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Abstract. We show that on a closed smooth manifold M equipped
with k fiber bundle structures whose vertical distributions span the tan-
gent bundle, every smooth diffeomorphism f of M sufficiently close to
the identity can be written as a product f = f1 · · · fk, where fi pre-
serves the ith-fiber. The factors fi can be chosen smoothly in f . We
apply this result to show that on a certain class of closed smooth mani-
folds every diffeomorphism sufficiently close to the identity can be writ-
ten as product of commutators and the factors can be chosen smoothly.
Furthermore we get concrete estimates on how many commutators are
necessary.

1. Introduction

We are concerned with the question of perfectness of diffeomorphism
groups on compact manifolds. It is well known that the e-components of
diffeomorphism groups on compact smooth manifolds are perfect by results
of Herman [Her73], Thurston [Thu74], Mather [Mat74, Mat75] and Epstein
[Eps84]. However, the questions, how many commutators are necessary to
represent a given smooth diffeomorphism f via

f = [h1, g1] · · · [hn, gn]

and if these commutators can be chosen smoothly in f , remains open. Only
in the case of the torus Tn the result of Herman provides the concrete,
positive answer by a beautiful small denominator argument.

We shall provide concrete, positive answers for both questions in a sub-
class of all compact smooth manifolds by a decomposition theorem (sec-
tion 3) and applications of some canonical exponential laws (“parameteriza-
tion of diffeomorphisms”). In particular the diffeomorphism groups of odd
dimensional spheres can be treated.
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2. Inverse Function Theorems

We shall apply Nash–Moser inverse function theorems in the spirit of
Richard Hamilton. See [Ham82] for all necessary details, where the theory
of tame spaces and the tame inverse function theorems are introduced.

Given graded Fréchet spaces E and F , i.e. we are additionally given an
increasing sequence of seminorms {pn}n≥0 on E and {qn}n≥0 on F , a tame
estimate for a linear map L : E → F is given by

qn(Le) ≤ Cnpn+r(e)

for a fixed basis b, the (tame) degree r and for all n ≥ b, e ∈ E. In particular
such a map is continuous. We shall call such maps tame linear. A linear
isomorphism L : E → F is called a tame isomorphism if L and L−1 satisfy
tame estimates. To prove the inverse function theorem we need to work on
tame Fréchet spaces: a tame Fréchet space is a graded Fréchet space, which
is a tame direct summand of a space Σ(B), the Fréchet space of all very fast
falling sequences in a Banach space B, see [KM97, p. 558]. Let E and F be
graded Fréchet spaces and P : E ⊇ U → F be a map. Then P satisfies a
tame estimate if

qn(P (e)) ≤ Cn(1 + pn+r(e))

for a fixed basis b, the (tame) degree r and for all n ≥ b, e ∈ U . We
shall call such maps tame maps. Clearly a mapping is tame linear if it is
tame and linear. For mappings on products we can define tame degrees for
any term in the product, which is useful in applications. We shall work in
the category T , whose objects are open subsets of tame spaces and whose
morphisms are smooth tame maps, i.e. mappings such that all derivatives
are tame. The Nash–Moser inverse function theorems will be stated in this
category. By means of the tame category we can define tame manifolds,
bundles and geometric or algebraic structures.

The inverse function theorem finally reads as follows in its general version
in T , see [Ham82] for both theorems and all necessary details.

Theorem 1. Let E and F be tame spaces and P : E ⊇ U → F be a smooth
tame map. Suppose that the equation DP (e)h = f has a unique solution
h = V P (e)f ∈ E for all e ∈ U and all f ∈ F and that the family of inverses
V P : U×F → E is smooth tame, then P is locally invertible and the inverse
is a smooth tame map.

We shall apply the version for right inverses.

Theorem 2. Let E and F be tame spaces and P : E ⊇ U → F be a
smooth tame map. Suppose that the equation DP (e)h = f has a solution
h = V P (e)f ∈ E for all e ∈ U and all f ∈ F and that the family of right
inverses V P : U × F → E is smooth tame, then P is locally surjective and
admits a smooth tame local right inverse.
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3. The Decomposition Theorem

In this section we shall prove the fundamental decomposition theorem,
which allows a “smooth” decomposition of a small diffeomorphism on a
compact manifold into more regular parts. This shall be applied in the
following sections to obtain perfectness results on Fréchet–Lie groups such
as Diff(S2n+1).

