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1. Introduction

The purpose of this Habilitationsschrift, which consists of a collection of recent
research papers published in refereed scientific journals, is the description of my
research and the description of the interplay between two distinguished research
areas, namely Infinite dimensional Differential Geometry and Interest Rate Theory.
I have chosen a deductive rather than an inductive presentation, that means I shall
present the latest articles first and finish by those related to my thesis. The latest
articles are emphasized in the presentation since the concepts under consideration
appear to be more recent.

The structure of the Habilitationsschrift is the following: the subsections of
the overview section are related to the successive chapters, where the articles are
presented. The bibliographies are independently attached for each paper and also
for the introductory section. If the cited paper can be found in the Habilitationss-
chrift, it will be indicated directly in the citation by the abbreviation HS. I follow
the good tradition that each mathematical text should at least contain one original
result together with its proof, so the overview section contains an unpublished new
version of the Frobenius Theorem.

2. Overview

In this section the interplay between Infinite dimensional Geometry and Sto-
chastic Analysis, in particular Interest Rate Theory, is described. On the one
hand geometry is a universal science, whose methods can be applied in several
mathematical areas. It is not surprising that it might be interesting to describe
the geometry of stochastic flows on infinite dimensional Hilbert spaces. On the
other hand recent progress in infinite dimensional geometry, namely the discov-
ery of convenient calculus and the convenient formulation of differential geometry
(see [KrieglMichor1997]), opened new perspectives on several geometric problems.
What has been treated so far on Sobolev hierarchies with a careful bookkeeping
of analytic properties, can be treated now by simpler and more elegant methods
on spaces, which are certainly more adapted to the problem in mind. This is the
real progress, which makes infinite dimensional geometry a natural tool. I have
learned these reasonings during the work on my thesis: the credo that analysis and
geometry beyond Banach spaces is powerful represents the link between my two
research areas.

2.1. Finite dimensional Realizations. Recall first the finite dimensional
situation: given U ⊂ Rn, n ≥ 1, an open, connected set and a finite dimensional
distribution on U , i.e. a collection of vector spaces Du ⊂ Rn for each u ∈ U . We
assume that D = (D(u))u∈U is smooth, that is for each point u0 ∈ U there are
smooth vector fields X1, . . . , Xm : V ⊂ U → Rn such that

(2.1) D(u) = 〈X1(u), . . . , Xm(u)〉
for all u ∈ V , here V is an open neighborhood of u0 ∈ U . If X1, . . . , Xm are
pointwise linearly independent, then it this is called a local frame. A submanifold
M ⊂ U is called integral if TmM = D(m) for all m ∈M ⊂ U .

Example 1. Take vector fields X1, . . . , Xm : U → Rn, then the span 2.1 is a
distribution and integral submanifolds are submanifolds pointwise tangent to Xi for
i = 1, . . . ,m.
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Given a smooth distribution D of constant rank, i.e. dim D(u) is locally con-
stant, the Frobenius Theorem asserts that any point in U is contained in an integral
submanifold if and only if the distribution is involutive. A distribution is called in-
volutive if for all smooth vector fields X, Y : V ⊂ U → Rn, which take values in D,
the Lie bracket also takes values in D

[X, Y ](u) := DX(u) · Y (u)−DY (u) ·X(u) ∈ D(u)

for all u ∈ V . This nice Theorem can be easily generalized to Banach spaces.
Morally the Frobenius Theorem relates the algebraic fact that a distribution is

involutive to the (analytic) existence of integral submanifolds. Up to Banach spaces
the only analytic requirement is smoothness or comparable analytic properties such
as Cn, which is even necessary to calculate the Lie brackets.

