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Trotter’s formula on infinite dimensional Lie groups

Josef Teichmann∗

Abstract. A theory for the solution of non-autonomous linear differential
equations on convenient vector spaces is presented. The theory generalizes the
Hille-Yosida theorem and several non-autonomous versions of it. It is special
feature of the theory, that the conditions can be applied in the case of locally
convex spaces, which are not well understood from a functional analytic point
of view. The main application is the investigation of a sufficient condition for
the existence of exponential and evolution mappings on infinite dimensional Lie
groups.

Trotter’s formula in the classical functional analytic sense is a synonym for
building complicated semigroups from simple ones (see [3], for some recent progress
see [5]). We want to point out the existence aspect, i.e. provided some boundedness
condition Trotter-type-approximations converge to a smooth semigroup on a huge
class of locally convex spaces. The results remind at a first sight the results in [2],
even though there is no direct connection. The main point of the presented results is
the fact, that we obtain convergence in all derivatives to a smooth semigroup, which
allows several non-trivial conclusions.

We apply the result in particular to infinite dimensional Lie groups in the sense
of Kriegl, Michor, Milnor, Omori et al. (see [4], [6], [7]), even though the theory is
more general. Beyond Banach spaces there is a lack of methods, how to solve ordinary
differential equations (however Fréchet spaces are the only reasonable model spaces
for diffeomorphism groups on compact manifolds). We tried to get reasonable results
on solutions of non-autonomous equations by investigating the problem on the vector
space of smooth real valued functions on a given Lie group G . This can be viewed as
a linearization of the problem.

Given a Lie group G , which is assumed to be smoothly regular, the space
C∞(G,R) is a convenient vector space. The right regular representation

ρ : G→ L(C∞(G,R))
g 7→ (f 7→ f(.g))

is smooth and initial (for initiality of the map ρ , see [4]), i.e. a curve d : R → G is
smooth if the curve of linear mappings ρ◦d is smooth. If we want to solve a differential
equation of the type

δrc(t) = X(t)

where X is a smooth curve in the Lie algebra g and δr denotes the right logarithmic
derivative on G , then we can equally analyse this non-linear problem on the convenient
vector space C∞(G,R). This programme is performed in the last section for the
abstract case of smooth semigroups. In [7] strong analytic conditions in the charts
have to be assumed for a given Lie group, such that non-autonomous equations of the
above type admit flows. The presented theory allows to formulate “inner” conditions
on the Lie group, such that flows exist. These ideas have been worked out in [8].
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more I am grateful for the liberal and intellectual atmosphere around Peter Michor.
Thanks to Wolfgang Arendt and his équipe for the possibility to present my results
in Ulm in autumn 1998.
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1. Convenient Calculus

Convenient calculus (see [4], ch.I) provides the setting for infinite dimensional
analysis and geometry. The concept of a smooth curve with values in a locally
convex space is straight forward, namely all derivative of arbitrary order exist as
limits of difference quotients. The concept of Mackey-convergence will be of high
importance: Given a locally convex vector space E , a sequence {xn}n≥0 is called
Mackey-convergent to x , if there is a bounded set B ⊂ E and a sequence of positive
real numbers µn ↓ 0 such that xn−x ∈ µnB for n ≥ 0. A sequence {xn}n≥0 is called
Mackey-Cauchy, if there is a bounded set B ⊂ E and a double-sequence of positive
real numbers µnm ↓ 0 as n,m → ∞ , such that xn − xm ∈ µnmB for n,m ≥ 0.
A locally convex space is called Mackey-complete if every Mackey-Cauchy-sequence
converges.

It is a nice observation that the class of locally convex spaces, where curves
are smooth if and only if they are weakly smooth (the composition with a continuous
functional yields a smooth curve with values in R), is exactly given by the class of
Mackey-complete locally convex spaces (see [4], ch.I, 2.14). In the sequel we refer
to these spaces as convenient spaces, in particular all sequentially complete locally
convex spaces are convenient. A linear mapping on a locally convex vector space is
called bounded if the image of bounded sets is bounded. The vector space of bounded
linear maps between convenient vector spaces E and F is denoted by L(E,F ), the
dual of bounded linear functionals by E′ . On L(E,F ) we shall always consider the
locally convex topology of uniform convergence on bounded sets of E . We obtain
a convenient vector space (see [4] for details). Remark that we have the following
uniform boundedness principle for convenient vector spaces: A set of linear maps in
L(E,F ) is uniformly bounded on bounded sets if and only if it is pointwise bounded.

