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Abstract. A method based on transformations of well-known solutions of

term structure equations is presented in order to incorporate Martin Barlow’s
spot price model for electricity into a model for future prices on electricity.

The setting for the evolution of term structures is chosen in the spirit of Da

Prato-Zabczyk.

1. Introduction

The purpose of this small note is to unify two well-known approaches to model
features in electricity markets: the spot price model of Martin Barlow (see [1] for
all details), which is an ad hoc micro-economic model reflecting some particular
features of electricity exchanges such as price peaks, and a general affine model
for the term structure of future or forward prices (see [2] for all fundamentals) on
commodities. The idea is to incorporate more flexibly the market anomalies for
spot prices such as short-selling constraints or storage costs.

We have tried to incorporate these anomalies through weakening of the assump-
tions on models of futures market. Similar reasonings hold for forward markets, or
for term structure problems in general. In the introduction we present the microe-
conomic model of Martin Barlow and a general framework for models on future
prices, where market anomalies can be represented.

1.1. Martin Barlow’s microeconomic model. Martin Barlow’s model for power
spot prices is derived via the following microeconomic consideration: depending on
current prices x, there are given a time-dependent, random demand function dt(x)
and a time-dependent, random supply function ut(x). Assume that x 7→ ut(x) is
increasing and x 7→ dt(x) is decreasing and that there is a (unique) price St for
each time point t given through the basic equation

ut(St) = dt(St).

The assumptions on u and d in [1] are amazingly simple: Supply ut is supposed to
be non-random and independent of time t

ut(x) = u(x),

demand dt is supposed to be inelastic, but randomly time dependent

dt(x) = Dt.
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This yields the nice formula St = u−1(Dt)∧M , where M is some ad hoc boundary
value for prices. Taking u(x) = a0 + b0x

c0 we obtain a model for the spot price
(with some additional boundary assumptions) for either b0, c0 > 0 or b0, c0 < 0,

St =


(

Dt−a0
b0

) 1
c0 for Dt < a0 − b0ε0

ε
1

c0
0 for Dt ≥ a0 − b0ε0.

for t ≥ 0 and appropriate ε0. More precisely: given an Ornstein-Uhlenbeck process
Xt with dXt = −λ(Xt−a)dt+σdWt and X0 ∈ R, we define with fα(x) = (1+αx)

1
α

(1.1) St =

{
fα(Xt) for 1 + αXt > ε0

ε
1
α
0 for 1 + αXt ≤ ε0.

for t ≥ 0 and some ε0 > 0. This model is statistically (with respect to the real world
measure) much more satisfying than other spot price models. Values for α like 0.19,
−1.08 or −0.35 are attained for concrete markets explaining very well the particular
spot price behaviours. Values like 0 or 1, which correspond to ”classical” spot price
models are tested to be non-adequate (see [1] for all details). In our approach we
shall consider a smoothened version of fα at the upper boundary value in order to
work with nice Ito processes.

1.2. Framework for Term structure of Future Prices. Basic Theory on for-
wards, futures and bonds can be found in the excellent article [2] and in [3]. For
the remainder of this note we assume zero interest rate. Future prices F (t, T ) are
prices of traded contracts at time t for the delivery of the commodity at maturity
time T . We do not take all assumptions from [2], we only assume that markets are
ideal up to some critical time value δ before maturity time T . Given continuous
semi-martingales (F (t, T ))0≤t≤T representing future prices with delivery date T at
time t on a commodity (St)t≥0, we assume that

: for all delivery times T ≥ 0 future-prices are given.
: there is δ ≥ 0 such that for T ≥ δ the market of futures is ideal (short-selling

allowed, liquid) up to time T − δ.

By no-arbitrage arguments we know that F (T, T ) = ST for T ≥ 0. Furthermore
we assume

: that there exists an locally equivalent measure Q with the property that
semi-martingales (F (t, T ))0≤t≤T−δ are local Q-martingales for T ≥ δ.

