xi
P (1)

u (X)fi(u, t)
DtF0

γ(F0)
dtdu

∫ T

0

P (2)
u (Xu)du+

+
n∑

i=1

∫ T

0

∫ T

0

∂

∂xi
P (2)

u (X)fi(u, t)
DtF0

γ(F0)
dtdu

∫ T

0

P (1)
u (Xu)du.

Proof. The integral exists almost surely and satisfies by Hölder estimates all nec-
essary estimates. The continuous process P

(1)
u (Xu) lies in the sum of the first n

chaos subspaces point by point in u, and the integral, too, by closedness and the
polynomial property of D∞, hence the assertion of 1. The second formula follows
by applying the F -divergence point by point in u to the element G by property 4
of the primer. �

Remark 1. A random variable
∫ T

0
P

(1)
u (Xu)du is called an integrated Gaussian

polynomial.

Theorem 2. Let (Fε)ε≥0 ∈ C∞(R≥0,D∞) be a family with regular density, such
that F0 is Gaussian, i.e. DsF0 is deterministic and the covariance matrix γ(F0)
is constant. Furthermore we assume that the derivatives ∂n

∂εn Fε|ε=0 are integrated
Gaussian polynomials. Then πn ∈ D∞ is a polynomial of integrated Gaussian
polynomials.

Proof. By the Faa-di-Bruno formula Gn
0 is a polynomial of integrated Gaussian

polynomials, hence by inductive use of Lemma 1 we obtain that πn is a polynomial
of integrated Gaussian polynomials. �

Remark 2. If πn is a polynomial of integrated Gaussian polynomials, then the
expected value E(φ(F0)πn) can be calculated in two steps: first an ordinary Gaussian
integral applied to a polynomial on some Rn, second the inegration of this result with
respect to Lebesgue measure on [0, T ]m. Both procedures are numerically cheap and
yield quick and good results even for complicated stochastic differential equations.

The applications which we have in mind are certainly solutions of standard sto-
chastic differential equations of the type

dZx,ε
t = V (ε, t, Zx,ε

t )dt + V 1(ε, t, Zx,ε
t )dBt, (2.19)

where the initial value is given by a real vector x ∈ RN and (Bt)t≥0 denotes a
1-dimensional Brownian motion. If the vector fields V, V 1 are regular enough, for
instance real analytic and C∞-bounded, then we can take each coordinate of the
solution process at a certain time T > 0 – viewed as a family of random variables
with respect to ε ≥ 0 – is an element of C∞(R≥0,D∞).
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Corollary 1. Let (Xx,ε
T )ε≥0 ∈ C∞(R≥0,D∞) be a component of the solution process

of equation 2.19, which is a family with regular density. Take a bounded real analytic
function with bounded derivatives φ : R → R, then

E(φ(Xx,ε
T )) =

∑
n≥0

εn

n!
E(φ(Xx,0

T )πn)

for small ε > 0 (the size of the neighborhood might depend on t and x).

Proof. By the Cauchy-Kowalewsky Theorem we know the the associated parabolic
initial value problem has a real analytic solution, which coincides a fortiori with
E(φ(Xx,ε

t )). Hence the Taylor series converges locally and the above representation
holds. �

If we want to prove the convergence of the series for more general payoff functions
φ, we can apply the following sufficient conditions.

Theorem 3. Let (Fε)ε≥0 ∈ C∞(R≥0,D∞) be a family with regular density. Assume
furthermore that the (universally calculated) weights πn satisfy∑

n≥0

εn
0

n!
E((πn)2)

1
2 < ∞

for some ε0 > 0, then for all bounded measurable φ : R → R we obtain

E(φ(Fε)) =
∑
n≥0

εn

n!
E(φ(F0)πn)

for ε < ε0.

Proof. Take a sequence of bounded real analytic φk with bounded derivatives such
that E((φk − φ)2(F0)) → 0 as k →∞, then by the Cauchy-Schwarz inequality

|E(φl(Fε)− φk(Fε))| ≤
∑
n≥0

εn

n!
|E((φk(F0)− φl(F0))πn)|

≤ E((φk − φl)2(F0))
1
2

∑
n≥0

εn
0

n!
E((πn)2)

1
2 → 0

as k, l →∞ on [0, ε0] uniformly in ε. The same holds for all derivatives and hence
we can conclude that ε 7→ E(φ(Fε)) is real analytic and the series above yields the
correct power series expansion. �

