
TEMPERED GROUPS

JOSEF TEICHMANN

Abstract. Tempered groups are defined to possess a subalgebra D of the
continuous bounded complex valued functions BC(G,C), such that D detects
the topology on the group in a specified sense and such that some Lipschitz-
properties are satisfied. With this subalgebra D it is possible to derive –

by classical Banach space methods – some results on approximation of the
exponential map on infinite dimensional Lie groups. It is remarkable that
all up to now known Fréchet-Lie groups, finite or infinite dimensional, are
tempered.

1. Introduction

Up to Banach spaces there is a powerful theory to solve ordinary differential
equations. Already on Fréchet spaces one has to investigate the circumstances much
more carefully to obtain results on solvability of differential equations [LS93]. Nev-
ertheless Fréchet spaces appear naturally by modelling C∞-diffeomorphism groups
[KM97]. There are two possible ways how to approach this problem: Either one
tries to translate the given initial value problem into a Banach space setting, which
normally leads to a loss of differentiability properties, or one tries to find some rudi-
ments of theory on convenient spaces, so differentiability is preserved, but there is
a lack of powerful theorems. Tempered groups are defined by the perspective of
the first method. We shall prove that on tempered groups smooth one parameter
subgroups can be well approximated by simple product integrals. This is by the
way the origin of the notion of a “Tempered Group” since the growth of the multi-
plication is controlled. Banach Lie groups and ILB-Lie groups shall be proved to
be tempered if the model spaces admit C2

b -bump functions.
The most important class of regular Fréchet-Lie groups was given by Hideki

Omori et al. (see [Omo97]) with the concept of strong ILB-groups, nevertheless
this concept is rather complicated in application. For the concepts of convenient
calculus and Frölicher spaces (smooth spaces) see [KM97].

Definition 1. A Lie group G is a smooth manifold modeled on c∞-open subsets
of a convenient vector space with smooth multiplication µ : G × G → G, where
µ(x, y) = xy, and smooth inversion ν : G → G, where ν(x) = x−1, for x, y ∈ G.
We shall denote by µx : G → G and µy : G → G the smooth left and right
translation by an element of G, i.e. µx(y) = µy(x) = µ(x, y) for x, y ∈ G.

Remark that Lie groups are not topological groups in general, because the iden-
tity c∞(E ×E)→ c∞E × c∞E need not be a homeomorphism (see [KM97], ch.1).
If the Lie group G is a topological group, then the underlying topological space
is regular (since any Hausdorff topological group is regular, see [MZ57]), but not
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necessarily smoothly regular, and we can assume, that a chosen chart (u, U) has
the property that inverse images of closed bounded sets in the convenient vector
space are closed in the group, not only relatively closed in U ⊂ G. We shall need
this property to be able to lift functions from the convenient vector space to the
group.

The classical basics of Lie theory can be carried over to this general setting
without any problems (see [KM97], ch. 8): Via left or right translation one can
trivialize the kinematic tangent bundle TG = G × g, where g denotes the tangent
space at the identity e. This is done by left invariant vector fields (X ∈ C∞(G ←
TG) is called left invariant if TµxX = X◦µx or equivalently µ∗xX = X for x ∈ G) or
right invariant vector fields. g becomes a Lie algebra, isomorphic to the Lie algebra
of left invariant vector fields and antiisomorphic to the Lie algebra of right invariant
vector fields on G (X ∈ C∞(G ← TG) is called right invariant if µx∗X = X for
x ∈ G). We denote the (anti-) isomorphism by L (respectively R). We have the
following formulas for x ∈ G:

L(X)x =
d

dt
|t=0 xc(t) and R(X)x =

d

dt
|t=0 c(t)x

for X ∈ g and a curve c : R→ G with c(0) = e and c′(0) = X.
An exponential mapping is a map exp : g→ G, so that FlL(X)(t, x) = x exp(tX)

is the global flow to the left invariant vector field L(X). An exponential map-
ping is unique if it exists, remark that the global flow to R(X) is given through
FlR(X)(t, x) = exp(tX)x. Furthermore we obtain for a smooth group homomor-
phism φ of groups, which admit an exponential mapping, the formula exp(φ′(X)) =
φ(exp(X)) for X ∈ g .