Nevertheless modern, interesting analytic problems related to the existence of
integral submanifolds appear often under circumstances, where this basic analytic
property fails on Banach spaces. I think of distributions generated by infinitesimal
generators of strongly continuous semigroups on Banach spaces or the question of
existence of strongly continuous, unitary representations on Hilbert spaces. In the
latter case we are given the following situation on a complex Hilbert space H: let
1
i A1, . . . ,

1
i Am be self-adjoint operators and assume that there is a dense subspace

D ⊂ H such that Ai|D : D → D are well-defined linear operators for i = 1, . . . ,m
and

(2.2) [Ai, Aj ] =
n∑

k=1

ck
ijAk

for some real (structure) constants ck
ij and i, j = 1, . . . ,m. For the existence of

integral submanifolds tangent to the distribution Du = 〈A1u, . . . , Anu〉 for u ∈ D
one needs additional analytic requirements such as Nelson’s famous condition on the
Casimir element

∑m
i=1 A2

i to be essentially self-adjoint on D. This typical situation
explains why the classical Frobenius Theorem formulated on Banach spaces is not
sufficient for many infinite dimensional problems.

In [Teichmann2001b,HS] I proved a generalization of the classical Frobenius
Theorem on convenient manifolds, i.e. all manifolds which can appear in analysis
under reasonable circumstances. The additional analytic requirement is surprisingly
simple, namely the existence of a finite number of flows (or semiflows respectively).

Theorem 1. Let M be a convenient manifold and S a n-dimensional subbundle
of TM . If the subbundle is involutive and for any point m ∈ M there is an open
neighborhood U and a local frame {Ai}i=1,...,n such that Ai admit a local flow FlAi

t

on U , then S is integrable, i.e. for any point m ∈ M there is a unique maximal
connected (integral) manifold i : Nm ↪→ M with immersion i and Txi(TxNm) =
Si(x) for x ∈ Nm. Furthermore we can construct the classical Frobenius chart.

The notion of a Frobenius chart means that locally the integral submanifolds
can be parallelized: they look like Rn in the model space up to diffeomorphisms.
Furthermore the Theorem of Nelson as cited above is retreated in this new set-
ting such that Nelson’s condition can be replaced by a more analytic one (see
[Teichmann2001b,HS] for details). The credo for this reasoning is that it is quite
useful to analyse several analytic questions on ”embedded” Fréchet spaces such as
some closure of D with respect to a nice, countably defined topology, which was
inspired by the work on my thesis.
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Example 2. Assume in the above example that D ⊂ H carries the initial
Fréchet space topology with respect to the linear maps An1

1 · · ·Anm
m : D → H for

ni ≥ 0, i = 1, . . . , d and assume that D is invariant with respect to the associated
unital groups Sj

t := exp(tAj), then we can construct a distribution D on the Fréchet
space D spanned by the vector fields A1, . . . , Am, which is involutive by condition
2.2. Therefore we can construct a foliation by Theorem 1 since the local frame
A1, . . . , Am admits local (smooth) flows given by the restriction of Sj to D, which
appear to be orbits of a Lie group action associated to the structure constants ck

ij.
This action can easily be extended to a strongly continuous unital Lie group action
on H.

Another key application is given by finite dimensional Realizations. Given a
Banach space X, a generator A of a strongly continuous semigroup S and a locally
Lipschitz map P : R≥0 × U ⊂ R≥0 × X → X, we can consider the initial value
problem

d

dt
x(t) = Ax(t) + P (t, x(t))(2.3)

x(t0) = x0 ∈ X,

where we work with mild solutions, i.e. continuous maps which satisfy

x(t) = S(t)x0 +
∫ t

0

St−sP (s, x(s))ds

for t ∈ [0, ε[. In the described case there exists a unique continuous solution for
any initial value x0 ∈ U and any initial point in time t0 ≥ 0, see for example
[FilipovicTeichmann2002b,HS].

One is interested in the obviously important question, whether such a solution
can be represented by a finite dimensional differential equation in the following
sense: there exists a map φ : U ⊂ Rn

≥0 → X and a curve y : [t0, t0 + ε[→ U such
that t 7→ φ(y(t)) is a mild solution of 2.3. n, y and φ will depend on the ”vector
fields” A+Pt and the initial value x0. Notice that the A+Pt is only densely defined,
the vector field is continuous if and only if A is everywhere defined. The curve y
will satisfy a differential equation, which can in principle be calculated from the
vector fields A + Pt.

Provided that for all x0 ∈ φ(U) we can find an appropriate curve y such that
t 7→ φ(y(t)) solves 2.3 in the mild sense, we speak of a finite dimensional realization
(FDR). Needless to say that many of the classical, known solutions of non-linear
PDEs are of this form.