The final topology with respect to all smooth curves into E is denoted by
c∞E . Remark that up to Fréchet-spaces the c∞ -topology coincides with the given
locally convex topology, however, there are examples, where the c∞E is not even a
topological vector space (see [4], ch.I, 4.11). Even though a convenient vector space
is given through its system of bounded sets, we consider several times locally convex
topologies on the convenient vector space compatible with this system of bounded sets.
Mackey-sequences converge in each of these compatible topologies.

Definition 1.1. Let U ⊂ E be a c∞ -open subset of the convenient vector space
E , f : U → F a mapping. f is called smooth if smooth curves are mapped to smooth
curves. Let f : U → F be a smooth mapping, then the differential df : U ×E → F is
defined as directional derivative

df(x, v) :=
d

dt
|t=0f(x+ tv)

This rather categorical definition of smoothness coincides with all reasonable
concepts of smoothness up to Fréchet-spaces, however already on R2 it is not obvious
how to prove the equivalence (see [4], ch.I, 3.2). Originally the idea stems from [1].
Smooth functions are continuous in the c∞ -topology, but not necessarily in one of
the compatible topologies. The following theorem is a condensation of results from
convenient analysis, which will be applied in this article, for the proof see [4], ch.I.

Theorem 1.2. Let E,F,G be convenient vector spaces, U ⊂ E, V ⊂ F c∞ -open,
then we obtain:

1. Multilinear mappings are smooth if and only if they are bounded.

2. If f : U → F is smooth, then df : U × E → F and df : U → L(E,F ) are
smooth.

3. The chain rule holds.
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4. The vector space C∞(U,F ) of smooth mappings f : U → F is again a convenient
vector space (inheritance property) with the following initial topology:

C∞(U,F )→
∏

c∈C∞(R,U)

C∞(R, F )→
∏

c∈C∞(R,U), λ∈F ′
C∞(R,R).

5. The exponential law holds, i.e.

i : C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomorphism of convenient vector spaces. Usually we write i(f) = f̂
and i−1(f) = f̌ .

6. The smooth uniform boundedness principle is valid: A linear mapping f : E →
C∞(V,G) is smooth (bounded) if and only if evv ◦ f : E → G is smooth for
v ∈ V , where evv : C∞(V,G)→ G denotes the evaluation at the point v ∈ V .

7. The smooth detection principle is valid: f : U → L(F,G) is smooth if and only
if evx ◦ f : U → G is smooth for x ∈ F (This is a reformulation of the smooth
uniform boundedness principle by cartesian closedness).

8. Taylor’s formula is true, if one defines by applying cartesian closedness and
obvious isomorphisms the multilinear-mapping-valued higher derivatives dnf :
U → Ln(E,F ) of a smooth function f ∈ C∞(U,F ) , more precisely for x ∈
U, y ∈ E so that [x, x+ y] = {x+ sy|0 ≤ s ≤ 1} ⊂ U we have the formula

f(y) =
n∑
i=0

1
i!
dif(x)y(i) +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty) (y(n+1))dt

for all n ∈ N .

In the sequel we apply the Landau-like symbols to shorten the proof : Given
a mapping c from a set M to a convenient vector space E we write c = O(d) if
there is a mapping d : M → R≥0 and a bounded absolutely convex set B ⊂ E such
that c(m) ∈ d(m)B for all m ∈ M . Remember that a sequence {xn}n∈N is Mackey-
convergent if there is a sequence of positive real numbers {µn}n∈N with µn ↓ 0 such
that xn = O(µn).

A convenient algebra is a convenient vector space A with a bounded multi-
plication being associative and unital. In particular L(E,E) := L(E) is a convenient
algebra, since it is a convenient vector space and the multiplication is bounded by the
uniform boundedness principle.