Definition 2. Let G be a Lie group with Lie algebra g. The conjugation by an
element x ∈ G defined through conjx(y) = xyx−1 for y ∈ G is a smooth group
automorphism. Adx := conjx

′ defines a smooth representation Ad : G → GL(g).
The adjoint representation Ad of the group maps into the subspace of smooth Lie
algebra automorphisms. The derivative of Ad (even in the sense of smooth groups)
is ad : g → L(g). The adjoint representation ad of the Lie algebra maps in the
subspace of derivations of the Lie algebra g.

A smooth group or Frölicher-Lie-Group is a group G with the structure of a
smooth space (for this concept see [KM97], ch. 5), such that the multiplication
and the inversion are smooth. All smoothly regular Lie Groups are smooth groups
in a canonical way. The group GL(E) of invertible linear bounded maps on a
convenient vector space E is a standard example, and not a Lie group in general,
with the following smooth structure:

CGL(E) := {c : R→ GL(E)|c : R→ L(E) and inv ◦ c : R→ L(E) are smooth }
FGL(E) := {f : GL(E)→ R|f ◦ c ∈ C∞(R,R) for all c ∈ CGL(E)}

Notice that the restrictions of all linear functionals on L(E) lie in FGL(E), fur-
thermore the restriction of the composition of a linear functional with the inversion
lies in FGL(E), so GL(E) becomes a smooth space. Multiplication and inversion
are smooth. A smooth map f : G → H between Frölicher-Lie-Groups is called
initial if for any curve c : R→ G with f ◦ c smooth smoothness of c is implied. The
following example might explain the interest in smooth groups:
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Example 3. The ∞-Torus
∏
k∈N S

1 is a smooth group with smooth curves the
componentwise smooth ones. The ∞-Torus is a product in the category of locally
compact topological groups and a product in the category of smooth groups. Further-
more the ∞-Torus can never be made to a manifold, because it should be infinite
dimensional and locally compact.

Remark 4. Let G be a convenient smootly regular Lie group and denote by Ad :
G → GL(g) the adjoint representation. If Ad is initial, i.e. Ad ◦ c smooth for a
curve c : R → G implies smoothness of the curve, then the inner automorphisms
Inn(g) := Ad(G) constitute a Frölicher-Lie-Group diffeomorphic to G in the cate-
gory of Frölicher-Lie groups. This is due to the fact that the Frölicher-Lie structure
is induced by the general linear group GL(g) and well-defined, the diffeomorphism
is given by Ad.

Proposition 5. Let M denote a finite-dimensional manifold and Diff(M) the Fré-
chet-Lie group of diffeomorphisms of M , then Ad : Diff(M) → GL(X(M)) is an
initial map, so Diff(M) is canonically isomorphic to the Frölicher-Lie-Group of
inner automorphisms.

Proof. The proof is done in several steps: First we prove that a curve c in G with
Ad ◦ c smooth has the following property: For any t0 ∈ R, x0 ∈ M and any open
neighborhood V of c−1(t0, x0) there is δ > 0 and an open neighborhood U of x0

with c−1(t, x) ∈ V for |t− t0| < δ and x ∈ U . Otherwise there would exist t0 ∈ R,
x0 ∈M , an open neighborhood V of c−1(t0, x0) and sequences tn → t0 and xn → x0

with c−1(tn, xn) /∈ V . Now take a vector field X on M having support in V with
X(c−1(t0, x0)) 6= 0. The formula for the action of Ad on vector fields is

Adct(X)(x) = Tc−1(t,x)ct(X(c−1(t, x))

Consequently Adctn (X)(xn) = 0 for all n, but Adct0 (X)(x0) 6= 0. However,
Adct(X) is smooth, so a smooth curve of smooth sections in the tangent bundle, a
contradiction.