The image φ(U), in case of an FDR, can be regarded as locally invariant sub-
manifold with boundary of H (ignoring the possible singularities) with respect to
the flow of mild solutions of equation 2.3. A submanifold with boundary M ⊂ X
is called locally invariant with respect to 2.3 if for x0 ∈ M and any starting point
in time t0 the unique solution of equation 2.3 stays on a small time interval in
M . Therefore the existence of FDRs reduces to the question if we can find locally
invariant submanifolds with boundary M ⊂ H, then take any chart to obtain nice
curves y in the chart domain. One can formulate the following main theorem (see
[FilipovicTeichmann2002c,HS]):

Theorem 2. Let H be Hilbert space and M ⊂ H be a C2-submanifold with
boundary of H, then M is locally invariant with respect to 2.3 if and only if M ⊂
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D(A) and
Ξt(h) := Ah + P (t, h) ∈ ThM

for all h ∈M and t ≥ 0, where Ξt(h) is inward pointing for h ∈ ∂M.

One should interpret this result also in the spirit of Dean Montgomery and
Leon Zippin (see [MontgomeryZippin1957]): Invariance and Regularity are related.
This led to the conclusions of the first part of [FilipovicTeichmann2002b,HS].

Now one is back to the problem of existence of manifolds tangent to some
given ”vector fields”. From Frobenius Theory one knows that there is an algebraic
obstruction to existence, which is not easy to formulate since the vector fields in
question are neither everywhere defined nor smooth.

The main idea is to consider the problem on the natural Fréchet space D(A∞) ⊂
H and to prove that under reasonable conditions on P this is sufficient. For this
analysis assumptions on P have to be made, in particular P : D(A∞) → D(A∞)
has to be well defined, but despite this we stay as general as possible. Additional
questions can be solved by approximations.

The following Theorem, which is not yet published, is one cornerstone of this
analysis - it generalizes the Frobenius Theorems given in [Teichmann2001b,HS]
and [FilipovicTeichmann2002a,HS]. We ask under which conditions – given a set
of vector fields Y1, . . . , Yn – a submanifold can be constructed at a point, such that
the vector fields are tangent. I give here a condensed, rigorous proof for it.

The concepts of tangent vectors, tangent bundles, local flows and semiflows
do not pose a problem (even for the semiflow case, where we need to differentiate
on non-open domains) on convenient manifolds after the seminal work of Andreas
Kriegl and Peter Michor (see [KrieglMichor1997] for all details). Given a conve-
nient manifold M and smooth vector fields Y1, . . . , Yn on M . We consider two
distributions on M , the first one, D, is generated by vector fields Y1, . . . , Yn as in
2.1, and the second one, DLA, is generated by all iterated Lie brackets of the vector
fields Y1, . . . , Yn. We denote all linear combinations of these Lie brackets by locally
defined smooth functions on M by E. In particular the evaluation of E at a point
x ∈M coincides with DLA.

A submanifold L is called a tangent submanifold for the distribution D if
D(x) ⊂ TxL for x ∈ L. A submanifold L is integral submanifold for the distri-
bution D if D(x) = TxL for x ∈ L.

Lemma 1. Let D be a smooth distribution on M and L a tangent submani-
fold with inclusion i : L → M , then for all X ∈ C∞loc(M ← D) the notion i∗X
makes sense as an element of C∞loc(L← TL), i.e. there is only one vector field on
i−1(U) := L ∩ U being i-related to X, where U is the domain of definition of X.
Then the submanifold L is also tangent for the distribution DLA.

Proof. Since i is an immersion we can define i∗X by Ti and we obtain smooth-
ness by a submanifold chart. Pulling back elements X, Y ∈ C∞(U ← D) we obtain

[X, Y ] ◦ i = Ti[i∗X, i∗Y ]

by [KrieglMichor1997], in particular all iterated Lie brackets lie in Txi(TxN) for
x ∈ N , which is the very definition of being tangent. Therefore all iterated Lie
brackets of Y1, . . . , Yd are tangent to N . �

Theorem 3. Let x ∈ M be given and assume that there are local vector fields
X1, ..., Xn ∈ E around x, which are linearly independent at x and admit each a local
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flow, such that
DLA(x) = 〈X1(x), . . . , Xn(x)〉 .