In particular we obtain

(1.2) F (t, T ) = EQ(F (T − δ, T )|Ft)

for T ≥ δ and 0 ≤ t ≤ T − δ. The formula EQ(ST |Ft) = F (t, T ) for 0 ≤ t ≤ T
therefore only holds approximately, depending on the choice of δ and the dynamic
of (F (t, T ))0≤t≤T .

We represent the future prices by

(1.3) F (t, T ) = exp(φ(t, T ))

assuming in the sequel that they are positive. We can equally describe models for
(F (t, T ))0≤t≤T or for (φ(t, T ))0≤t≤T . This is not the usual representation, which is
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given through

(1.4) F (t, T ) = St exp(
∫ T

t

(f(t, s)− c(t, s))ds)

with forward rates (f(t, T ))0≤t≤T and convenience yields (c(t, T ))0≤t≤T (see for
instance [2]). We have the relation

φ(t, T ) = lnSt +
∫ T

t

(f(t, s)− c(t, s))ds.

In particular we have φ(T, T ) = lnST for T ≥ 0.
Additionally we shall specify a framework for models with respect to a given

d-dimensional Brownian motion (Wt)t≥0. Under the above assumptions we can
formally derive stochastic PDEs for the future prices

dF (t, T ) = α(t, T )dt+
d∑

i=1

βi(t, T )dW i
t

on a stochastic basis (Ω,F , Q) with a d-dimensional Brownian motion (Wt)t≥0,
where Q denotes the locally equivalent martingale measure. Notice that it follows
from 1.2 that α(t, T ) = 0 if T − t ≥ δ. The Musiela parametrization x = T − t is
applied and we obtain for φ the following SPDE

(1.5) dφ(t, x) = (
d

dx
φ(t, x)− 1

2

d∑
i=1

σ2
i (t, x) + γ(t, x))dt+

d∑
i=1

σi(t, x)dW i
t

where γ(t, x) = 0 if x ≥ δ in the martingale measure Q. In particular the evaluation
of φ at x = 0 yields the spot price dynamics with respect to Q. Solutions of
this equation for initial term structures of future prices provide solutions for the
stochastic evolution of future prices in the martingale measure (for a more detailed
exposition see [5]).

In classical term structure models always γ(t, x) = 0 holds for t, x ≥ 0. This
yields in particular that the spot prices St are geometric Brownian motions or
geometric Bessel processes such as in interest rate theory. The term structure of
future prices is then affine (see also [6]).

It is the goal of this article to show that the introduction of the drift γ leads to
models, where the spot price is given through the microeconomic model 1.1, and
the term structure of future prices is affine for x ≥ δ. In particular for 0 ≤ x ≤ δ
we therefore have non-affine term structures.

2. Non-affine Term structures

In this section we provide a nice class of examples for equation 1.5, which are an-
alytically tractable and which incorporate the microeconomic spot price behaviour.

We take the usual assumption on the stochastic basis (Ω,F , Q), the filtration
(Ft)t≥0 and the d-dimensional Brownian motion (W 1

t , . . . ,W
d
t )t≥0. In our setting

a square-integrable Ito process is given through

Xt = X0 +
∫ t

0

bsds+
d∑

i=1

∫ d

0

ai
sdW

i
s

with b integrable and ai square-integrable, progressively measurable H-valued pro-
cesses. Ito’s formula reads as follows, see [4], chapter 4, for details:
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Theorem 1. Suppose X is an H-valued Ito process and ψ ∈ C2
b (H;H). Then

Dψ(Xt)(ai
t) and

Jt :=
1
2

d∑
i=1

D2ψ(Xt)(ai
t, a

i
t)

satisfy the square-integrability conditions for H-valued Ito integrals and

(ψ ◦X)t = ψ(X0) +
∫ t

0

(Dψ(Xs)(bs) + Js)ds+

+
d∑

i=1

∫ t

0

Dψ(Xs)(ai
s)dW

i
s .

This theorem also has a local version for ψ ∈ C2(H;H).