Second it is sufficient to prove the following fact: Let c be a curve passing at
t = 0 through e with Ad ◦c smooth, then there is a neighborhood of 0, where the
curve is smooth. From this we conclude easily the general case by looking at the
smoothness of the composition and the curve c−1

t0 c around t0.
Third we apply the first observation to prove the assertion of the second step:

Let c be a curve passing at t = 0 through e with Ad◦c smooth, then there is a chart
domain V ⊂M , open around x0 = c−1(0, x0) mapped to a ball in Rn, furthermore
δ > 0 and an open neighborhood U ⊂ V of x0 with c−1(t, x) ∈ V for |t| < δ and
x ∈ U . Smoothness of Ad ◦ c locally reads as follows

(Txc−1
t )−1(

∂

∂xi
) is smooth for i = 1, ..., n

This means by smoothness of the inversion of matrices that (∂(c−1
t )j)
∂xi (x)) is smooth

locally around x0 and 0. Consequently by compactness of the manifold we con-
clude that there is a small interval around zero where c−1

t is a smooth curve of
diffeomorphisms, so ct is smooth.

Since we do neither possess information on the initiality of Ad in general nor
some good other linear representation, which induces a strongly continuous Banach
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space representation, we shall try to construct a subspace of the bounded continu-
ous functions, where G acts on faithfully, to be able to apply some Banach space
methods for the existence of the exponential map.

2. Tempered groups

We shall apply a remarkable theorem of Paul Chernoff on the approximation of
C0-contraction semigroups on a Banach space X (see [EN00]):

Theorem 6. Let X be a Banach space, c : R≥0 → L(X) curve of uniformly power-
bounded operators, i.e. there is s0 > 0 and M ≥ 1 such that ||c(t)n|| ≤ M for
t ∈ [0, s0] and n ∈ N. If there is a dense subset D ⊂ X such that

lim
t↓0

c(t)x− x
t

= Ax for x ∈ D

and there is λ0 > 0 with (λ0 − A)D is dense in X, then A is the infinitesimal
generator of a strongly continuous semigroup T and

s-limn→∞c(
t

n
)
n

= Tt

uniformly on compact subsets of R≥0.

The following Theorem is needed for approximations on convenient vector spaces
as stated in the following corollary (see [Tei01a] for the proofs):

Theorem 7. Let E be a convenient vector space and c : R≥0 → L(E) a smooth
curve of bounded linear mappings with c(0) = id such that there exists s > 0 with
{c( tn )n |n > 0, 0 ≤ t ≤ s} a bounded set of bounded linear mappings, then there is
a smooth semigroup T : R≥0 → L(E) with infinitesimal generator c′(0) and

limn→∞c(
t

n
)
n

= Tt

in C∞(R≥0, L(E)).

Corollary 8. Let G be a smoothly regular, convenient Lie group (with c∞G is a
topological group) and c : R≥0 → G a smooth curve with c(0) = e such that there
exists s > 0 with {c( tn )n |n > 0, 0 ≤ t ≤ s} relatively compact in the smooth
topology, then there is a smooth group Tt = limn→∞ c( tn )n of G and a chart (u, U)
around e with the following properties: There is small ε > 0 such that {c( tn )n |n >
0, 0 ≤ t ≤ ε} ⊂ U and u(c( tn )n) converges in all derivatives to u(Tt) for 0 ≤ t ≤ ε.