Let M be a closed, connected manifold, such that there exist k fiber
bundle structures Si ↪→ M

pi−→ Bi for 1 ≤ i ≤ k with connected fibers
Si and (involutive) vertical distribution Di, which is a subbundle of TM .
We suppose that the distributions Di span TM . We neither assume linear
independence nor additional integrability conditions.1 We denote the Lie
subgroup of Diff(M) of bundle diffeomorphisms by Diffi(M) for 1 ≤ i ≤ k.
The Lie algebra of Diff(M) is given by smooth sections Γ(TM), the Lie
algebra of Diffi(M) by sections Γ(Di). These Lie groups are tame manifolds,
i.e. a smooth tame atlas exists and the structure maps are smooth tame.
Remark in particular that the pullback, i.e. the adjoint action Ad : Diff(M)×
Γ(TM) → Γ(TM), (f,X) 7→ (f−1)∗X is smooth tame as derivative of the
conjugation. Furthermore the module structure on Γ(TM) is tame. See
[KM97] for the general theory of Lie groups and [Ham82] for all assertions
on tame Lie groups.

We shall apply the Nash–Moser Theorem in the following version: Given
tame manifolds M and N and a smooth tame map P : M → N , then
the existence of a local smooth tame right inverse of P is equivalent to
the existence of a local smooth tame right inverse (vector bundle map) to
T̃P : TM → P ∗TN , where TN denotes the (tame) tangent bundle and
P ∗TN denotes the (tame) pullback bundle.

Theorem 3. The smooth tame mapping

P : Diff1(M)× · · · ×Diffk(M) → Diff(M)

(f1, . . . , fk) 7→ f1 ◦ · · · ◦ fk

admits a smooth tame local right inverse at the identity e ∈ Diff(M).

Proof. In the left trivialization of the tangent bundles of the respective Lie
groups the tangent mapping of P is represented by

T̃P :
k∏

i=1

Diffi(M)×
k∏

i=1

Γ(Di) →

(
k∏

i=1

Diffi(M)

)
× Γ(TM)

(f1, . . . , fk; ξ1, . . . , ξk) 7→ (f1, . . . , fk; f∗k · · · f∗2 ξ1 + f∗k · · · f∗3 ξ2 + · · ·+ ξk).

In view of the implicit function theorem it suffices to construct a smooth
tame right inverses of T̃P , linear in the variables ξi. We solve the problem

1Note, that if M appears as the total space of a fiber bundle S ↪→ M
p−→ B and

dim S ≥ 1, then one can always perturb p to obtain finitely many fiber bundles S ↪→
M

pi−→ B, such that the vertical distributions span TM .
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locally: First we choose a covering U of open subsets of M such that for U ∈
U the bundles TM |U and Di|U are trivial and that a compatible local frame
(see below) exists. Second we choose a finite partition of unity {ηU}U∈U

subordinated to this covering. The associated projection

p : Γ(TM) →
⊕
U∈U

ΓV (TM |U )

pU (X) = ηUX

where ΓV denotes the sections with support in the closed set V and V is the
support of ηU in U , is a right inverse of the sum.

On U ∈ U we can solve the equation locally. We choose a local frame
X1, . . . , Xn, where n = dim M , compatible with the distribution on U , i.e.
there are integers 0 = m0 ≤ m1 ≤ · · · ≤ mk = n, such that

Di(x) ⊃ 〈Xni(x), . . . , Xmi(x)〉 for all x ∈ U ,

where we set ni := mi−1 + 1, i = 1, . . . , k. We assume furthermore that
the vector fields Xj are globally defined on M . We then choose an open
neighborhood Vi of e ∈ Diffi(M) such that for all fi ∈ Vi the condition
f1 ◦ · · · ◦ fk(V ) ⊂ U holds and such that

F(f1,...,fk) := (f∗k · · · f∗2 Xn1 , . . . , f
∗
k · · · f∗2 Xm1 , f

∗
k · · · f∗3 Xn2 , . . . , Xn)

is a frame for TM on V . Given Y ∈ ΓV (TM |U ), we define a section si,U via
the decomposition on the frame F(f1,...,fk) by the following formula

si,U (Y ) := (f∗k · · · f∗i+1)
−1

 mi∑
j=ni

aj(Y )f∗k · · · f∗i+1Xj


where

Y =
k∑

i=1

mi∑
j=ni

aj(Y )f∗k · · · f∗i+1Xj .