For the general theory we investigate the following equation

(2.1) dφt = (Aφt + α(φt))dt+
d∑

i=1

βi(φt)dW i
t ,

where α, β1, . . . , βd : U → H are locally Lipschitz vector fields on the open subset
U ⊂ H and A is the generator of a strongly continuous semigroup (Tt)t≥0 on H.

Solutions of equation 2.1 are defined in a subtle way. A strong, continuous
solution of 2.1 with initial value φ∗ is a stochastic process with continuous paths
(φt)t≥0 together with a strictly positive stopping time τ such that φt ∈ D(A),
(Aφt)t≥0 for 0 ≤ t ≤ τ and

φt = φ∗ +
∫ t

0

Aφsds+
∫ t

0

α(φs)ds+
d∑

i=1

∫ t

0

βi(φs)dW i
s

for 0 ≤ t ≤ τ .
A mild, continuous solution of 2.1 with initial value φ∗is a stochastic process with

continuous paths (φt)t≥0 together with a strictly positive stopping time τ such that

φt = Ttφ
∗ +

∫ t

0

Tt−sα(φs)ds+
d∑

i=1

∫ t

0

Tt−sβi(φs)dW i
s

for 0 ≤ t ≤ τ . Clearly every strong, continuous solution is a mild, continuous
solution by variation of constants (see [4]).

Proposition 1. For any initial value φ∗ ∈ U there is a unique local mild, continu-
ous solution of equation 2.1 under the stated Lipschitz conditions on α, β1, . . . , βd.
Given φ∗ ∈ U , we can choose an open neighborhood W of φ∗ in U and a stopping
time τ , such that there exist mild, continuous solutions (ηt)t≥0 with initial value
η0 ∈ W and associated stopping time τ . Furthermore, for any sequence (ηn

0 )n≥1in
W with ηn

0 → η0 in H the solutions (ηn
t )t≥0 of equation 2.1 with initial value ηn

0

satisfy
E( sup

0≤t≤τ
||ηn

t − ηt||2H) → 0

as n→∞.

Proof. For the proof and the notions of uniqueness, also for stochastic flows on
Hilbert spaces, see [4], chapter 7. �
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We introduce the Hilbert spaces D(Ak) by recursion for k ≥ 0,

D(Ak) := {φ ∈ D(A) such that Aφ ∈ D(Ak−1)}.

The scalar products are given by

〈φ1, φ2〉D(Ak) :=
k∑

i=0

〈
Aiφ1, A

iφ2

〉
for φ1, φ2 ∈ D(Ak).

Proposition 2. Assume that α, β1, . . . , βd are locally Lipschitz from (H, 〈., .〉) to
(D(A), 〈., .〉D(A)), then every mild, continuous solution of 2.1 with initial value φ∗ ∈
D(A) is a strong, continuous solution of 2.1.

Proof. This is a consequence of Proposition 6.4 in [4]. We can also define and solve
the equation on D(A) as a Hilbert space. �

Transformations under diffeomorphisms apply the notion of push forward of vec-
tor fields, i.e. let X be a vector field on U ⊂ H and ψ : U → V be a diffeomorphism,
then

(ψ∗X)(y) = Dψ(ψ−1(y))X(ψ−1(y))

for y ∈ V . The vector field ψ∗X is locally Lipschitz, Cn or smooth if X has the
respective property. Notice that in our case the push forward of A causes difficulties
since it is a densely defined, non-continuous, non-linear vector field.

Theorem 2. Let ψ : U → V be a smooth diffeomorphism of open sets U, V ⊂ H
and assume that ψ(U ∩ D(A)) = V ∩ D(A). Furthermore we assume

ψ∗A = A+ ζ,

where ζ : V → H is a locally Lipschitz vector field, on V ∩ D(A), i.e.

Dψ(ψ−1(y))Aψ−1(y) = Ay + ζ(y)

for y ∈ V ∩ D(A). Then for any mild, continuous solution (φt)t≥0 of 2.1 with
associated stopping time τ and initial value φ∗, the continuous stochastic process
(ψ(φt))t≥0 is a mild, continuous solution of

dξt = (Aξt + (ψ∗α)(ξt) + ζ(ξt) + χ(ξt)dt+
d∑

i=1

(ψ∗βi)(ξt)dW i
t

with initial value ψ(φ∗) (up to the same stopping time).
We denote the Ito correction term by χ, i.e.