Then the following conditions are equivalent:
i) There is finite dimensional integral submanifold L with x ∈ L for the

distribution DLA.
ii) There is an open convex subset U ⊂ Rn containing 0 such that

dimDLA(x) = dimDLA(FlXt ◦ FlX1
u1
◦ ... ◦ FlXn

un
(x))

for (t, u1, ..., un) ∈ U , where X = Xk for k = 1, ..., n− 1.

Proof. Given an integral submanifold L with x ∈ L for DLA, and a smooth
vector field X taking values in DLA and admitting a flow with domain containing
x. Hence the flow lines of i∗X on N and of X on M coincide if the initial values
coincide by uniqueness. Since TyL = DLA(y) for y ∈ L the second condition is
obvious since

FlXt ◦ FlX1
u1
◦ ... ◦ FlXn

un
(x) ∈ N.

Take now x ∈ M with dimDLA(x) = n ≥ 1 and the local vector fields
X1, ..., Xn spanning DLA at x. Given any X := Xk for some k = 1, ..., n − 1
and y = FlX1

u1
◦ ... ◦ FlXn

un
(x) for some fixed, small values u1, ..., un, the vec-

tors X1(FlXt (y)), ..., Xn(FlXt (y)) span DLA(FlXt (y)) for small t by the assumption,
therefore there are smooth functions fij(t) for small t with

[Xi, X](FlXt (y)) =
n∑

j=1

fij(t)Xj(FlXt (y))

by the assumption that E is a Lie algebra. Consequently
d

dt
(FlXt )∗Xi(y) = [(FlXt )∗Xi, X](y) = (FlXt )∗[Xi, X](y)

= T (FlX−t)[Xi, X](FlXt (y)) =
n∑

j=1

fij(t)T (FlX−t)Xj(FlXt (y))

=
n∑

j=1

fij(t)(FlXt )∗Xj(y).

Hence the functions gi(t) := (FlXt )∗Xi(y) satisfy the non-autonomous differential
equation

d

dt
gi(t) =

n∑
j=1

fij(t)gj(t)

with initial values gi(0) ∈ DLA(y). Consequently gi(t) ∈ DLA(y) for small t, so
carefully written out

(FlXk
t )∗Xj(y) ∈ DLA(y)

for j = 1, ..., n and k = 1, ..., n− 1. The parametrization

α(u1, ..., un) := FlX1
u1
◦ ... ◦ FlXn

un
(x)

defines therefore a submanifold with desired tangent spaces since
∂

∂ui
α(u1, ..., un) = (FlX1

u1
)∗ ◦ ... ◦ (FlXi

ui
)∗Xi(α(u1, ..., un)) ∈ DLA(α(u1, ..., un)).

For details on the arguments see [Teichmann2001b,HS]. �
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Remark 1. If we restrict Xn in the above equivalence to admit only a local
semiflow, then we get the analog equivalence for integral submanifolds with bound-
ary. U then has to be open in Rn

≥0. If we impose some real analyticity conditions
one can drop condition ii.) by a variant of the Campbell-Baker-Hausdorff formula.
Notice also that this solves the original problem whether we can construct a sub-
manifold L tangent for D at x ∈ M . The minimal dimension of L is given by
dimDLA.

The same reasoning can be applied to stochastic differential equations (having
Stroock-Varadhan in mind). Nevertheless the situation is more ambitious since we
are concerned with Hilbert space valued stochastic differential equations of the type

drt = (A + α(rt))dt +
d∑

i=1

σi(rt)dBi
t(2.4)

r0 = r∗ ∈ H

where (Bt)t≥0 denotes a d-dimensional Brownian motion on a stochastic basis
(Ω,F , P ) with filtration (Ft)t≥0 associated. Under appropriate Lipschitz condi-
tions on α, σ1, . . . , σd : U ⊂ H → H we obtain a local, mild solution theory, see
[DaPratoZabczyk1992]. In particular d + 1 vector fields are involved here, which
makes the analysis more ambitious.