The functions aj are smooth with support in V , so si,U (Y ) has support in
U and consequently the section defines an element of Γ(Di) by construction.
The pullbacks depend tamely on the diffeomorphism and the module struc-
ture is tame, hence the functions aj depend tamely on the diffeomorphisms
fi+1, . . . , fk and the vector field Y . Consequently the mapping( k∏

i=1

Vi

)
× Γ(TM) →

k∏
i=1

Diffi(M)×
k∏

i=1

Γ(Di)

(f1, . . . , fk;X) 7→ (f1, . . . , fk;
∑
U∈U

s1,U (ηUX), . . . ,
∑
U∈U

sk,U (ηUX))

is the desired smooth tame right inverse of T̃P . �
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4. Perfectness of fiber-preserving Diffeomorphisms

In this section we introduce three notions of perfectness on regular Lie
groups. These notions are finally applied to “parametrized” families of dif-
feomorphisms, which is an application of cartesian closedness, see for exam-
ple [KM97].

All manifolds, Lie groups and Lie algebras are supposed to be smooth and
modeled on convenient vector spaces. This includes all Fréchet manifolds,
Fréchet–Lie groups and Fréchet–Lie algebras. We moreover assume, that
the Lie groups are regular, in particular they admit a smooth exponential
mapping. This is not too much a restriction, since “all known convenient Lie
groups are regular”. Notice, that convenient Lie groups are not necessarily
topological groups, however Fréchet–Lie groups are. For convenient calculus
and regular Lie groups see [KM97, Ch. I and Ch. VIII]. Conditions for
regularity of convenient Lie groups can be found in [Omo97], [Tei01].

Definition 1. For a Lie group G with non-trivial e-component we define
NG ∈ N to be the smallest integer N , such that for every open neighborhood
e ∈ U ⊆ G their exist hi = exp(Yi) ∈ U , i = 1, . . . , N , an open neighborhood
e ∈ V ⊆ G and smooth mappings Si : V → G with Si(e) = e and

[S1(g), h1] · · · [SN (g), hN ] = g, for all g ∈ V .

Equivalently, NG is the smallest integer N , such that for every open neigh-
borhood e ∈ U ⊆ G there exist h = exp(Y ) ∈ UN , such that the map

κh : GN → G, (g1, . . . , gN ) 7→ [g1, h1] · · · [gN , hN ]

has a smooth local right inverse S with S(e) = (e, . . . , e). If such an integer
does not exist we set NG := ∞. We call the Lie group G locally smoothly
perfect if NG < ∞.

Definition 2. For a Lie group G with Lie algebra g 6= 0 we define NAd
G ∈ N

to be the smallest integer N , such that for every open neighborhood e ∈ U ⊆
G their exist hi = exp(Yi) ∈ U , i = 1, . . . , N , and bounded linear2 maps
si : g → g with

(id−Adh1)s1(X) + · · ·+ (id−AdhN
)sN (X) = X for all X ∈ g.

Equivalently, NAd
G is the smallest integer N , such that for every open neigh-

borhood e ∈ U ⊆ G there exist h = exp(Y ) ∈ UN and a bounded linear right
inverse s : g → gN of the map T(e,...,e)κh : gN → g. If such an integer does
not exist we set NAd

G := ∞.

Remark 1. It would be more natural to claim existence of arbitrary, small
hi, not only those which are exponentials, however, in this general case we
do not get the desired “natural” inequalities, cf. Lemma 1 below.