χ(y) =
d∑

i=1

D2ψ(ψ−1(y))(βi(ψ−1(y), βi(ψ−1(y))

for y ∈ V .

Remark 1. Notice that the difficulty of the theorem arises from the fact that mild,
continuous solutions are not Ito processes in general. Therefore we cannot directly
apply Ito’s formula. The Theorem also holds under the assumption that ψ(U ∩
D(A)) = V ∩ D(B) for generator B : D(B) → H and ψ∗A = B + ζ on V ∩ D(B).
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Proof. We assume first that α, β1, . . . , βd are Lipschitz fromH to D(A), then we can
apply the conclusions of Proposition 2. Given a mild, continuous solution (φt)t≥0

with initial value φ∗ ∈ D(A) ∩ U , this solution is a strong solution and

φt = φ∗ +
∫ t

0

Aφsds+
∫ t

0

α(φs)ds+
d∑

i=1

∫ t

0

βi(φs)dW i
s

holds for 0 ≤ t ≤ τ . By Ito’s formula Theorem 1 we obtain

ψ(φt) = ψ(φ∗) +
∫ t

0

(ψ∗A)(ψ(φs))ds+
∫ t

0

ψ∗α(ψ(φs))ds+

+
∫ t

0

χ(ψ(φs)ds+
d∑

i=1

∫ t

0

ψ∗βi(ψ(φs))dW i
s

= ψ(φ∗) +
∫ t

0

A(ψ(φs))ds+
∫ t

0

ζ(ψ(φs))ds+
∫ t

0

ψ∗α(ψ(φs))ds+

+
∫ t

0

χ(ψ(φs)ds+
d∑

i=1

∫ t

0

ψ∗βi(ψ(φs))dW i
s .

Since φt ∈ D(A) we obtain the desired formulation by ψ∗A = A+ ξ on V ∩ D(A).
Every strong solution is a mild solution, hence

ψ(φt) = Ttψ(φ∗) +
∫ t

0

Tt−s(ζ)(ψ(φs))ds+
∫ t

0

Tt−sψ∗α(ψ(φs))ds+(2.2)

+
∫ t

0

Tt−sχ(ψ(φs)ds+
d∑

i=1

∫ t

0

Tt−sψ∗βi(ψ(φs))dW i
s

for 0 ≤ t ≤ τ . Given any initial value φ∗ ∈ U , we can find a sequence φn → φ∗ with
φn ∈ U ∩ D(A), a strictly positive stopping time τ and mild solutions (φn

t )t≥0 and
(φt)t≥0 such that E(sup0≤t≤τ ||φn

t − φt||2H) → 0. The mild solutions φn are strong
solutions and by equation 2.2, which is valid for each φn, we can pass to the limit
in probability, which yields the result

ψ(φt) = Ttψ(φ∗) +
∫ t

0

Tt−s(ζ)(ψ(φs))ds+
∫ t

0

Tt−sψ∗α(ψ(φs))ds+

+
∫ t

0

Tt−sχ(ψ(φs)ds+
d∑

i=1

∫ t

0

Tt−sψ∗βi(ψ(φs))dW i
s

for 0 ≤ t ≤ τ . This holds for every stopping time which is associated to φ by
uniqueness.

For the general case we change the vector fields in question by the resolvent: by
semigroup theory we know that nR(A,n)x→ x as n→∞ for all x ∈ H, where A
denotes the generator of Tt and R(A, λ) its resolvent. Therefore the vector fields
αn := nR(A,n)α and βn

i := nR(A,n)βi for i = 1, . . . , d are well defined vector
fields which take values in D(A) and which converge pointwise to α and βi. For
these vector fields the conclusions of the first part hold, i.e. for any mild, continuous
solution φn with respect to A+αn, βn

1 , . . . , β
n
d the transformed process (ψ(φn

t ))t≥0
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is a mild, continuous solution with respect to A+ ψ∗α
n + χ+ ζ, ψ∗β

n
1 , . . . , ψ∗β

n
d :

ψ(φn
t ) = Ttψ(φ∗) +

∫ t

0

Tt−s(ζ)(ψ(φn
s ))ds+

∫ t

0

Tt−sψ∗α
n(ψ(φn

s ))ds+

+
∫ t

0

Tt−sχ(ψ(φn
s ))ds+

d∑
i=1

∫ t

0

Tt−sψ∗β
n
i (ψ(φn

s ))dW i
s .