Equation 2.4 is said to admit a finite dimensional realization (FDR) if, roughly
speaking, there exists a map φ : U ⊂ Rn

≥0 → H and for any u ∈ U an n-dimensional
diffusion state process (Zt)t≥0 exists such that rt = φ(Zt) solves equation 2.4 with
initial value φ(u) in the mild sense. Notice that n, Z and φ depend on the initial
points and the vector fields A + α, σ1, . . . , σd. Again FDRs are essentially given by
locally invariant finite dimensional submanifolds with boundary M , i.e. for any
r0 ∈ M there is a strictly positive life time τ such that rt ∈ M for 0 ≤ t < τ , and
we have the following Theorem.

Theorem 4. Let H be a Hilbert space. Suppose that α is locally Lipschitz con-
tinuous and locally bounded, and σ is C1. LetM be an n-dimensional submanifold
with boundary of H. Then the following conditions are equivalent:

i) M is locally invariant for (2.4).
ii) M⊂ D(A) and

Ξ(h) := Ah + α(h)− 1
2

d∑
j=1

Dσj(h)σj(h) ∈ ThM

σj(h) ∈ ThM, j = 1, . . . , d,

for all h ∈ M, where Ξ(h) is inward pointing and the σj(h) are parallel
to the boundary for h ∈ ∂M.

After these preparations the following program can be set up for the treatment
of equations like 2.4:

(P1): Formulate the problem of existence of locally invariant manifolds on
D(A∞), i.e. impose conditions on α, σ1, . . . , σd.

(P2): Calculate the distributions D and DLA and classify the cases when
dimensions get finite.

(P3): Find either single locally invariant submanifolds, weak foliations or
foliations and classify the leaves.
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(P4): Analyse the question whether all locally invariant submanifolds are
to be found in D(A∞).

For the classification (P2) and the analysis of (P4) several methods (such as the
notion of Banach maps) of the beautiful article [Hamilton1982] have been revisited,
which makes the theory applicable since most of the existence assumptions can
be dropped in this case and a full classification is possible. The framework of
Banach map vector fields is flexible enough for applications and tractable enough
for theoretic results.

(A1): σj = φj ◦ ` and α = φ0 ◦ `, where ` ∈ L(H, Rp), for some p ∈ N,
and φj : Rp → D(A∞) are smooth for j = 0, . . . , d and pointwise linearly
independent maps for 1 ≤ j ≤ d. Hence σ : H → D(A∞0 )d is a Banach
map.

(A2): For every q ≥ 0, the linear map (`, `◦A, . . . , `◦Aq) : D(A∞)→ Rp(q+1)

is open.
(A3): A is unbounded; that is, D(A) is a strict subset of H. Equivalently,

A : D(A∞)→ D(A∞) is not a Banach map.

Assume (A1)–(A3). The above program (P1)–(P4) was worked out in
[FilipovicTeichmann2002a,HS], namely (P1)–(P3) for the case of weak foliations,
and in [FilipovicTeichmann2002b,HS], where we answered (P4). As a result it is
sufficient to search in D(A∞) for invariant submanifolds.

The geometry of the manifolds is a simple one, they are given by ”bands” of
subspaces of D(A∞), which is referred to as affine structure in interest rate theory.
It is remarkable that these are the only possible finite dimensional realizations.

2.2. The Term Structure of Interest Rates. The dynamics of Interest
Rates is described by the Heath-Jarrow-Morton equation. Specifying a volatility
structure, a market price of risk and an initial value determines the behaviour for
all times. For certain volatility structures solution families are well known, which
all together are finite dimensional realizations (as the Vasicek or Cox-Ingersoll-
Ross models) of certain dimensions. It was one open problem if this collection of
solutions is complete or if there are volatility structures admitting unknown finite
dimensional realizations. A careful analysis of the generated distributions of vector
spaces shows that the list of models can be viewed as complete and additionally
this analysis provides a way to understand models from a more profound point
of view. We also had the practitioner in mind, who is not satisfied with structure
theory alone, but needs a full classification of all existing models with distinguishing
properties such that she can choose an appropriate one. The analysis on these
problems has been initiated by the seminal work of Tomas Björk and Lars Svensson
in [BjörkSvensson1997].