Given a smooth curve X : R→A we try to solve the following ordinary
differential equation

d

dt
x(t) = X(t)x(t) (R)

with initial value x(s) = xs at the point s for t ≥ s . If there is a smooth family
of solutions cs for initial value e at any point s , then there is a smooth family of
solutions for all initial values x at any point s given through the curves t 7→ cs(t)x
for t ≥ s . If there is a smooth family of smooth solutions cs for initial value e at any
point s with the propagation condition

cs(t)cr(s) = cr(t) for t ≥ s ≥ r

then the solutions of the equation are unique for all initial values at any point in time.
From the defining property of the solution family cs(t) we obtain

0 =
d

ds
cs(t)cr(s) = (

d

ds
cs(t))cr(s) + cs(t)X(s)cr(s)
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which yields evaluated at s = r

d

ds
cs(t) = −cs(t)X(s)

for s ≤ t . So s 7→ cs(t) is a smooth family of solutions for initial value e at any point
in time of a ordinary differential equation of the type

d

ds
y(s) = y(s)Y (s) (L)

but in the negative time direction. Consequently we obtain by looking at another
smooth solution c̃r(t) from r to t

d

ds
cs(t)c̃r(s) = (

d

ds
cs(t))c̃r(s) + cs(t)X(s)c̃r(s) = 0

which allows the desired conclusion of uniqueness. If a smooth solution family satisfy-
ing the propagation condition exists for (R) we call it the right evolution of the curve
X . If a smooth solution family satisfying the propagation condition exists for (L), we
call it the left evolution of the non-autonomous curve Y .

2. The Approximation Theorem

With the concept of product integrals (see [6], [7] on Lie groups) we try to
approximate right evolutions of a given curve X to obtain an existence theorem.

Definition 2.1. Let A be a convenient algebra. Given a smooth curve X : R→ A
and a smooth mapping h : R2 → A with h(s, 0) = e and ∂

∂t |t=0h(s, t) = X(s), then
we define the following finite products of smooth curves

pn(s, t, h) :=
n−1∏
i=0

h

(
s+

(n− i)(t− s)
n

,
t− s
n

)
for a, s, t ∈ R . If pn converges in all derivatives to a smooth curve c : R → A , then
c is called the product integral of X or h and we write c(s, t) =

∏t
s exp(X(s)ds) or

c(s, t) =:
∏t
s h(s, ds). The case h(s, t) = c(t) with pn(s, t, h) = c( t−sn )n is referred to

as simple product integral.

Theorem 2.2. Let A be convenient algebra. Given X : R → A and a smooth
mapping h : R × R≥0 → A with h(r, 0) = e and ∂

∂t |t=0h(r, t) = X(r) . Suppose
that for every fixed s0 ∈ R , there is t0 > s0 such that pn(s, t, h) = O(1) on
N × {(s, t) ∈ [s0, t0]2 | s ≤ t} . Then the product integral

∏t
s h(r, dr) exists and the

convergence is Mackey in all derivatives on compact (s, t)-sets for s ≤ t . Furthermore
the product integral is the right evolution of X .

Remark 2.3. The hypothesis on the product integrals will be referred to as bound-
edness condition.

Proof. Literally the condition on the approximations is the following: There is an
absolutely convex bounded and closed set B such that for s0 ≤ s ≤ t ≤ t0 and n ∈ N

pn(s, t, h) ∈ B

We have to derive some more subtle boundedness conditions: Therefore we apply
Taylor expansion successively to necessary estimates. First we show that the first
derivative of the product integral is bounded:

d

dδ

n−1∏
i=0

h

(
s+

(n− i)δ
n

,
δ

n

)
∈

n−1∑
j=0

j−1∏
i=0

h

(
s+

(n− i)δ
n

,
δ

n

)
· C 1

n
·
n−1∏
i=j+1

h

(
s+

(n− i)δ
n

,
δ

n

)
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for δ ∈ [0, t0 − s0] with a closed, absolutely convex and bounded set C , such that

d

dδ
h

(
s+

(n− i)δ
n

,
δ

n

)
= ∂1h

(
s+

(n− i)δ
n

,
δ

n

)
(n− i)
n

+ ∂2h

(
s+

(n− i)δ
n

,
δ

n

)
1
n

=
(n− i)δ
n2

∫ 1

0

∂2∂1h

(
s+

(n− i)δ
n

, r
δ

n

)
dr +

+∂2h

(
s+

(n− i)δ
n

,
δ

n

)
1
n
∈ C 1

n

for δ ∈ [0, t0 − s0] and n ∈ N .
Remark that ∂k1h(s, 0) = 0 for s ∈ R , k ≥ 1. The other factors in the above

sum are of type pm with adjusted lower and upper bound and step width,

j−1∏
i=0

h

(
s+

(n− i)δ
n

,
δ

n

)
= pj

(
s+

(n− j)δ
n

, s+ δ, h

)
n−1∏
i=j+1

h

(
s+

(n− i)δ
n

,
δ

n

)
= pn−j−1

(
s, s+

(n− j − 1)δ
n

, h

)
,

so bounded by assumption on the respective intervals in [s0, t0] . This allows to
conclude boundedness of the first derivative with respect to t .