By Gronwall’s lemma we obtain that E(sup0≤t≤τ ||φn
t − φt||2H) → 0, see [4], which

allows to pass to the desired limit. �

Remark 2. Notice that the assumption ψ∗A = A + ζ is crucial for the fact, that
the transformed mild solution is indeed a mild solutions of an equation of type 2.1.

3. Applications to Energy markets

For the term structure problem we are investigating equations of the type

(3.1) dφt = (
d

dx
φt −

1
2

d∑
i=1

σ2
i (t, φt) + γ(t, φt))dt+

d∑
i=1

σi(t, φt)dW i
t

on a Hilbert space of term structures φ ∈ H ⊂ C(R≥0,R). These Hilbert spaces
are characterized by the following axioms (compare and find details in [5]):

H1: The Hilbert space H is a Hilbert space of continuous functions and point
evaluations are continuous linear functionals.

H2: The shift semigroup (Stf)(x) := f(x+ t) is a strongly continuous semi-
group on H with generator d

dx .
H3: There is a closed subspace H0 ⊂ H of finite codimension such that the

multiplication (f, g) 7→ fg is a well-defined bounded bilinear map from
H0 ×H0 → H.

H4: Let g ∈ C∞(R≥0×R,R) be given, such that there is δ > 0 with g(x, y) =
y for x ≥ δ. Then f 7→ ψg(f)(x) := g(x, f(x)) for x ≥ 0 is smooth on the
Hilbert space H.

Existence of such Hilbert spaces can be proved by the methods of [5], they appear
to be Sobolev-type spaces on R≥0 with some measures punishing high values of
certain derivatives for large times to maturity.

Lemma 1. Given a Hilbert space H satisfying (H1)–(H4), then

(Dψg(f) · h)(x) =
∂

∂y
g(x, f(x))h(x)

(D2ψg(f) · (h1, h2))(x) =
∂2

∂y2
g(x, f(x))h1(x)h2(x).

Proof. We have to calculate the directional derivative, which can be done under
point evaluations, since point evaluations are continuous linear functionals and for
l ∈ H ′ and ψ ∈ C∞(H,H) we have d

dt (l ◦ ψ)(f + th) = l( d
dtψ(f + th)). The point

evaluations are point separating, so we can characterize the derivative completely,
d

dt
|t=0ψg(f + th)(x) =

∂

∂y
g(x, f(x))h(x).

The second derivative is calculated as derivative of Dψ : H → L(H,H), which also
can be calculated via two fold evaluations, namely at h1 ∈ H and then at x ≥ 0.
For the analysis involved see [7]. �
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Assume (H1)–(H4) to be in force. Let g ∈ C∞(R≥0 × R,R) be given such that
there is δ > 0 with g(x, y) = y for x ≥ δ and derivative ∂

∂y g(x, y) bounded away
from zero for all x ≥ 0 and y ∈ R. Then we can define ψg(f)(x) := g(x, f(x)) for
x ≥ 0, which is assumed to be smooth on the given Hilbert space H by (H4). This
transformation represents a change of the term structure on the interval [0, δ].