A term structure is given by a point in a Hilbert space H of continuous curves,
called forward rates. The arbitrate-free dynamics of the term structure is covered
by Heath–Jarrow-Morton stochastic differential equation,

drt = (A + αHJM (rt))dt +
d∑

i=1

σi(rt)dBi
t

r0 = r∗ ∈ H,
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where the field αHJM can be calculated from the volatility vector fields σ1, . . . , σd.
The equation is written with respect to the risk neutral measure. There are three
reasons why finite dimensional realizations are important in interest rate theory.

Consistency: A curve-fitting procedure should be consistent with an arbi-
trage-free stochastic model, that is, the model output curves should be of
the curve-fitting type. Only such models can give a reasonable framework
for the statistical comparison of the curve-fitting data over time.

Model calibration: Finite dimensional models with identifiable factors are
inevitable for model calibration. Hence, given an arbitrary initial curve,
the possible finite factor models evolving from this curve should be com-
pletely understood.

Analytical and computational tractability: For the purpose of calcu-
lating derivatives prices, the stochastic characteristics of the factor pro-
cesses have to be known.

The following results could be achieved under the Banach map assumption on
volatility vector fields. In applications volatility vector fields are typically of the
form

σi(r) = φi(l1(r), ..., ln(r))
with φi : U ⊂ Rn → H smooth and lk : H → R a continuous linear functional,
which means that volatilities are sensitive to a finite number of traded bonds.

Geometry: The invariant submanifolds are seen to be of a simple affine
form, which can be seen in the following parametrization,

β(u0, u1, . . . , un) = Flu0(r
∗) +

n∑
i=1

uiλ
i,

where λi ∈ D(( d
dx )∞) and u0 7→ Flu0(r∗) is a Hilbert space valued smooth

curve (affine term structure).
Factor process: The factor processes are seen to be affine processes, so

particularly tractable Markov processes. In particular their generators
are hypoelliptic and smooth densities exist. Here classical analysis in the
spirit of Lars Hörmander was applied, see [Hörmander1983].

Coupling: If interest rate markets are coupled to stock markets and/or one
wants to include stochastic volatilities, the above reasoning can be carried
over on some extended phase space and similar results on affine term
structures and affine processes can be proved.

This has been worked out in the review article [FilipovicTeichmann2002c,HS].
The analysis of long rates in this affine setting led to a general analysis of long

interest rates, which was worked out in [HubalekKleinTeichmann2002].

2.3. Fundamentals of Lie Theory. My Thesis [Teichmann1999] treats the
question, under which conditions an exponential map (or an evolution map) exists
on infinite dimensional (convenient) Lie groups. The problem is a hard analytic
problem, since one is concerned with the construction of solutions of right invariant
differential equations on a given infinite dimensional Lie group, which are generically
modeled on non-normable convenient vector spaces (so no existence Theorem for
ordinary differential equations is at hand).

Here I developed the conviction that working on the convenient spaces at hand
might be more useful than solving the problem on associated Sobolev hierarchies.
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This approach was in a technically challenging way worked out by Hideki Omori et
al. and led to the concept of strong ILB-groups.

I tried to find a characterization for the existence of evolution maps by Lips-
chitz metrics and the method of linearization, i.e. under the initial right regular
representation of a Lie group G

ρ : G→ L(C∞(G, R)), g 7→ (f 7→ f(.g)).

Given a time dependent vector field X ∈ C∞(R, g), where g denotes the Lie al-
gebra of the Lie group G, an existing solution of the right invariant differential
equation can be represented by product integrals in many cases. Taking this idea,
I provide in [Teichmann2001d,HS] a characterization for the property, that prod-
uct integral approximations stay (on compact time intervals) in compact sets –
by Lipschitz metrics on the Lie groups. Lipschitz metric were proved to exist in
[Teichmann2001d,HS] on all up to now known Lie groups.

In [Teichmann2001c,HS] I show – under some weak boundedness condition –
that product integrals exist in convenient algebras as for example L(C∞(G, R)).
Applying this result of [Teichmann2001c,HS] finally leads to the existence of an
evolution map by means of the linearization procedure and convenient calculus
as developed in [KrieglMichor1997]: one takes product integral approximations,
which stay in a compact set, maps this compact set via ρ to the convenient alge-
bra L(C∞(G, R)), continues by proving convergence of product integrals, since the
boundedness condition is satisfied, and concludes for the preimage the desired con-
vergence by initiality. At the beginning of this research the description of regular
abelian Lie groups was considered, see [MichorTeichmann1998].