Repeating this procedure we obtain by induction for k = 1, 2 that

dk

dδk

n−1∏
i=0

h

(
s+

(n− i)δ
n

,
δ

n

)
= O(1)

for δ ∈ [0, t0 − s0] and n ∈ N , since

d2

dδ2
h

(
s+

(n− i)δ
n

,
δ

n

)
= ∂2

1h

(
s+

(n− i)δ
n

,
δ

n

)
(n− i)2

n2
+

+2∂1∂2h

(
s+

(n− i)δ
n

,
δ

n

)
1
n

(n− i)
n

+ ∂2
2h

(
s+

(n− i)δ
n

,
δ

n

)
1
n2

=
(n− i)2δ

n3

∫ 1

0

∂2∂
2
1h

(
s+

(n− i)δ
n

, r
δ

n

)
dr + 2∂1∂2h

(
s+

(n− i)δ
n

,
δ

n

)
1
n

(n− i)
n

+

+∂2
2h

(
s+

(n− i)δ
n

,
δ

n

)
1
n2
∈ D 1

n

and

d2

dδ2

n−1∏
i=0

h

(
s+

(n− i)δ
n

,
δ

n

)
∈

∑
0≤j<k≤n−1

j−1∏
i=0

h

(
s+

(n− i)δ
n

,
δ

n

)
· C 1

n
·
k−1∏
i=j+1

h

(
s+

(n− i)δ
n

,
δ

n

)
·

C
1
n
·
n−1∏
i=k+1

h

(
s+

(n− i)δ
n

,
δ

n

)
+

+
n−1∑
j=0

j−1∏
i=0

h

(
s+

(n− i)δ
n

,
δ

n

)
·D 1

n
·
n−1∏
i=j+1

h

(
s+

(n− i)δ
n

,
δ

n

)
where D is a bounded closed absolutely convex subset of A . This means in particular
that

h(s+ δ, δ)− pm(s, s+ δ, h) = O(δ2) (E)

by Taylor’s formula up to second order uniformly in m , since h(s, 0) = e and
d
dδ |δ=0h(s+ δ, δ) = X(s) and d

dδ |δ=0

∏n−1
i=0 h(s+ (n−i)δ

n , δn ) = X(s).
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Now we calculate

pn(s, t, h)− pnm(s, t, h) =
n−1∑
j=0

j−1∏
i=0

h

(
s+

(n− i)(t− s)
n

,
t− s
n

)
·h(s+

(n− j)(t− s)
n

,
t− s
n

)
−

(j+1)m−1∏
i=jm

h

(
s+

(nm− i)(t− s)
nm

,
t− s
nm

) ·
nm−1∏

i=(j+1)m

h

(
s+

(nm− i)(t− s)
nm

,
t− s
nm

)
in the spirit of the following formula

a1 · ... · an − b1 · ... · bn =
n∑
j=1

a1 · ... · aj−1(aj − bj)bj+1 · ... · bn (S)

which is true in any associative algebra. For the middle factor of the above series we
observe that

h

(
s+

(n− j)(t− s)
n

,
t− s
n

)
= h

(
s+

(n− j − 1)(t− s)
n

+
t− s
n

,
t− s
n

)
The third term is the m -th approximation for a product integral with lower border
s+ (n−j−1)(t−s)

n and upper border s+ (n−j)(t−s)
n .

Via the estimate (E) with δ = t−s
n we arrive at

pn(s, t, h)− pnm(s, t, h) = O

(
(t− s)2

n

)
on {m|m ∈ N}×{(s, t) ∈ [s0, t0]2 | s ≤ t} , which provides the Mackey-Cauchy property
for the above sequence.