We shall work in the Banach spaceBC(G) of continuous complex valued bounded
functions on G normed by the supremum norm. Given X ∈ g, there is a smooth
one-parameter subgroup exp(tX) of G, if G admits an exponential map. We shall
investigate the group T of linear operators on BC(G) given through

Tt(f)(x) := f(exp(tX)x) = (f ◦ µexp(tX))(x) for all x ∈ G, f ∈ BC(G)

for t ∈ R. For a given smooth curve c : R→ G with c(0) = e and c′(0) = X we can
proceed in the same manner, so we obtain a curve C of isometries on BC(G). To be
able to apply Chernoff’s theorem, we need an appropriate domainD in BC(G), such
that D detects the topology of G in a certain sense and satisfies certain properties
concerning translations. This leads us to the concept of tempered groups. It is
clear that the above one-parameter subgroup has some dense domain of definiton
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for the infinitesimal generator. That the intersection of all these maximal domains
is again dense in the case of all strong ILB-groups is the result of this section.

Definition 9 (tempered groups). A smooth group G is said to be tempered if it
is a smooth space and if a unital subalgebra D ⊂ BC(G) is given, such that the
following conditions are satisfied.

1. D is invariant under left translations, that means f ◦ µa ∈ D for all f ∈ D
and a ∈ G.

2. D detects the converging sequences on G:

∀ {xn}n∈N, x ∈ G : sup
y∈G
|f(xny)− f(xy)| → 0 for all f ∈ D ⇒

xn converges to x in G

3. For every smooth curve c : R→ G with c(0) = e the curve C : R→ L(BC(G))
of left translations by c(t) for t ∈ R is differentiable at f ∈ D for t = 0 in the
supremum-norm topology of BC(G).

Lemma 10. Let G be a tempered group and c : R → G a smooth curve, then c is
continuous and C : R→ L(BC(G)) is differentiable at f ∈ D for all t ∈ R.

Proof. Let c : R → G be a smooth curve, then b(t) := c(t)c(0)−1 for t ∈ R is a
smooth curve with b(0) = e, so B : R → L(BC(G)) is differentiable at f ∈ D for
t = 0. So for any f ∈ D there exists g ∈ BC(G), such that

sup
x∈G
|f(c(t)c(0)−1

x)− f(x)
t

− g(x)| t→0→ 0 ,

consequently by left translation we obtain

sup
y∈G
|f(c(t)y)− f(c(0)y)

t
− g(c(0)y)| t→0→ 0 ,

which is the desired assertion. The rest follows by property 2.

Lemma 11. Let G be a topological group, U ⊂ G an open neighborhood of e.
Then there is a neighborhood V ⊂ G of e, such that for any continuous curve
c : R → G with c(0) = e one can find a small open interval J around zero with
∪t∈J c(t)−1

V ⊂ U .

Proof. The mapping G × G → G, (g, h) → g−1h is continuous, so the conclusion
follows immediately.

The following proposition asserts that on tempered topological groups smooth
one parameter groups can be well approximated:

Proposition 12. Let G be a tempered group (with c∞G a topological group). Let
c : R→ G be a smooth curve with c(0) = e touching a smooth one-parameter group
S at t = 0, more precisely

∀ f ∈ D, x ∈ G : (f ◦ µx(c))′(0) = (f ◦ µx(S))′(0)

Then we obtain

lim
n→∞

c(
t

n
)
n

= St

uniformly on compact subsets of R, i.e. c( tn )nS−t converges to e as n → ∞ uni-
formly on compact subsets of R. If G is a smoothly regular tempered Lie group,
then the convergence of c( tn )n to St is uniform in all derivatives.
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Proof. The first part of the proof is a simple application of the core theorem, which
asserts that the closure of the restriction of an infinitesimal generator of a strongly
continuous semigroup to an invariant and dense subspace is the infinitesimal gener-
ator (see [EN00]). We shall denote the closure of the subspace D ⊂ BC(G) by X.
T and C denote the curves of contractions on BC(G) given by left translation with
c(t) and S(t), respectively. By property 1 D is invariant under the action of C(t)
and T (t) for t ∈ R, by property 3 the first derivatives of C and T at t = 0 exist
pointwise for f ∈ D and they coincide. So T |X defines a C0-group on X, C|X is
a curve of contractions on X. D is a dense, T |X -invariant subspace of the domain
of the infinitesimal generator of T , consequently the closure of the restriction of
the infinitesimal generator to D is the infinitesimal generator. The application of
Chernoff’s theorem leads to