Theorem 3. Let U ⊂ H be an open subset of a Hilbert space satisfying (H1)–(H4)
and assume that ψg : U → V is a diffeomorphism. Let (φt)t≥0 be a mild solution of
equation 3.1 up to some stopping time τ > 0, then the stochastic process (ψg(φt))t≥0

is a mild, continuous solution of the Stochastic Differential Equation

dηt = (
d

dx
ηt −

1
2

d∑
i=1

σ̃i
2(ηt) + γ(ηt)dt+

d∑
i=1

σ̃i(ηt)dW i
t

with initial value ψg(φ∗) up to τ . The perturbed volatility vector fields are given
through

σ̃i(f) = Dψg(ψ−1
g (f))σi(ψ−1

g (f))

= (ψg)∗σi

and the perturbation of the drift is given through

γ(f) = −ψ ∂
∂x g(ψ

−1
g (f)) +

1
2

d∑
i=1

((ψg)∗σi)2 −
1
2

d∑
i=1

(ψg)∗σ2
i (f)

+
1
2

d∑
i=1

D2ψg(ψ−1
g (f))(σi(ψ−1

g (f)), σi(ψ−1
g (f))),

where we assume that there is h ∈ C∞(R≥0 × R,R) with ψ−1
g = ψh.

Remark 3. Notice that the point evaluations for x ≥ δ yield γ(f)(x) = 0 and
σ̃i(f)(x) = σi(f)(x). Beyond the critical time the vector fields remain unchanged.

Proof. Apply Theorem 2, since(
(ψg)∗

d

dx

)
ψg(h)(x) = (Dψg(h) ·

d

dx
h)(x) =

∂

∂y
g(x, f(x))

d

dx
h(x)

=
d

dx
g(x, h(x))− ∂

∂x
g(x, h(x))

=
d

dx
ψg(h)(x)− ψ ∂

∂x g(h)(x),

hence (
(ψg)∗

d

dx

)
f =

d

dx
f − ψ ∂

∂x g(ψ
−1
g (f))

holds for f ∈ D( d
dx ) and f 7→ ψ ∂

∂x h(ψ−1
g (f)) is a locally Lipschitz vector field. �

We want to construct flexible and tractable stochastic models, which incorporate
an affine behaviour for times to maturity x ≥ δ and some irregular behaviour for
small times to maturity. The method proposed by Theorem 2 is to take a general
affine model and to transform it by an adequate choice of ψg.

We choose a smooth, monotonic function fα : R →R, depending on a real pa-
rameter α 6= 0, such that

fα(y) = (1 + αy)
1
α for 1 + αy > ε
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for some fixed 0 < ε < 1. Notice that fα(y) → exp(y) as α → 0, therefore we
define f0(y) := exp(y). This yields f ∈ C∞(R2,R), since the extension holds for all
y-derivatives, too. Next choose a smooth function α on R≥0 with compact support,
α0 6= 0 and

α(x) =
{
α0 for x = 0
0 for x ≥ δ.

Then we can define
g(x, y) := ln(fα(x)(y)),

which is a smooth function g ∈ C∞(R≥0 × R,R), g(x, y) = y for x ≥ δ and
∂
∂y g(x, y) = 1

fα(x)(y)
∂
∂yfα(x)(y) > 0. The inverse h (whose existence is needed in

order to apply Theorem 3) can be calculated directly.
Henceforward we shall assume that the volatility vector fields depend on the

term structure in the following way

σi(φ) = ηi(l1(φ), . . . , ln(φ))

where ηi : Rn → D(( d
dx )∞) is smooth and li : D(( d

dx )∞) → R are bounded linear
functionals. We assume furthermore the interpolation condition of [6], which asserts
that for all r ≥ 0 the map

φ 7→ (l1(φ), . . . , ln(φ), . . . , l1(
dr

dxr
φ), . . . , ln(

dr

dxr
φ))

is surjective. Inserting point evaluations for li = evxi
with 0 ≤ x1 < · · · < xn this

translates to the fact, that for any prescribed values of derivatives up to order r
at the points xi there is a function φ ∈ D(( d

dx )∞) taking precisely these values. In
this case – by the assertions in [6] – the conclusion holds that the term structure
evolution is affine (and that the factor processes involved are affine processes).
Therefore we can assume σi(φ) =

∑m
j=1 kij(φ)λj where λj ∈ D(( d

dx )∞) and kij :
U → R smooth.