Convergence in all derivatives follows by redoing the above program: Calcu-
lating the derivative of order k needs the binomial formula

dk

dδk
h

(
s+

(n− i)δ
n

,
δ

n

)
=

k∑
j=0

(
k

j

)
∂j1∂

k−j
2 h

(
s+

(n− i)δ
n

,
δ

n

)
(
(n− i)
n

)j(
1
n

)k−j

= X(k)

(
s+

(n− i)δ
n

)
δ

n
(
(n− i)
n

)k +

+ kX(k−1)

(
s+

(n− i)δ
n

)
(
(n− i)
n

)k−1 1
n

+O

(
1
n2

)
= X(k)

(
s+

(n− i− 1)δ
n

)
δ

n
(
(n− i)
n

)k +

+ kX(k−1)

(
s+

(n− i− 1)δ
n

)
(
(n− i)
n

)k−1 1
n

+O

(
1
n2

)
for k ≥ 1, where we applied Taylor expansions. The terms of order 1

n will cancel
out in our summation procedure (S), since this formula holds for all smooth h
with h(s, 0) = e and ∂2h(s, 0) = X(s), hence also for pm(s − t, s, h) (remark that
pn(s, s+t, pm(s−t, s, h)) = pnm(s, s+t, h)). We shall work with the following estimate

dk

dδk
h

(
s+

(n− i)δ
n

,
δ

n

)
− dk

dδk
pm

(
s+

(n− i− 1)δ
n

, s+
(n− i)δ

n
, h

)
= O

(
1
n2

)
,

which is valid uniformly in m by the boundedness condition. Deriving with respect to
s we obtain the same estimate uniformly in m . Hence this is sufficient for convergence
by applying (S) to

∂k

∂tk
(pn(s, t, h)− pnm(s, t, h)) = O

(
1
n

)
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for k ≥ 1. The limit will be denoted by c(s, t) on the interval [s0, t0] . “Sufficient for
convergence” will be explained literally: Differentiating k -times yields with the above
summation procedure (S) nk+1 terms to sum up (see the formula for the second
derivative above). There are n terms where order of differentiation k appears, O(n2)
terms where two orders smaller than k appear, but with sum k , O(n3) terms where
three orders smaller than k with sum k appear,... Applying our summation procedure
(S) to the n terms where order k of differentiation appears we get n2 terms: n terms
involve k -th derivative, so the difference is of order 1

n2 , the other n2−n terms involve
ordinary factors, so the difference is of order 1

n2 , but there is some outer factor 1
n . So

we get inductively our order estimate:

O

(
(n2 − n)

1
n2

1
n

+ n
1
n2

+ (n3 − 2n2)
1
n2

1
n2

+ 2n2 1
n

1
n2

+

+(n4 − 3n3)
1
n2

1
n3

+ 3n3 1
n2

1
n2

+ ...+ (nk+1 − knk)
1
n2

1
nk

+ knk(
1
n2

)
k)

= O

(
1
n

)
Consequently c(s, t) is smooth for s ≤ t in [s0, t0] and the convergence takes place
as Mackey-convergence in C∞({(s, t) ∈ [s0, t0]2 | s ≤ t}, A) with quality 1

n in each
derivative.The propagation condition follows with standard arguments on continuity
with respect to the smooth topology:

c(r, t) = c(s, t)c(r, s)

for (t − r)q + r = s with q ∈ Q , 0 < q < 1 by construction and everywhere by
continuity.

We calculate ∂2c(t, t) = X(t) via uniform convergence of the derivative, then
derivation of the propagation condition yields the result

∂

∂t
c(r, t) = X(t)c(r, t)

for t = s and r ≤ s ≤ t ∈ [s0, t0] , so c(r, t) is smooth in t . Looking at the situation
of an arbitrary interval we can multiply existing product integrals to get an arbitrary
one: Given s < t we can cover this compact interval by intervals of length t−s

k for k
large enough, such that on the cover-intervals our estimates are valid.

pmk(s, t, h) = pm

(
s, s+

t− s
k

, h

)
· ... · pm

(
t− t− s

k
, t, h

)
and pmk(s, t, h) − pmk+r(s, t, h) = O( t−smk ) for 0 ≤ r < k , so we get the desired
boundedness condition on the interval [s, t] .

The next corollary asserts smooth dependence on the smooth curve X , which
will be useful in the sequel, here we apply the main features of convenient calculus,
namely cartesian closedness (Theorem 1.2.5) and the very definition of smoothness: A
mapping is smooth if its composition with smooth curves is smooth.