lim
n→∞

(C|X(
t

n
))
n

(f) = (T |X)t(f)

for all f ∈ X uniformly on compact subsets of R. In fact we have to apply the
theorem two times to obtain the assertion for the whole real line. By property 2 we
are lead to the existence of the limit in the group G uniformly on compact subsets of
R. Uniformity is due to our specified detection of the topology of G. Suppose that
the sequence does not converge uniformly on a given compact interval K to the limit
e, so there is an open neighborhood U of e and sequences {nk}k∈N, a monotone,
diverging sequence of natural numbers, and {tk}k∈N in K, so that c( tknk )nkS−tk /∈ U
for k ∈ N, but

sup
x∈G
|f(c(

tk
nk

)
nk

x)− f(Stkx)| k→∞→ 0

by the convergence theorem. Consequently

sup
y∈G
|f(c(

tk
nk

)
nk

S−tky)− f(y)| k→∞→ 0

which leads by 2 to a contradiction. So the limit exists uniformly on compact subsets
of R. By Theorem 7 and its Corollary 8 the smoothly regular case is already proved,
we give another perspective in the general case, too. Let G be additionally a Lie
group, then the adjoint representation Ad maps sequentially smoothly compact sets
to bounded ones, since it is continuous with respect to the smooth topologies (see
[KM97])

We denote by Y ∈ g the generator of St = exp(Y t). As established above we
know that limn→∞ cn(t) = exp(Y t) uniformly on compact subsets of R. The rest of
the proof is devoted to the uniform convergence on compact intervals of δrcn(t) to
Y as n→∞. In fact it is an easy consequence of calculations with right logarithmic
derivatives: For smooth curves c, d : R→ G we have

δr(cd)(t) = δrc(t) +Adc(t)δ
rd(t)

for t ∈ R. Consequently we obtain

δrcn(t) =
1
n

(
n−1∑
i=0

Adic( tn )

)
δrc(

t

n
)

for all t ∈ R. The adjoint action of G maps sequentially compact to bounded
sets in L(g), so there is a bounded absolutely convex subset B ⊂ L(g) so that
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Adc( tn )nS−t ∈ B for t in a closed zero neighborhood. By the general approximation
theorem on convenient algebras we obtain the following Mackey-limit:

lim
n→∞

Adnc( tn ) = AdSt

uniformly on compact subsets of R. The sequence measuring Mackey-convergence
is given by { t

2

n }n∈N+
on the interval [0, t]. To conclude we look at the above sum

as an approximation of the integral 1
t

∫ t
0
AdSsds for t 6= 0 in the convenient algebra

L(g). In fact we can choose n0 big enough, so that for n ≥ n0 the approximation
of the limit AdSt by Adcn(t) is good enough. By uniformity of the respective limits,
we obtain that

t

n
(
n−1∑
i=0

Adic( tn )) =
t

n
(
n0∑
i=0

Adic( tn ) +
n−1∑
i=n0

(Adic( tiin ) −AdS ti
n

) +
n−1∑
i=n0

AdS ti
n

converges Mackey to the integral uniformly on compact subsets. Consequently

lim
n→∞

δrcn(t) =
1
t

∫ t

0

AdSsds Y = Y

uniformly on compact subsets of R. So the assertions are proved. By the way we
obtain naturally c′(0) = Y .

There is a general simple concept how to detect differentiability on Banach
spaces, which is in fact valid for much more general situations (see [FK88] for
details).

