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American option

» A contract on one or several underlying assets that can
be exercised during some predetermined period [t, T].
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American option

» A contract on one or several underlying assets that can
be exercised during some predetermined period [t, T].

» Payoff g : R"” — R at exercise 7 € [t, T].
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Example: American put option boundary
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Gives you the right, but not the obligation, to sell the
underlying stock X for a predetermined price K any time American options
set, T




Example: American put option

Gives you the right, but not the obligation, to sell the
underlying stock X for a predetermined price K any time
set, T

At exercise T the payoff is g(X;) = max(K — X;,0).
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Early exercise
Complete markets boundary
regularity close to
expiry in
indifference setting

The market consists of

American options

» non-risky asset

dBs = pBsds
Bt - B

» traded asset

dXs = pXsds + o XsdWs
Xt- = X

Ws is Brownian motion.




Option price

The price h of an American option with payoff g is given by

Theorem (Risk-neutral valuation formula)

h(x, t) = up_ e T IE(g(X:)|1Xe = x).
TE|t,
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Early exercise

Varlatlonal Inequallty boundary

regularity close to
expiry in

indifference setting
h solves the following linear variational inequality S N
KTH, Stockholm
. 1,5 N
min — ht — EO— X hXX — thX + ph’ American options

h(x, t) — g(x)) = 0 inRx[0,T)
h(x, T) g(x) in[0,T)




Variational inequality

h solves the following linear variational inequality

1
min ( — he = 50°x hoc — pxh + ph,
h(x, t) — g(x)) = 0 inRx[0,T)

h(x, T) = g(x) in[0,T)

A free boundary T separates the sets

1
¢ = {—h— 2<7x2h — pxhy, + ph = 0}
{h—g =0}

™
|
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History

Independent results for the American put.

> Kuske & Keller (1998)
» Bunch & Johnsson (2000)
» Stamicar, Sevcovic & Chadam (1999)
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Chen, Chadam: Reformulation

In dimensionless variables the price function h(x, t) solves
he — ho — (k—1)he+kh = 0  for x > f3(t)
h 1—¢* for x < f(t)
h(0,x) = (1—e97,

where x = (3(t) is a parameterization of the free boundary T
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Fundamental SOIUtlon boundary
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Find the fundamental solution for the PDE

1 (X + (k — ].)t)2 History and
[0 = -_—_ ackgroun
(X, t) 2\/7? exp { 4t background

and get the following integral representation
. 0
hot) = [ (=)ol y )y

t rB(t-0)
—l—k/ / d(x — y,0)dydo.
0 J—oo




ODE for the free boundary

Derive an ODE for the free boundary

G _

20,(6(t), t)

t
k

=7/ oL ((1) -

/B(t - 9)’9)

g

(t — 0)do.
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Early exercise

ODE for the free boundary boundary
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Derive an ODE for the free boundary

5= 22U g [ (B0~ e - 0).0)(e ~ o).

History and
background

Asymptotic expansion

g_ 5 i_‘_i_‘_i%_
4t 26 8€2 T 2483 T

where & = V4mk?2t.




Summary of the expansion method

Advantage
» Good precision
Drawback

» One-dimensional, linear setting.
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A general obstacle proble

m

Obstacle problem with a non-linear, n 4+ 1-dimensional,

parabolic operator

min(Dsu — F(Dzu, Du, u,x, t)

where Bj is the unit ball in R”.

,U—g)

u(x,0)

0
g(x)

in B x (0,1)

in By
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- - - Early exercise
Scaling in the point (0, 0) boundary
regularity close to
expiry in
indifference setting

For simplicity assume: u(0,0) = g(0) = 0.

Scaled function
The blow-up
U(rX, r2t) technique
u(x, t) = D TH
Qr

Scaled operator

F.(D?u, Du,u,x,t) = F(D?u, rDu, r’u, rx, r’t).
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For simplicity assume: u(0,0) = g(0) = 0.
Scaled function
u(rx, r’t) et

ur(x,t) = -
,

Scaled operator
F.(D?u, Du,u,x,t) = F(D?u, rDu, r’u, rx, r’t).

Choose «, so that 0 < lim,_gu, < o0 .




Scaled obstacle problem Shoundary

regularity close to
expiry in
indifference setting

Under standard assumptions on F the scaled function u,
solves

The blow-up
technique

min(D;u, — F,(D?u,, Duy, uy, x, t),
r — 8r = in B r y T
ur — &) 0 in By, x (0 p )
ur(x,0) = gi(x) in By,
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Take the so called blow-up limit by letting r — O.

If we have the right growth and continuity of u the limit LD
function ug = lim,_ u, will solve

min(Dsug — F(D?up,0,0,0,0),u0 —go) = 0 inR xR
up(x,0) = go(x) inR.




Free boundary regularity

Assume we have a free boundary.

At

Diu— Fu=0
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Free boundary regularity

Assume that the free boundary stays above t = cx~.

At

2

Diu— Fu=0
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Free boundary regularity

Pick a sequence X1, Xz ... € {t = cx?},where X; = (x;, t;).

t=cx?
= AN b Fi—o
X1 I
X
X3
Xi
>
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. Early exercise
Free boundary regularity S
regularity close to
® expi}:’y in
indifference setting

arson

Set ri = |XJ‘ .. ;\TTH:‘Iysm,l..i{u\m

t
A Dtu —Fu=0 The blow-up

technique




Free boundary regularity

...and scale the problem by r;. X; = (x;/rj, tj/rjz).