Example 3. Let G be a nice convenient Lie group and c : R → G a smooth
curve with c(0) = e. By Lipschitz metrics we can conclude that the set {c( t

n )n}n≥1

is sequentially compact on compact time intervals. The representation ρ maps this
set to the compact, hence bounded set

{(ρ ◦ c)(
t

n
)n}n≥1.

So we are in the assumption of [Teichmann2001c,HS] and are able conclude that
limn→∞(ρ ◦ c)( t

n )n is a smooth group in the convenient algebra L(C∞(G, R)). By
compactness we know the c( t

n )n has adherence points for any t, which by continuity
of ρ are mapped to (ρ ◦ c)( t

n )n. But ρ is also injective, so the adherence points are
unique and we can conclude that there is a curve t 7→ Tt in G such that

(ρ ◦ T )(t) = {(ρ ◦ c)(
t

n
)n}n≥1.

This then leads also to smoothness of T by Frölicher space properties and the fact
that ρ is initial. Hence limn→∞ c( t

n )n = Tt and T is a smooth one-parameter
subgroup. A fortiori Tt = exp(tc′(0)) for t ≥ 0. This way an existence Theorem for
exponential maps can be proved.

The work on regularity was inspiring for further research on infinite dimensional
Lie groups: In [HallerTeichmannVizman2002,HS] we determine the Riemannian
manifolds for which the group of exact volume preserving diffeomorphisms is a to-
tally geodesic subgroup of the group of volume preserving diffeomorphisms, consid-
ering right invariant L2-metrics. The same is done for the subgroup of Hamiltonian
diffeomorphisms as a subgroup of the group of symplectic diffeomorphisms. These
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are special cases of totally geodesic subgroups of diffeomorphisms with Lie algebras
big enough to detect the vanishing of a symmetric 2-tensor field.

In [HallerTeichmann2002] we find on a closed smooth manifold M equipped
with k fiber bundle structures whose vertical distributions span the tangent bundle,
that every smooth diffeomorphism f of M sufficiently close to the identity can be
written as a product f = f1...fn, where fi preserves the ith-fiber. The factors fi

can be chosen smoothly in f . We apply this result to show that on a certain class
of closed smooth manifolds every diffeomorphism sufficiently close to the identity
can be written as product of commutators and the factors can be chosen smoothly.
Furthermore we get concrete estimates on how many commutators are necessary.
For the proof we apply the hard inverse function theorem of Nash-Moser.

2.4. Semigroups on convenient vector spaces. The work on semigroups
consists (such as classical semigroup theory) of a Hille-Yosida result relating re-
solvent properties to the existence of a semigroup and Trotter-type approximation
results. In [Teichmann2001c,HS] an existence result for initial value problems on
convenient vector spaces is proved by Trotter approximations.

Definition 1 (Product integral). Let A be a convenient algebra. Given a
smooth curve X: R → A and a smooth mapping h : R2 → A with h(s, 0) = e and
∂
∂th(s, 0) = X(s), then we define the following finite products of smooth curves

pn(a, t, h) :=
n−1∏
i=0

h(a +
(n− i)(t− a)

n
,
t− a

n
)

for a, t ∈ R. If pn converges in all derivatives to a smooth curve c : R→ A, then c
is called the product integral of X or h and we write c(a, t) =

∏t
a exp(X(s)ds) or

c(a, t) =:
∏t

a h(s, ds). The case h(s, t) = c(t) with pn(0, t, h) = c( t
n )n is referred to

as simple product integral.

Theorem 5 (Approximation theorem). Let A be convenient algebra. Given a
smooth curve X : R → A and a smooth mapping h : R3 → A with h(u, r, 0) = e
and ∂

∂th(u, r, 0) = Xu(r). Suppose that for every fixed s0 ∈ R, there is t0 > s0

such that pn(u, s, t, h) is bounded in A on compact (u, s, t)-sets and for all n ≥ 1.
Then the product integral

∏t
s h(u, r, dr) exists and the convergence is Mackey in all

derivatives on compact (u, s, t)-sets. Furthermore the product integral is the right
evolution of Xu, i.e.