Lemma 13. Let E be a Banach space, S ⊂ E′ a norming subspace of the dual
space, i.e. ‖x‖ = sup{|l(x)| | l ∈ S and ‖l‖ ≤ 1}. Let I ⊂ R be an open bounded
interval, then a curve c : I → E is Lipn for a given n ∈ N if there are curves
ci : I → E for 1 ≤ i ≤ n+ 1 with (l ◦ c)(i) = l ◦ ci for l ∈ S and 1 ≤ i ≤ n+ 1 and
cn+1 is bounded on I. In this case c(i) = ci for 0 ≤ i ≤ n.

Theorem 14. Let E be a Banach space, which admits C2
b -bump functions, then

any Lie group modeled on E is tempered.

Proof. We denote by B(0, r) for r > 0 the open ball around zero in E. The linear
space of C2

b -functions with values in C and support in B(0, r) having bounded first
and second derivative is denoted by C2

b (r)(E). If the Banach space admits C2
b -bump

functions, C2
b (r)(E) detects the converging sequences:

xn
n→∞→ x ⇐⇒ φ(xn)− φ(x) n→∞→ 0 for all φ ∈ C2

b (r)(E)

for all sequences {xn}n∈N and x ∈ B(0, r). Now we take two charts (u1, U1), (u2, U2)
around e of the Banach-Lie group, so that the C∞-function µ0 := u2◦µ◦(id×u1

−1) :
U3 × B(0, 1)) → B(0, 1), where U3 ⊂ G is an open chart domain of E, has the
property that µ̌0 : B(0, 1) → C∞(U3, E) is globally Lipschitz and consequently
bounded. This is possible by applying Theorem 12.7 in [KM97] that Lip0-functions
on a Banach space with values in a convenient vector space are locally Lipschitz
around any point in the domain of definition, so we have to shrink the chart domain
a little bit.

Let φ ∈ C2
b (1)(E) be a bump function and c : R → E with c(0) = 0 a smooth

curve, then C : I ⊂ R→ BC(B(0, 1)), given through Ct(f)(x) = f(µ0(c(t), x)) for
x ∈ B(0, 1), t ∈ I and f ∈ BC(B(0, 1)), where I is a sufficiently small open interval
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around zero (so that c(t) ∈ U3 for t ∈ I), is differentiable at φ on I. This will be
detected by point evaluations evx for x ∈ B(0, 1), which span a norming subspace
for the supremum norm on BC(B(0, 1)):

d

dt
evx(Ct(φ)) =dφ(µ0(c(t), x))(d1µ

0
(c(t),x)(c

′(t)))

d2

dt2
evx(Ct(φ)) =d2φ(µ0(c(t), x))(d1µ

0
(c(t),x)(c

′(t)), d1µ
0
(c(t),x)(c

′(t))) +

+dφ(µ0(c(t), x))(d2
1µ

0
(c(t),x)(c

′(t), c′(t))) +

+dφ(µ0(c(t), x))(d1µ
0
(c(t),x)(c

′′(t)))

for t ∈ I and x ∈ B(0, 1). The right hand side of the respective derivative is the
evaluation of a curve to BC(B(0, 1)), because the linear parts are bounded in E.
Consequently evφ ◦ C : I → BC(B(0, 1)) is Lip1 on I for all φ ∈ C2

b (1)(E) by the
previous lemma. Now we lift C2

b (r) to the group G with the chart map u2 given
around e, where 0 < r < 1 is chosen sufficiently small: We chose 0 < r1 < 1 so
that u2

−1(B(0, r1)) ⊂ U1. Applying the topological lemma leads to 0 < r < r1,
so that for every continuous curve c : R → G with c(0) = e there is a small
interval J around zero with ∪t∈J c(t)−1[u2