A particular feature of the considerations above is, that we do not need the
integrability assumptions on the Malliavin covariance matrix off ε = 0. If we are
able to calculate the πn (which involve terms at ε = 0) and prove a regularity
assumption like

∑
n≥0

εn
0

n! E((πn)2)
1
2 < ∞, we are able to show real analyticity of

the above type for E(φ(Fε)).
Similar reasonings can be applied for the calculation of the Greeks: here we

consider precisely the same setting, only in a two-dimensional framework, since we
consider the process (Xx,ε

t , d
dxXx,ε

t )t≥0 and the respective initial values. By the
Cauchy-Kowalewsky Theorem we are able to conclude that for real analytic φ with
bounded derivatives the expansion

d

dx
E(φ(Xx,ε

t )) =
∑
n≥0

εn

n!
E(φ(Xx,0

t )ρn)

converges, where the ρn are again given by Skorohod integrals. Finally also the
considerations with respect to bounded measurable functions apply.
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Remark 3. If we know from semigroup considerations (analyticity with respect to
parameters) that for all bounded measurable φ the series

E(φ(Xx,ε
t )) =

∑
n≥0

εn

n!
∂n

∂εn
E(φ(Xx,ε

t ))|ε=0

converges for small ε, then we can conclude that

∂n

∂εn
E(φ(Xx,ε

t ))|ε=0 = E(φ(Xx,0
t )πn),

holds true for n ≥ 0, if a uniform convergence – of the respective derivatives with
real analytic φ to derivatives for bounded measurable ones – applies

Example 3. We take (2.11) with a = λ = 0 and b = 1, S0 = 0, and calculate the
outcome for the first and second derivative with respect to ε.

E(φ(Fε)) = E(φ(z − η2

2
T + ηBT ))

∂

∂ε
|ε=0E(φ(Fε)) = E(φ(z − η2

2
T + ηBT )δ(

∂

∂ε
|ε=0Fε

η

η2T
))

=
1

ηT
E(φ(z − η2

2
T + ηBT )BT (−η2

∫ T

0

B2
t dt + η

∫ T

0

B2
t dBt))+

+
1

ηT
E(φ(z − η2

2
T + ηBT )

∫ T

0

(−2η2

∫ T

s

Btdt + ηB2
s + 2η

∫ T

s

BtdBt)ds)

=
1
T

E(φ(z − η2

2
T + ηBT )BT (

B3
T

3
−

∫ T

0

Btdt− η

∫ T

0

B2
t dt))+

+
1
T

E(φ(z − η2

2
T + ηBT )(B2

T T − T 2

2
− 2η

∫ T

0

∫ T

s

Btdtds)),

which has a simple integrated polynomial structure in Gaussian random variables.
For the second derivative we proceed as follows: We observe that two ingredients

for Skorohod integral can be well-calculated, namely

∂

∂ε
|ε=0δ(

∂

∂ε
Fε

DsFε

γ(Fε)
) = δ(

∂2

∂ε2
|ε=0Fε

1
ηT

)+

+δ(
∂

∂ε
|ε=0Fε

Ds
∂
∂ε |ε=0Fε

η2T
)− δ(

∂

∂ε
|ε=0Fε

η

η4T 2

∂

∂ε
|ε=0γ(Fε)),

and

δ(
∂

∂ε
|ε=0Fε

η

η2T
δ(

∂

∂ε
|ε=0Fε

η

η2T
))

as above. Again we shall obtain a simple polynomial structure.

3. Generalised Hobson-Rogers models

In this section we shall provide the basic notions for the simplest specification
of the Hobson-Rogers model, its generalisation and the analytically tractable ap-
proximation procedure as proposed by Theorem 1, which serves for estimating the
parameters easily. In particular both models satisfy the hypothese of Theorem 2,
hence the weights πn can be easily calculated.
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3.1. The Hobson-Rogers Model. Hobson and Rogers proposed in [12] a com-
plete stochastic volatility model with offset functions. We shall only consider mod-
els where we allow the first offset function and we fix a certain dynamics for this
model, which was also proposed in [12]. Fix a time horizon T > 0. Given a price
process (Pt)0≤t≤T , which is a positive, square integrable Ito process on a stochastic
basis (Ω,FT , P ) with one-dimensional Brownian motion (Bt)0≤t≤T , we introduce
Zt := ln(e−rtPt), where r ≥ 0 denotes the interest rate. Then we assume for a
positive parameter λ > 0 the 2-dimensional Markov process (Zt, St)

dZt = µ(St)dt + σ(St)dBt (3.1)

dSt = dZt − λStdt = (µ(St)− λSt)dt + σ(St)dBt, (3.2)