Corollary 2.4. Let A be convenient algebra. Given a smooth curve X : R2 → A
and a smooth mapping h : R2 × R≥0 → A with h(r1, r2, 0) = e and ∂

∂th(r1, r2, 0) =
X(r1, r2) . Suppose that for every fixed s0 ∈ R and a compact r1 -interval, there is
t0 > s0 such that pn(s, t, h)(r1) = O(1) on N × {(s, t) ∈ [s0, t0]2 | s ≤ t} and the
compact r1 -intervals. Then the product integral

∏t
s h(r1, r2, dr2) exists as smooth

mapping on R × {(s, t) | s ≤ t} and the convergence is Mackey in all derivatives on
compact (r1, s, t)-sets for s ≤ t .

Proof. By inheritance (see Theorem 1.2.4) we obtain that C∞(R, A) is a con-
venient algebra and the above condition means, that the product integrals lie in a
bounded set in this algebra on compact (s, t)-sets for s ≤ t and n ∈ N . Consequently
we arrive at the desired result. The boundedness in C∞(R, A) follows from direct
calculation since ∂k1h(r1, r2, t) = O(t) on compact (r1, r2)-sets.
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3. Refinements and Applications

In this section we collect several (simple) refinements and comments to the
approximation theorem. For a convenient Hille-Yosida-Theory see [9]. We want
to point out the fact that the famous reproduction formula in Hille-Yosida-Theory,
namely

s− lim
n→∞

(
id−A t

n

)−n
= Tt

for a strongly continuous semigroup T with infinitesimal generator A is a corollary
of the above result on the space D(A∞) with the smooth curve c(t) := (id − At)−1 .
Considering semigroup problems it seems to be useful sometimes to have the possibility
to pass to a locally convex vector space (see the last example on infinite dimensional
heat semigroups in [9]).

Remark 3.1. We provide some (simple) examples of convenient algebras:

1. The boundedness condition is always satisfied up to the level of unital locally
m -convex convenient algebras A (the only completeness assumption is Mackey-
completeness). Let c : R+ → A be a smooth curve passing through the identity
at zero. Let p : A → R be a continuous seminorm satisfying p(ab) ≤ p(a)p(b)
and p(e) = 1. A set of seminorms of this type can be chosen on any unital locally
m -convex convenient algebra A to generate the topology. Then we obtain for a
given s ∈ R+

p

(
c

(
t

n

)n)
≤ p

(
c

(
t

n

))n
≤
(

1 +
Kt

n

)n
≤ exp(Kt)

for t ∈ [0, s] . The constant K depends on c and s , in fact K = supt∈[0,s] p(c′(t)).
In this case we obtain a smooth one-parameter group in each direction.

2. It is easy to construct examples, where the boundedness condition is not sat-
isfied: Take A = L(s) the unital convenient algebra of bounded (which is
equivalent to continuous on Fréchet spaces) operators on the space of rapidly
decreasing sequences s . We take for a : s → s the following bounded operator
a(x1, x2, x3, ...) = (0, 12x1, 22x2, 32x3, ...), then the Abstract Cauchy Problem
associated to a has no nontrivial solutions. Consequently no semigroup with
generator a exists. Anyway a can be decomposed into two nilpotent operators
of order 2:

a1(x1, x2, x3, ...) = (0, 12x1, 0, 32x3, 0, ...)

a2(x1, x2, x3, ...) = (0, 0, 22x2, 0, 42x4...)

a = a1 +a2 , a1
2 = 0 and a2

2 = 0. We define c(t) = exp(a1t) exp(a2t) for t ∈ R .
For this smooth curve the boundedness condition cannot be satisfied, otherwise
a smooth semigroup with generator a would exist, which is a contradiction. So
the set of operators which admit a smooth semigroup is not linear space on s .