−1(B(0, r))] ⊂ u2
−1(B(0, r1)). To prove

differentiability we take φ ∈ C2
b (r)(E), the lifting ψ = φ ◦ u2 ∈ BC(G) has support

in u2
−1(B(0, r)). Let c : R → G be smooth with c(0) = e, then there is J , open

around zero with the above property, let g denote the lifting of the first derivative
along the curve c of φ at t = 0, then

sup
x∈G
|ψ(c(t)x)− ψ(x)

t
− g(x)| ≤ sup

x∈U1

|ψ(c(t)x)− ψ(x)
t

− g(x)|

≤ sup
x∈B(0,1)

|φ(µ̌(c(t), x))− φ(x)
t

− dφ(µ(e, x))(d1µ̌(e,x)(c′(0)))|

for t ∈ J . So we obtain differentiability of evψ ◦ C : R → BC(G) at t = 0 for
ψ = φ ◦ u2 with φ ∈ C2

b (r). We obtain that for every smooth curve the associated
left translations are everywhere differentiable at the lifted functions. C2

b (r) is an
algebra, by lifting, moving the elements via left translation and associating the unit
we can generate a unital subalgebra of BC(G), which will be denoted by D.

We have to prove the assertions of Definition 9: 1 is clear by definition, 2 is
clear by the structure of C2

b (r) as the translated functions detect every converging
sequence, 3 is clear up to the following consideration. Let c : R → BC(G) be a
smooth curve with c(0) = e, y ∈ G. Let φ be in the lifting of C2

b (r) to the group,
then there is g ∈ BC(G), such that

sup
x∈G
|φ(yc(t)x)− φ(yx)

t
− g(x)| t→0→ 0 .

Consequently the curve C is differentiable on the left translation by y of φ on G,
because it is differentiable along the curve yc(.) as remarked before. So all the
properties are proved and the Banach-Lie group is tempered.

Theorem 15. Let G be a smooth group structure, where c∞G is a topological group,
G = proj limα∈ΩGα, where the Gα are topological groups, the limit is given in the
category of topological groups.
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If Gα is a Banach manifold modeled on a Banach space Eα, which admits C2
b -

bump functions for α ∈ Ω, and if the canonically given multiplication µα : G×Gα →
Gα is smooth, then G is a tempered group.

If furthermore the C∞-vector fields

Xα
x :=

d

dt
|t=0µα(c(t), x)

for x ∈ Gα are globally integrable on Gα for every smooth curve c : R → G with
c(0) = e and α ∈ Ω, then for every smooth curve c : R → G with c(0) = e there is
a continuous group T and

lim
n→∞

c(
t

n
)
n

= Tt

uniformly on compact intervals in R.

Proof. We proceed by the same method as in the preceding examples, but we have
to look carefully at the multiplication µα for a given α ∈ Ω. There are charts u1,
u2 for the group Gα around e and a open chart domain U3 ⊂ G around e, so that
µ0
α = u2◦µα◦(id×u1

−1) : U3×Bα(0, 1)→ Bα(0, 1). By shrinking the chart (u1, U1)
we may assume that ǔα : Bα(0, 1) → C∞(U3, Eα) is globally Lipschitz. Now we
can apply the same method as before: We take the algebra C2

b (r)(Eα), where
0 < r < 1 is chosen sufficiently small due to the above consideration. We calculate
the derivatives under evaluations and prove differentiability in BC(Bα(0, 1)) of
curves of left translations by a smooth curve at functions from C2

b (1)(Eα). We
lift the algebra C2

b (r) on the group Gα and - via the canonically given smooth
projections - from Gα to G. Finally we arrive at the differentiability properties.
Redoing the program for all α ∈ Ω, moving around the functions concentrated at
the identity and using the properties of the projections and the limit leads to a
subalgebra D ⊂ BC(G), which proves temperedness of G.

Assume now that the described C∞-vector fields are globally integrable on Gα.
Redoing the first part of the proof we can find a unital subalgebra Dα ⊂ BC(Gα),
which satisfies 1 and 2 of Definition 9, the third property is satisfied only for smooth
curves c : R → G with c(0) = e, which are projected to Gα (The resulting curve
is denoted by cα). It is worth mentioning that we are not given the structure of a
tempered group, because the multiplication on Gα is not smooth.