Z0 = z, S0 = s, (3.3)

for volatility and drift vector fields µ, σ which satisfy the usual Lipschitz assump-
tions and σ(s) > 0 for s ∈ R. The process (St)0≤t≤T is the first offset function of
(Zt)0≤t≤T with parameter λ > 0. Defining

θ(s) =
1
2
σ(s) +

µ(s)
σ(s)

,

where we additionally assume that the measure Qt on Ft given through

dQt

dP
= exp(−

∫ t

0

θ(Su)dBu −
1
2

∫ t

0

θ(Su)2du)

is well-defined for 0 ≤ t ≤ T and that Q := QT is a probability measure equivalent
to P on FT (see [9] for a nice elaboration of the relevant conditions). Then the
process B̃t := Bt+

∫ t

0
θ(Su)du is a Q-Brownian motion and the stochastic differential

equation reads as follows with respect to (B̃t)0≤t≤T

dZt = −1
2
σ(St)2dt + σ(St)dB̃t,

dSt = −(
1
2
σ(St)2 + λSt)dt + σ(St)dB̃t,

Z0 = z, S0 = s

for 0 ≤ t ≤ T .
The discounted price process (e−rtPt)0≤t≤T is a Q-martingale and we can apply

the classical no-arbitrage pricing arguments. In particular the market is complete
since this is the only martingale measure equivalent to P . Under Q the price process
satisfies

dPt = rPtdt + σ(St)PtdB̃t

Therefore the price of a European claim, which is given by a measurable function
with at most linear growth q : R → R , is defined by

V (Pt, St, T − t) = er(T−t)E(q(PT )|Ft)

for 0 ≤ t ≤ T via the Markov property. If the Lie algebra spanned by the two
vector fields

(z, s) 7→
(

σ(s)
σ(s)

)
(z, s) 7→

(
− 1

2σ(s)2 − 1
2σ(s)′σ(s)

− 1
2σ(s)2 − λs− 1

2σ(s)′σ(s)

)
or equivalently

(z, s) 7→
(

σ(s)
σ(s)

)
and (z, s) 7→

(
0
λs

)
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spans the tangent space R2 pointwise on R>0 × R (which is the case for non-
vanishing σ and λ 6= 0), then by Hörmander’s ”Sum of the Squares” we know that
V is a smooth function on R>0 × R×]0, T [ and satisfies the boundary condition
V (p, s, 0) = q(p) for all (p, s) ∈ R>0 × R.

One particular choice for σ proposed in [12] is a smooth vector field σ : R → R
such that

σ(s) := η
√

1 + εs2 (3.4)
on some ball with large radius R > 0 and constant outside for fixed ε ≥ 0. Here η is
referred to as minimal level of implied volatility and ε ≥ 0 denotes a parameter cali-
brating the influence of the first offset process (St)t≥0 on the stochastic evolution of
the price process. The results cited in Section 2 stem from this model. In the sequel
we shall refer to this model as Hobson-Rogers model (3.4). Furthermore the option
price depends smoothly on the parameters η, ε and λ on the respective intervals
of definition (see for instance [14]). By standard methods we can find a version
of the solution (Zt, St)0≤t≤T of the stochastic differential equation, which depends
in a smooth way on the initial values and the parameters. Hence by dominated
convergence we obtain families (Z(ε)

T )ε≥0 of random variables in C∞(R≥0,D∞).

3.2. The Generalised Hobson-Rogers Model (GHR). We shall only calculate
with respect to the equivalent martingale measure Q in view of option pricing. In
view of the unsatisfying curvature of the smiles for the model (3.4) we propose the
following generalization:

dZt = −1
2
σ1(St)2dt + σ1(St)dB̃t (3.5)

dSt = µ(St)dt + σ2(St)dB̃t (3.6)

Z0 = z, S0 = s (3.7)

with the following specification,

σ1(s) = η(1 + εβs2) (3.8)

σ2(s) = χη (3.9)

µ(s) = −η2

2
− λs (3.10)

for fixed ε ≥ 0. In contrast to (3.4) we are additionally given two positive parameters
χ ≥ 1 and β ∈ [0, 1

2 ] (even though only the product εβ enters into the formulas). By
Hörmander’s Theorem we can analogously conclude that the option price depends
smoothly on the initial values. Furthermore the option price depends smoothly on
the parameters η, ε and λ and the respective intervals of definition. By standard
methods we can find a version of the solution (Zt, St) of the stochastic differential
equation, which depends smoothly on the initial values and the parameters, which
we shall assume in the sequel.