Theorem 4. Given 1-factor model on U ⊂ H, i.e. d = 1 and σ(φ) = k(φ)λ, i.e.
the solution process satisfies of the classical term structure equation

dφt = (
d

dx
φt −

1
2

d∑
i=1

σ2
i (φt))dt+

d∑
i=1

σi(φt)dW i
t

satisfies φt(x) = λ0(t, x) + λ1(x)Zt. Then a (generalized) stochastic evolution of
future prices is given by the following formula for an arbitrary initial state T 7→
ln(fα(T )(φ∗(T ))

F (t, T ) = fα(T−t)(λ0(t, T − t) + λ1(T − t)Zt),

in particular
St = (λ0(t, 0) + α0Zt)

1
α0

if (Zt)t≥0 is below the the level ε−1
α0

for t ≥ 0. Notice that for Z0 = 0 and in the
case, that Zt is a Gaussian Ornstein-Uhlenbeck process, this corresponds exactly to
Martin Barlow’s model with time-dependent coefficients.

Proof. We apply the methods of [6] to calculate the 1-factor models, i.e. stochastic
evolutions of

dφt = (
d

dx
φt −

1
2

d∑
i=1

σ2
i (φt))dt+

d∑
i=1

σi(φt)dW i
t
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on U ⊂ H, such that generic 2-dimensional realizations exist (time is the second
dimension besides the stochastic factor). First we calculate the derivatives

Dσ(f) · h = (Dk(f) · h)λ
Dσ(f) · σ(f) = k(f)λDk(f) · λ = p(f)λ

µ(f) =
d

dx
f +

1
2
k(f)2λ2 − 1

2
p(f)λ

Dµ(f) · h =
d

dx
h+ k(f)λ2Dk(f) · h− 1

2
λDp(f) · h,

hence we can calculate the Lie bracket

[µ, σ](f) = k(f)
d

dx
λ+ k(f)2λ2Dk(f) · λ− 1

2
λk(f)Dp(f) · λ− (Dk(f) · µ(f))λ.

We assume that [µ, σ](f) ∈ 〈λ〉 for f ∈ U , since we aim for 2-dimensional realiza-
tions, and obtain therefore an equation of the type

d

dx
λ+ q1(f)λ2 + q2(f)λ = 0,

which amounts to solve a Riccati equation for λ. We assume λ(0) = 1, which is
possible by rescaling k and obtain the equation

d

dx
λ+ aλ2 + bλ = 0

for the term structure direction. We can consequently write – up to a certain
stopping time – the evolution of an initial value φ∗ by

φt = λ0(t) + λZt

with a stochastic factor process (Zt)t≥0 for 0 ≤ t ≤ τ . Here λ0(t) = Flµt (φ∗). This
solution is then transformed by ψg, which yields the result. �

Remark 4. One can easily calculate the covariance structure of the future prices
in the critical interval 0 ≤ T − t ≤ δ by the explicit formula for g and Theorem 2.

The question what is the meaning of Q for 0 ≤ x ≤ δ remains open. From the
point of view of Girsanov’s theorem one knows that there is a market price of risk,
namely some predictable process (γ1, . . . , γd) : Ω×H → Rd such that the real world
drift is given by

µ(φ) =
d

dx
φ− 1

2

d∑
i=1

σ2
i (φ) +

d∑
i=1

γi(φ)σi(φ) + γ(φ),

which means the drift is changed even for 0 ≤ x ≤ δ. Nevertheless it might be
useful to realize that this change can be neglected with respect to γ at least near
0, since γ contains one term producing high values independent of the volatilities
of the model, which are typically low. So Q could be regarded as mixture between
the physical measure for (St)t≥0 and the martingale measure for the market. By
no means Q can be regarded as no arbitrage pricing measure for (St)t≥0!

Remark 5. One can do the above procedure also in cases, where there are given
disjoint intervals Ij = [aj , bj [⊂ R≥0 for j = 1, . . . , n and where one assumes that

(F (t, T ))T−t/∈Ij

is a Q-martingale for j = 1, . . . , n.
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