Corollary 3.2. Let E be a convenient vector space and c : R≥0 → L(E) a smooth
curve with c(0) = idE . If there is s > 0 so that for every x ∈ E the set

{c
(
t

n

)n
x|0 ≤ t ≤ s}

is bounded in E , then the boundedness condition is satisfied for c in L(E) .
The main theorem of the previous part is in fact an existence theorem. The

question, what is implied by the existence of a semigroup, was not treated, more
precisely: Let E be a convenient vector space, T a semigroup of bounded linear
operators on E with infinitesimal generator a ∈ L(E). If c : R≥0 → E is a smooth
curve, so that c(0) = id and c′(0) = a are satisfied, does the sequence {c( tn )n}

n∈N
converge in some sense to the semigroup T ? The question seems to be difficult.
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Proposition 3.3. Let E be a convenient vector space, T a semigroup of bounded
linear operators on E with infinitesimal generator a ∈ L(E) and c : R≥0 → E a
smooth curve, so that c(0) = id , c′(0) = a . Given furthermore s0 > 0 such that for
every x ∈ E there exists k ∈ N and s ≥ s0 , so that the set

{ 1
nk
c

(
t

n

)n
x|n ∈ N, 0 ≤ t ≤ s}

is bounded in E . Then the boundedness condition is satisfied for the curve c , conse-
quently the sequence {c( tn )n}

n∈N converges to the smooth semigroup Tt uniformly on
compact subsets of [0,∞[ in all derivatives.

Proof. We apply the same methods as in the proof of the main theorem. We use
the formulas pointwise. Let x ∈ E be given, then we obtain

Ttx− c
(
t

n

)n
x =

n∑
i=1

T t(i−1)
n

(
T t
n
− c

(
t

n

))
c

(
t

n

)n−i
x

for n ∈ N and t ≥ 0. The middle term is estimated in the usual way

T t
n
− c

(
t

n

)
∈ t2

n2
C for all k ∈ N , t ∈ [0, s]

for a given s > 0 by Taylor expansion. By hypothesis there is a bounded set B and
positive number k := k(x) ∈ N so that on [0, s] := [0, s(x)] with s(x) ≥ s0

c

(
t

n

)n
x ∈ nkB.

Inserting all estimates we obtain

Ttx− c
(
t

n

)n
x ∈ t2

n2

n∑
i=1

T t(i−1)
n

C(n− i)kB,

which means that the assumed estimate can be improved on [0, s] by the uniform
boundedness principle (Trx is bounded on any fixed compact r -set by smoothness, so
TrCB is bounded on any fixed compact r -set). We arrive finally at

c

(
t

n

)n
x ∈ nk−1B′

on the interval [0, s] . Repeating this procedure k times we arrive at the result that
for any x ∈ E there is s ≥ s0 so that

{c
(
t

n

)n
x|n ∈ N, 0 ≤ t ≤ s}

is bounded in E .

By the same methods we can prove a version of this proposition on convenient
algebras:

Proposition 3.4. Let A be a convenient algebra, T a smooth semigroup with
infinitesimal generator a and c : R≥0 → A a smooth curve, so that c(0) = e and
c′(0) = a . If there exists s > 0 and k ∈ N so that

{ 1
nk
c

(
t

n

)n
|n ∈ N, 0 ≤ t ≤ s}

is bounded in A , then the boundedness condition is satisfied for the given curve c .



10 Josef Teichmann

4. Infinite dimensional smooth semigroups

Definition 4.1. A non-empty set X , a set of curves CX ⊂ Map(R, X) and a set
of mappings FX ⊂Map(X,R) are called a Frölicher space if the following conditions
are satisfied (see [4], section 23):

1. A map f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for c ∈ CX .

2. A curve c : X → R belongs to CX if and only if f ◦ c ∈ C∞(R,R) for f ∈ FX

Let X be a Frölicher space, then CX is called the set of smooth curves, FX
the set of smooth real valued functions. Mappings between Frölicher spaces are called
smooth if the compositions with smooth curves is smooth. Let X,Y be Frölicher
spaces then C∞(X,Y ) has a natural structure of a Frölicher space by the following
definition

C∞(X,Y )
C(f,c)→ C∞(R,R) λ→ R

is a smooth map for c ∈ CX , f ∈ FY and λ ∈ C∞(R,R)′ , where C(f, c)(φ) :=
f ◦φ◦c . The Frölicher space structure generated by these smooth maps is the canonical
structure on C∞(X,Y ). Given a convenient vector space E and a Frölicher space X ,
then

C∞(X,E)
C(f,c)→ C∞(R,R) λ→ R

with c ∈ CX , f ∈ E′ , the dual space of bounded linear functionals, and λ ∈ C∞(R,R)′

induces a convenient structure on the space C∞(X,E). An algebraic semigroup is an
associative monoid with identity, a smooth semigroup is a smooth space with algebraic
semigroup-structure, such that the algebraic structures are smooth. We shall assume
that smooth semigroups are smoothly Hausdorff, i.e. the smooth functions separate
points. The natural topology on a smooth semigroup is given by the final topology
with respect to all smooth curves, however, in this topology the smooth semigroup is
not necessarily a topological semigroup (take a convenient vector space E as abelian
group, such that c∞E is not a topological vector space) . We shall denote this topology
on a smooth semigroup G by c∞G .