3.3. Analytically tractable approximations for GHR. We can calculate the
solution of GHR directly

dZ
(ε)
t = −1

2
η2(1 + εβS2

t )2dt + η(1 + εβS2
t )dB̃t (3.11)

dSt = (−η2

2
− λSt)dt + χηdB̃t. (3.12)

For 0 ≤ t ≤ T the curve ε 7→ Z
(ε)
t lies in C∞(R≥0,D∞), which follows by calculating

the Malliavin derivatives and the derivatives with respect to ε. Furthermore, the
Malliavin covariance matrix is invertible for t > 0 with inverse bounded with respect
to all Lp-norms at ε = 0.
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The solution on [0, T ] is given by

St = e−λts−
∫ t

0

e−λ(t−u) η
2

2
du +

∫ t

0

χηe−λ(t−u)dB̃u,

which is a Gaussian process. We can express the Brownian motion (B̃t)t≥0 by this
process,

dB̃t =
1
χη

(
η2

2
+ λSt)dt +

1
χη

dSt,

which leads to

dZ
(ε)
t = −1

2
η2(1 + εβS2

t )2dt +
1
χ

(1 + εβS2
t )(

η2

2
+ λSt)dt +

1
χ

(1 + εβS2
t )dSt

= (−1
2
η2 +

η2

2χ
)dt +

λ

χ
Stdt +

1
χ

dSt+

+ ε(
η2β(1− 2χ)

2χ
S2

t dt +
λβ

χ
S3

t dt +
β

3χ
dS3

t − βη2χStdt)+

− ε2

2
β2η2S4

t dt.

This can be applied to the calculation of the first and second variation at ε = 0 of
the process (Z(ε)

t )0≤t≤T :

Z
(0)
t = z + (−1

2
η2 +

η2

2χ
)t +

∫ t

0

λ

χ
Sudu +

1
χ

St

∂

∂ε
Z

(ε)
t |ε=0 =

η2β(1− 2χ)
2χ

∫ t

0

S2
udu +

λβ

χ

∫ t

0

S3
udu +

β

3χ
S3

t−

− β

3χ
s3 − βη2χ

∫ t

0

Sudu,

∂2

∂ε2
Z

(ε)
t |ε=0 = −

∫ t

0

β2η2S4
udu.

We have proved the following Theorem:

Theorem 4. The weights πn for the GHR model are polynomials of integrated
Gaussian polynomials.

Proof. The process Z
(0)
t is a Gaussian process and the covariance matrix is in-

vertible. Furthermore derivatives ∂n

∂εn Z
(ε)
t |ε=0 are seen to be integrated Gaussian

polynomials. Hence we apply Theorem 2. �

Remark 4. We could have chosen

σ(s) = η(1 + εs2)β (3.13)

to obtain the same first two variations at ε = 0, which expresses the fact that for
β = 1

2 and χ = 1 we are near the Hobson-Rogers model.

The pricing of a European call option is then given by

V (z, s, K, T, r, ε, λ, χ, η, β) = E(e−rT (PT −K)+)

= KE(e−rT (
PT

K
− 1)+)

= KE(e−rT 1{PT
K −1≥0}(

PT

K
− 1)).

This is the precise price, for which we try to find an analytically tractable approx-
imation.
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We shall apply the Taylor expansion from Theorem 2 up to first order. We
know by this theorem that the weights will be polynomials of inegrated Gaussian
polynomials. We can calculate the derivative directly, avoiding the calculation of
the Skorohod integral, since

DsZ
(0)
T

γ(Z(0)
T )

=
1

ηT

for 0 ≤ s ≤ T , hence

E(φ(Z(0)
T )δ(

∂

∂ε
|ε=0Z

(ε)
T

DsZ
(ε)
T

γ(Z(0)
T )

)) = E(
∫ T

0

φ′(Z(0)
T )η1[0,T ](s)

∂

∂ε
|ε=0Z

(ε)
T

1
ηT

ds)

= E(φ′(Z(0)
T )

∂

∂ε
|ε=0Z

(ε)
T ).