∂

∂t

t∏
s

h(u, r, dr) = Xu(t)
∂

∂t

t∏
s

h(u, r, dr),

s∏
s

h(u, r, dr) = e.

This result applies nicely on spaces, where the functional analytic structure is
not well understood as L(C∞(G, R)). The forthcoming article [Teichmann2001a,HS],
which was a sidestep in the work of [Teichmann2001c,HS], treats the Hille-Yosida-
Theorem on convenient vector spaces. Due to the large class of spaces one can
restrict the analysis to a smaller class of semigroups, namely smooth semigroups,
for which a nice version of the Hille-Yosida-Theorem can be proved.
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3. Perspectives

In Differential Geometry I got particularly interested in the following open
questions of research:

(Q1): Analysis of finite dimensional realizations for (well-known) non-linear
PDEs.

(Q2): Analysis of geodesic equations on infinite dimensional Lie groups un-
der the perspective of FDRs.

(Q3): Analysis of geodesic equations under the developed Lipschitz approx-
imation procedures.

In Interest Rate Theory (Financial Mathematics) and Stochastic Ana-
lysis the following problems are focused in future research:

(Q4): Analysis of singular FDRs, even though their importance is restricted
in financial mathematics.

(Q5): Justification of the concept of FDRs for concrete applications. If the
generated distribution DLA is infinite dimensional the solutions should
have particular (statistical) features, which could be described more pre-
cisely. This also leads into the beautiful world of stochastic differential
geometry in the spirit of Paul Malliavin or Daniel Stroock.

(Q6): Revisiting the theory of stochastic filters by the new methods on
Fréchet spaces.

(Q7): Analysis of other term structure problems such as future markets in
the challenging direction of energy markets (derivation and foundation of
new models).



Bibliography

[BjörkSvensson1997] T. Björk and L. Svensson, On the existence of finite-dimensional realizations

for nonlinear forward rate models, Math. Finance 11 (2001), 205–243.
[DaPratoZabczyk1992] G. DaPrato and J. Zabczyk, Stochastic equations in infinite dimensions,

Cambridge University Press, 1992.
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[Hörmander1983] L. Hörmander, The Analysis of Linear Partial Differential Operators I–III,
Grundlehren der mathematischen Wissenschaften 256,257,274, Springer Verlag Berlin, 1983,

1983, 1985.
[HubalekKleinTeichmann2002] Friedrich Hubalek, Irene Klein and Josef Teichmann, A general

proof of the Dybvig-Ingersoll-Ross-Theorem: Long forward rates can never fall, Mathematical

Finance, to appear (2002).
[KrieglMichor1997] Andreas Kriegl and Peter W. Michor, The convenient setting for global anal-

ysis, ‘Surveys and Monographs 53’, AMS, Providence, 1997.

[MichorTeichmann1998] Peter Michor, Josef Teichmann, Description of regular abelian Lie
groups, Journal of Lie Theory 9 (1999), 487-489.

[MontgomeryZippin1957] D. Montgomery and L. Zippin, Topological transformation groups, In-

terscience, 1957.
[Teichmann1997] Josef Teichmann, Hopf’s decomposition of recurrent semigroups, Publications

mathematiques de Besancon 15, 109–121 (1997).

[Teichmann1999] Josef Teichmann, Infinite dimensional Lie theory from the point of view of
functional analysis, Ph.D. thesis, University of Vienna, 1999, directed by Peter Michor.

[Teichmann2001a,HS] Josef Teichmann, Convenient Hille-Yosida theory, forthcoming in Revista

Mathematica Complutense (2002).
[Teichmann2001b,HS] Josef Teichmann, A Frobenius theorem on convenient manifolds, Monat-

shefte für Mathematik.134, 159-167 (2001).
[Teichmann2001c,HS] Josef Teichmann, A convenient approach to Trotter’s formula, Journal of

Lie Theory 11, no. 2, 427-440 (2001).

[Teichmann2001d,HS] Josef Teichmann, Regularity of infinite dimensional Lie groups by metric
space methods, Tokyo Journal of Mathematics 24, no. 1, 39–58 (2001).

xv