2Note, that in convenient calculus the smooth linear mappings coincide with the
bounded linear ones.
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Definition 3. For a Lie algebra g 6= 0 we define Ng ∈ N to be the smallest
integer N , such that there exist Yi ∈ g, i = 1, . . . , N , and bounded linear
maps σi : g → g with

[σ1(X), Y1] + · · ·+ [σN (X), YN ] = X, for all X ∈ g.

Equivalently Ng is the smallest integer N , such that there exist Y ∈ gN and
a bounded linear right inverse σ : g → gN of the mapping

KY : gN → g, KY (X1, . . . , XN ) := [X1, Y1] + · · ·+ [XN , YN ].

If such an integer does not exist we set Ng := ∞.

Lemma 1. For any Lie group G with Lie algebra g one has Ng ≤ NAd
G ≤

NG. If G is a Banach–Lie group one even has Ng = NAd
G = NG.

Proof. NAd
G ≤ NG follows immediately from differentiating κh ◦ S = id at

e ∈ G, i.e. one can take s = TeS. If G is a Banach–Lie group then the implicit
function theorem shows NAd

G ≥ NG. Notice, that every h sufficiently close
to the identity is in the image of the exponential map, for the latter is a
local diffeomorphism on Banach–Lie groups.

Next we show Ng ≤ NAd
G . For Y ∈ g we have ∂

∂t Adexp(tY ) = adY ◦Adexp(tY ).
Integration immediately yields

id−Adh = −adY ◦
∫ 1

0
Adexp(tY ) dt,

where h = exp(Y ). Inserting the bounded linear right inverse s for T(e,...,e)κh,
we obtain a bounded linear right inverse σ = (

∫ 1
0 Adexp(tY ) dt ◦ si)i=1,...,Ng

for KY .
Suppose G is a Banach–Lie group. We want to show Ng ≥ NAd

G . Choose
Y ∈ gNg , such that KY has a bounded linear right inverse and choose a
smooth curve ht ∈ UNg with h0 = (e, . . . , e) and ḣ0 = Y . For t > 0
consider the maps Kt := 1

t T(e,...,e)κht and note, that limt→0 Kt = KY . Since
g is a Banach space, the space of bounded linear mappings gNg → g which
admit a bounded linear right inverse is open, hence for t sufficiently small
Kt has a bounded linear right inverse and thus T(e,...,e)κht = tKt as well, i.e.
Ng ≥ NAd

G . �

Example 1. For any finite dimensional Lie algebra g 6= 0 one has Ng >
1, since adY : g → g can’t be surjective, for it has a non-trivial kernel.
Moreover obviously Ng ≤ dim g, for every perfect Lie algebra g. Thus for a
finite dimensional perfect Lie group G with non-trivial e-component one has
1 < NG ≤ dim G.

Example 2. For a complex semisimple Lie algebra g we have Ng = 2.
Indeed, choose H to be a regular element in the Cartan subalgebra h and
set ρ :=

∑
α Eα, where the sum is over all simple roots and Eα denotes a

non-zero element of the root space of α. Then adH(g) = h⊥ and adρ(g) ⊇ h,
hence adH +adρ : g× g → g is onto.



SMOOTH PERFECTNESS OF DIFFEOMORPHISMS 7

Example 3. For a real semisimple Lie algebra g we have Ng = 2 and
hence NG = 2 for every real semisimple Lie group G. Indeed, suppose
conversely [X, g] + [Y, g] 6= g for all X, Y ∈ g. Then all dim(g)-minors of
adX + adY : g × g → g vanish. Complexifying the whole picture we see,
that for all Z1, Z2 ∈ gC, all dim(g)-minors of adZ1 +adZ2 : gC × gC → gC

vanish, and hence [Z1, g
C] + [Z2, g

C] 6= gC. So NgC > 2, a contradiction to
example 2. Thus we must have Ng = 2.

The first non-trivial example is an immediate consequence of a theorem
due to Herman, cf. [Her73].

Example 4. For the torus Tn one has NDiff(T n) ≤ 3. Indeed, Herman proves
the statement with one commutator up to multiplication by an element in
Tn. Since Tn ⊆ PSL(2, R)n ⊆ Diff(Tn) and PSL(2, R)n is real semisimple
example 3 shows that NDiff(T n) ≤ 3.