So we conclude by

V (z, s, K, T, r, 0, λ, χ, η, β) = KE(e−rT 1
{

exp(rT+Z
(0)
T

)
K −1≥0}

(
exp(rT + Z

(0)
T )

K
− 1)+)

(3.14)

∂

∂ε
|ε=0V = KE(e−rT 1

{
exp(rT+Z

(0)
T

)
K −1≥0}

exp(rT + Z
(0)
T )

K

∂

∂ε
|ε=0Z

(ε)
T ) (3.15)

=
β

3χ
E(1

{erT+Z
(0)
T ≥ln K}

eZ
(0)
T (S3

T − s))+

+
∫ T

0

E(1
{erT+Z

(0)
T ≥1}

eZ
(0)
T (

λβ

χ
S3

u +
η2β(1− 2χ)

2χ
S2

u − βχη2Su))du. (3.16)

Surprisingly the Taylor formula up to first order actually is a good approximation
for the solution for certain parameter intervals, which can be proved by a (lengthy)
estimation argument or which can be seen directly by numerical justification.

The polynomial structure of the weights π1 gets immediately visible, as proved
in Theorem 2. The formula decomposes in the well-known Black-Scholes formula
as the first term and a second term which is given by integration with respect to
the following two-dimensional Gaussian variable: we denote by (Z(0)

t , St)0≤t≤T the
solutions at ε = 0 with initial values (z, s).

Z
(0)
T = z − η2

2
T + ηB̃T ,

Ss = e−λsS0 −
∫ s

0

e−λ(s−u) η
2

2
du +

∫ s

0

e−λ(s−u)χηdB̃u,

with expectations and covariances,

E(Z(0)
T ) = z − η2

2
T,

E(Sv) = e−λv(v − η2

2
eλv − 1

λ
),

E((Z(0)
T − E(Z(0)

T ))2) = η2,

E((Sv − E(Sv))2) = η2χ2e−2λv e2λv − 1
2λ

,

cov(Z(0)
T , Sv) =

∫ v

0

η2χe−λ(v−u)du,

= η2χe−λv eλv − 1
λ
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for 0 ≤ v ≤ T . These formulas have been used in order to estimate the parameters
for the graphs in Section 1.

3.4. Analytically tractable approximations for the HR model. The varia-
tional equation for derivatives with respect to ε at ε = 0 are given by

d
∂

∂ε
|ε=0Z

(ε)
t = −η2

2
S2

t dt +
η

2
S2

t dB̃t (3.17)

dSt = (−η2

2
− λSt)dt + ηdB̃t. (3.18)

This is analytically tractable: the solution of 3.18 is given on [0, T ] through

St = e−λts−
∫ t

0

e−λ(t−u) η
2

2
du +

∫ t

0

ηe−λ(t−u)dB̃u,

which is a Gaussian process. We can express the Brownian motion (B̃t)t≥0 by this
process,

dB̃t =
1
η
(
η2

2
+ λSt)dt +

1
η
dSt,

which leads to

d
∂

∂ε
|ε=0Zt = −1

2
η2S2

t dt +
1
2
S2

t (
η2

2
+ λSt)dt +

1
2
S2

t dSt

= −η2

4
S2

t dt +
λ

2
S3

t dt +
1
6
dS3

t −
1
2
η2Stdt.

This can be applied to the calculation of the first variation:

∂

∂ε
|ε=0Zt = −η2

4

∫ t

0

S2
udu +

λ

2

∫ t

0

S3
udu +

1
6
S3

t−

− 1
6
s3 − 1

2
η2

∫ t

0

Sudu.

The pricing of a European call option is then given by

V (z, s, K, T, r, ε, λ, χ, η, β) = E(e−rT (PT −K)+)

= KE(e−rT (
PT

K
− 1)+)

and the first derivative with respect to ε

∂

∂ε
|ε=0V (z, s, K, T, r, ε, λ, χ, η, β) = KE(e−rT 1

{ e
rT+Z

(0)
T

K −1≥0}

erT+ZT

K

∂

∂ε
|ε=0ZT )

=
1
6
E(1

{erT+Z
(0)
T ≥ln K}

eZ
(0)
T (S3

T − s3))+

+
∫ T

0

E(1{erT+ZT ≥1}e
Z

(0)
T (

λ

2
S3

u −
η2

4
S2

u −
1
2
η2Su))du,

which therefore yields the same first derivative at ε = 0 as in equation 3.15.

Theorem 5. The weights π1 and π2 for the HR model are polynomials of integrated
Gaussian polynomials.

Proof. The process Z
(0)
t is a Gaussian process and the covariance matrix is in-

vertible. Furthermore derivatives ∂n

∂εn Z
(ε)
t |ε=0 for n = 0, 1, 2 are seen to be inte-

grated Gaussian polynomials. Hence we apply a version of Theorem 2.notice that
G0 = 0. �
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