Fix now a smooth curve c : R → G with c(0) = e to construct Xα. We denote
the global flow associated to Xα by Tα. By inserting in functions of Dα we have the
problem that the Tα are not translations, but we can argue directly as d

dtT
α
t (x) =

d
ds |s=0µα(c(s), Tαt ). The exact formulation of the above construction leads to curves
C : R→ BC(Gα) which are two times differentiable under the evaluations evx for
x ∈ Gα on a small interval around zero on functions φ ∈ Dα, where the derivatives
lie in BC(Gα), the second one is bounded on the interval. Given φ ∈ Dα and
x ∈ Gα we obtain

d

dt
φ(Tαt (x)) = (C ′(0)φ)(Tαt (x))

d2

dt2
φ(Tαt (x)) = (C ′(0)2

φ)(Tαt (x))

for t in the interval. The right hand sides are bounded on the interval, so we
conclude that the given curve is differentiable in BC(Gα). We shall look at the
closure of Dα in BC(Gα), an algebra of differentiable functions concentrated at a
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small neighborhood, so we are able to detect convergence in a small neighborhood
of the identity. By a slight generalization of Chernoff’s theorem (we leave away the
condition A|D = A, but obtain only convergence on the closure of D) we arrive at
uniform convergence on compact subsets of a small neighborhood of the identity of
the following limit:

lim
n→∞

cα(
t

n
)
n

= Tαt (e)

This means that the limit exists uniformly on compact subsets of R due to continu-
ity of the multiplication. We proved therefore that the right hand side of the limit is
a continuous group in Gα. The above procedure can be done for any α ∈ Ω, conse-
quently we have proved the assertion by the properties of the limit, more precisely:
There exists a continuous group Tα on Gα with the property limn→∞ cα( tn )n = Tαt ,
satisfying the limit conditions. So we can lift it to G and there we obtain the desired
equation.

Corollary 16. All strong ILB-Lie groups, where the respective Banach spaces in
the chain admit C2

b -bump functions, are tempered.

Proof. See [Omo97] for the properties of strong ILB-groups. In particular we get
into the assumptions of Theorem 15, since a strong ILB-LIe group is the projective
limit proj limnGn = G of topological groups Gn, which are Banach manifolds, and
µn : G×Gn → Gn are smooth for n ≥ 0.

On tempered Lie groups we can easily characterize the existence of an exponential
mapping.

Theorem 17. Let G be a tempered Lie group (in particular smoothly Hausdorff).
Let D ⊂ BC(G) be the given unital subalgebra. Let G satisfy the following com-
pleteness condition: If {xn}n∈N is a sequence with f ◦ µxn a Cauchy sequence in
BC(G) for f ∈ D, then there is x ∈ G with xn → x as n→∞.

Then the Lie group admits a smooth group in each direction if and only if for
all smooth curves c : R → G with c(0) = e the mapping id − C ′(0) : D → X has
dense image in the closure of D, denoted by X, where C : R→ L(BC(G)) denotes
the curve of left translations by c(t).

Proof. We have to apply several results of classical theory of C0-semigroups. Sup-
pose first that G admits an exponential mapping, then the respective generators
of the C0-groups on G, given through C ′(0) for c : R → G, obey the condition
R \ {0} ⊂ ρ(C ′(0)), consequently id− C ′(0) : D → X is closable and the closure is
invertible on X, so the image of D is dense.

Suppose the density condition is satisfied, then we can apply Chernoff’s theorem.
By approximation we obtain that the following limit exists uniformly on compact
intervals of R: limn→∞ C( tn )n = Tt. By the completeness assumption we obtain
the existence of a continuous group S in G with limn→∞ c( tn )n = St uniformly on
compact subsets of R. By [Tei01a] we obtain smoothness.

Remark 18. The existence of such differentiable functions with respect to the uni-
form topology gave the idea to look for some differentiable right invariant semi-
metrics on the given Lie group, which all together generate the sequential topology.
This idea was worked out in [Tei01b].
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