The base of all bundles we shall consider below is understood to be a
compact, smooth and finite dimensional manifold, but the fiber might be
infinite dimensional.

Definition 4. Let π : E → B be a fiber bundle with typical fiber F , whose
structure group is reduced to K ⊆ Diff(F ), i.e. we have given a fiber bundle
atlas whose transition functions take values in K ⊆ Diff(F ), where K is
an arbitrary subgroup of Diff(F ). We define CE = CK

E to be the smallest
integer, such that there exists an open covering {U1, . . . , UCE

} of B and a
fiber bundle atlas ϕi : E|Ui → Ui×F , whose transition functions take values
in K ⊆ Diff(F ).

Remark 2. Note, that we do not assume the Ui to be connected. Since every
manifold B can be covered by dim B +1 open sets each of which is a disjoint
union of disks one gets CE ≤ dim B + 1 for any bundle E → B. Such a
covering can be constructed as follows: Choose a triangulation and consider
its barycentric subdivision. Now let Ui be the union over all simplices of the
subdivision whose closure intersect an i-dimensional simplex of the original
triangulation.

Suppose we have a bundle of Lie groups E → B with typical fiber G,
i.e. the structure group is reduced to Aut(G) ⊆ Diff(G). Then the space of
smooth sections Γ(E) is again a manifold, which becomes a Lie group under
pointwise multiplication.

Proposition 1. Suppose π : E → B is a bundle of Lie groups with typical
fiber G. Then NΓ(E) ≤ C

Aut(G)
E NG.

The proposition will follow immediately from the following two lemmas.

Lemma 2. Let E → B be a bundle of Lie groups with typical fiber G and
suppose {V1, . . . , VN} is an open covering of B, such that E|Vi is trivial.
Then there exist an open neighborhood e ∈ V ⊆ Γ(E) and smooth mappings
Fi : V → ΓV̄i

(E) with Fi(e) = e and F1(s) · · ·FN (s) = s, for all s ∈ V.
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Lemma 3. Suppose W is a finite dimensional manifold which need not be
compact, G a Lie group, NG < ∞, V ⊆ U ⊆ W open, such that V̄ ⊆ U
and such that Ū is compact. Then for every open neighborhood of e ∈ U ⊆
C∞

Ū
(W,G) there exist hj = exp(Y j) ∈ U , an open neighborhood e ∈ V ⊆

C∞
V̄

(W,G) and smooth mappings Sj : V → C∞
V̄

(W,G) with Sj(e) = e and
[S1(f), h1] · · · [SNG(f), hNG ] = f , for all f ∈ V.

Proof of Lemma 2. Choose bump functions λi : B → [0, 1] with supp λi ⊆ Vi

and such that Ui := {x ∈ B : λi(x) = 1} still cover B. Using trivializations
of E|Vi and a chart of G centered at e which has a convex image in g one
defines a smooth map given by “multiplication with λi”

φi : Γ(E) ⊇ V → ΓV̄i
(E), 1 ≤ i ≤ N,

where V is an open neighborhood of the identical section. Obviously that
map has the property, that φi(s) = s on Ui and supp(φi(s)) ⊆ supp(s). Now
set F1(s) := φ1(s) and

Fi(s) := φi(Fi−1(s)−1 · · ·F1(s)−1s), 1 ≤ i ≤ N.

Shrinking V we may assume that everything is defined without ambiguity.
An easy inductive argument shows F1(s) · · ·Fi(s) = s on U1 ∪ · · · ∪ Ui, for
all s ∈ V and all 1 ≤ i ≤ N . �

Proof of Lemma 3. Choose a bump function µ : W → R with supp(µ) ⊆ U

and µ = 1 on V . Let Ũ be an open neighborhood of e ∈ G, such that the
maps x 7→ exp(µ(x)Ỹ ) are contained U for all exp(Ỹ ) ∈ Ũ . Let Ṽ , h̃i =
exp(Ỹi) and S̃i : Ṽ → G, 1 ≤ i ≤ NG, be the data we get from NG < ∞ and
the open neighborhood Ũ of e ∈ G. Set V := {f ∈ C∞