The definition of product integrals on semigroups is done in the same way as
in algebras, see section 2. The right regular representation of G

ρ : G→ L(C∞(G,R))
g 7→ (f 7→ f(.g))

in the bounded operators on C∞(G,R) is smooth and initial, i.e. a curve d : R→ G is
smooth if ρ ◦ d is smooth. This is clear by definition, since smoothness of ρ ◦ d means
that for all smooth functions f ∈ C∞(G,R) and all g ∈ G the mapping t 7→ f(gd(t))
is smooth, so d is smooth by the definition of a Frölicher space.

Theorem 4.2. Let G be a smooth (smoothly Hausdorff!) semigroup. Given a
smooth mapping c : R3

≥0 → G with c(r1, r2, 0) = e such that the approxima-
tions pn(s, t, c)(r1) lie in a sequentially c∞ -compact set on compact (r1, s, t)-sets
with s ≤ t , then there is a smooth curve d : R≥0 × {(s, t) | s ≤ t} → G with
d(r1, s, t)d(r1, r, s) = d(r1, r, t) (propagation condition), pn(s, t, c)(r1) n→∞→ d(r1, s, t)
in c∞G and ρ[pn(s, t, c)(r1)] n→∞→ ρ[d(r1, s, t)] uniformly on compact (r1, s, t)-sets
with s ≤ t in all derivatives. Given another curve c̃ : R3

≥0 → G such that the ap-
proximations pn(s, t, c̃)(r1) lie in a sequentially c∞ -compact set on compact (r1, s, t)-
sets with s ≤ t and d

dt |t=0ρ(c(r1, r2, t)) = d
dt |t=0ρ(c̃(r1, r2, t)) for r1, r2 ≥ 0 , then

pn(s, t, c̃)(r1) n→∞→ d(r1, s, t) .

Proof. Sequentially c∞ -compact sets are mapped to bounded sets under the smooth
representation ρ . Consequently we can apply the approximation theorem to conclude
that ρ[pn(s, t, c)(r1)] converges uniformly on compact (r1, s, t)-sets with s ≤ t in all
derivatives. But the sequence pn(s, t, c)(r1) has at least one adherence point in G for
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fixed parameters by sequential compactness, which has to be unique by the Hausdorff-
property. Consequently there is a mapping d : R≥0 ×{(s, t) | s ≤ t} → G given by the
limits of pn(s, t, c)(r1) for the respective parameter values, but ρ[pn(s, t, c)(r1)] n→∞→
ρ[d(r1, s, t)] pointwise implies that ρ ◦ d is the limit of pn(s, t, c)(r1), so d is smooth
by initiality and the convergence is uniform in all derivatives by the approximation
theorem 2.2. Since propagations are unique on L(C∞(G,R)) the second assertion is
proved either.

Corollary 4.3. Let G be a smooth semigroup and c : R≥0 → G a smooth curve
with c(0) = e such that c( tn )n lie in a sequentially c∞ -compact set on compact t-sets,
then there is a smooth semigroup d : R≥0 → G (d(s)d(t) = d(s+ t) for s, t ≥ 0) with
limn→∞ c( tn )n = d(t) in G and ρ(c( tn )n) → ρ(d(t)) uniformly on compact t-sets in
all derivatives.

Remark 4.4. If there is a sort of “Lie cone” on the smooth semigroup, then the
compactness condition on the approximations implies the existence of an “exponential
map”. This was applied to strong ILH -groups, which are Frölicher spaces in particular
(since they are smoothly regular, see [4]), to formulate “inner” conditions on the
existence of evolution mappings (see [8]). Remark that “all” up to now known Fréchet-
Lie groups are strong ILH -groups. Even if a group does not admit charts, these
procedures can be applied. For some general ideas in this setting, how to obtain, that
the approximations remain in a sequentially compact set see the preprint [10].
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