V̄
(W,G) : f(V̄ ) ⊆ Ṽ },

hi(x) := exp(µ(x)Ỹi) and Si := (S̃i)∗. �

Proof of Proposition 1. Choose open sets Vi ⊆ V̄i ⊆ Ui ⊆ Ūi ⊆ Wi, 1 ≤
i ≤ NE , such that E|Wi are trivial and such that {Vi} is an open covering
of B. Suppose we have given any open neighborhood e ∈ U ⊆ Γ(E). For
every 1 ≤ i ≤ NE Lemma 3 provides, via trivializations of E|Wi , hj

i ∈ U , an
open neighborhood e ∈ Vi ⊆ ΓV̄i

(E) and smooth mappings Sj
i : Vi → Γ(E),

1 ≤ j ≤ NG, with Sj
i (e) = e and [S1

i (s), h1
i ] · · · [S

NG
i (s), hNG

i ] = s, for all
s ∈ Vi. Let e ∈ V ⊆ Γ(E) be the open neighborhood from Lemma 2 and
assume, that Fi : V → Vi. Then Sj

i ◦ Fi : V → Γ(E), (Sj
i ◦ Fi)(e) = e and∏

1≤i≤NE

∏
1≤j≤NG

[(Sj
i ◦ Fi)(s), h

j
i ] = s,

for all s ∈ V. �

Example 5. Suppose M → B is a finite dimensional principal bundle with
perfect structure group G. Let Gau(M) denote the group of gauge transfor-
mations. It is well known the Gau(M) = Γ(E), where E is the associated
bundle of groups with typical fiber G. So Proposition 1 implies, that Gau(M)
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is a locally smoothly perfect group, even gives concrete estimates, e.g. at least
NGau(M) ≤ (dim B + 1)(dim G).

Similarly one can treat other examples, such as the group of automor-
phisms on a finite dimensional vector bundle preserving a fiber metric (fiber
volume, fiber symplectic form), or the group of automorphisms on a finite
dimensional bundle of groups (those which are fiber wise group isomor-
phisms), or the group of automorphisms on a finite dimensional bundle of
Lie algebras.

5. Applications

Applications are given by a combination of the decomposition theorem
and the fact that

Diff(M,S) = Γ(E),

where M is a compact fiber bundle S ↪→ M → B, Diff(M,S) denotes the
fiber preserving diffeomorphisms of M and E denotes the associated bundle
of Lie groups over B with typical fiber Diff(S), see [KM97, Ch. VIII]. So
Proposition 1 shows, that Diff(M,S) is smoothly perfect as soon as Diff(S)
is smoothly perfect. See also [Ryb95], where it is shown, that the group of
leaf preserving diffeomorphisms on any foliated manifold is perfect. From
Theorem 3 and Proposition 1 we immediately get the following

Corollary 1. Suppose M is a closed manifold which admits k fiber bundles
Si ↪→ M

pi−→ Bi such that the corresponding vertical distributions span TM .
Then

NDiff(M) ≤
k∑

i=1

CpiNDiff(Si).

In particular Diff(M) is locally smoothly perfect if all Diff(Si) are locally
smoothly perfect.

Note, that if M appears as a total space of one fiber bundle S ↪→ M
p−→ B

with dim(S) ≥ 1, one can always perturb p and find finitely many fiber
bundles S ↪→ M

pi−→ B, whose vertical distributions span TM . Moreover
we always have the estimate Cp ≤ dim B + 1 ≤ dim M .

Example 6. Since every odd dimensional sphere appears as the total space
of an S1-bundle via the Hopf fibration Example 4 implies, that Diff(S2n+1)
is locally smoothly perfect. For example one easily derives NDiff(S3) ≤ 18.
Indeed S3 carries three Hopf fibrations, which satisfy the assumptions of the
decomposition theorem and hence

NDiff(S3) ≤
3∑

i=1

CpiNDiff(S1) ≤
3∑

i=1

2 · 3 = 18.
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Example 7. Since every compact Lie group G has a torus as subgroup it
appears as total space in an S1-bundle and hence Diff(G) is locally smoothly
perfect. We even get the estimate NDiff(G) ≤ 3(dim G)2, for there are always
dim G many S1-bundle structures on G which span TG.
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