At D, —Fou, =0

Bl X (07 1)
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Free boundary regularity

Take the limit as j — co. Note |X,o| = 1.

At

DtUO - FoUo =0

Bl X (07 1)
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The blow-up limit problem

» For the limit problem no lower order terms occur in the
PDE.

» The limit obstacle gp is possibly simpler than the
original g.
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PDE.
» The limit obstacle gp is possibly simpler than the
Ol’lglna| g The blow-up

technique

4

Different scenarios that might occur for the limit problem:

» The obstacle is a strict subsolution to the differential
operator.
» We can find an analytic solution.




The obstacle is a strict subsolution

go is a strict subsolution if

—F(D?g,0,0,0,0) < 0in B; x (0,1).
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—F(D?g,0,0,0,0) < 0 in By x (0,1).

Diuy — F(up,0,0,0,0) > 0in By x (0,1) and the maximum

rinciple
p p The blow-up

technique

4
up > go in By X (0, 1).
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—F(D?g,0,0,0,0) < 0in B; x (0,1).

Diuy — F(up,0,0,0,0) > 0in By x (0,1) and the maximum

rinciple
p p The blow-up

technique

4
up > go in By X (0, 1).

4

No free boundary exists for the limit problem, i.e.
Fre{t<x?o(x)}

for some modulus of continuity o(x).




Incomplete markets: Market components
The market consists of
» non-risky asset (zero interest rate for simplicity)
B. = B.
> traded asset

dXs = pXsds + oXsdWs
Xt = X

» non-traded asset

dYs = b(Ys,s)ds+ a(Ys,s)dW.
Ye = ¥y

Ws and W/ are correlated with correlation p € (—1,1).
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Aim

Define the indifference price h of a call option written on the
non-traded asset Y.
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Investment alternatives

Alternative 1: Invest in stock Xs and bond Bs

» Allocation in traded stock Xs: s

Allocation in bond: 72

» Wealth: Z; = 772 + 7s.

dZs = mspds + msodWs
Zt- = Z.
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Investment alternatives

Alternative 1: Invest in stock Xs and bond Bs

» Allocation in traded stock Xs: s

Allocation in bond: 72

» Wealth: Z; = 772 + 7s.

dZs = mspds + msodWs
Zt- = Z.

Alternative 2: Invest in stock X, bond Bs and buy a call
option on non-traded asset Y at time t for price h

» American call payoff: g(y) = (y — K)™.
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Value function:

Vi(z,t) = SLT,Irp E(U(ZT)|Z: = 2).

where U(z) = —e 7.

Application to
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Terminal wealth:  Z7
Value function:

Vi(z,t) = SLT,Irp E(U(ZT)|Z: = 2).

where U(z) = —e 7.
» Alternative 2 (Stock, bond and call option) e L.
Initial wealth: z—h

Wealth at exercise time 71 Z, + g(Y-)
Value function:

Vo(z,y,t) =sup E(VA(Zr + g(Y7), T)|Zr =2, Y: = y)
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» Alternative 1 (Stock and bond only) T e
Inltlal Wealth z Teitur Arnarson

KTH, Stockholm

Terminal wealth:  Z7
Value function:

Vi(z,t) = SLT,Irp E(U(ZT)|Z: = 2).

where U(z) = —e 7.
» Alternative 2 (Stock, bond and call option) e L.
Initial wealth: z—h

Wealth at exercise time 71 Z, + g(Y-)
Value function:

Vo(z,y,t) =sup E(VA(Zr + g(Y7), T)|Zr =2, Y: = y)

» Definition: The indifference price h satisfies

Vl(Z, t) = V2(z - h7y7 t)
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min(Hh,h—g) = 0 in Rx[0,T)
h(y,T) = gly) R

Application to

where indifference pricing

1o 2 H
Hu = Diu— 52 (v,t)Dyu — (b(y, t) — p;a(y, t)) Dyu

391 )y, DDy
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» Parameterization of free boundary: T = (3(t), t) N —
» Location at expiry: Bp = lim:—o 3(t)

> Aly.t) = —Hg = b—pla— Ly(1— )
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Lemma 1 If A(y0,0) = 0 and A\
A(yo + 6,0)A(yo — 0,0) < 0 for all
small § then either no free bound-
ary exists or

Application to

indifference pricing

Bo=Yo- e a
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» Parameterization of free boundary: T = (5(t), t) - is"etting
’ Location at eXpiry: ﬂo = Iimt_)o /B(t) T&\tll? rAV'I];lV'SLrIV
call KTH, Stockholm

> Aly,t) = —Hg = b—pla—3y(1—p?)a’
Lemma 1 If A(y0,0) = 0 and A\
A(yo + 6,0)A(yo — 0,0) < 0 for all
small § then either no free bound-
ary exists or

Application to

indifference pricing

Bo = yo.

Lemma 2 If A(y,0) < —e for
some e > 0 and all y € {g > 0}
then

Bo =K.

K A< 0 x
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Theorem 1 There exists & and r > 0 such that for
§1<§0_2<§2 and t < r

(B(t), t) € {(y, 1) : &(y — Bo)® < t < &y — Bo)?}

Application to

indifference pricing
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Theorem 1 There exists & and r > 0 such that for
§1<§0_2<§2 and t < r

(B(t), t) € {(y, 1) : &(y — Bo)® < t < &y — Bo)?}

Application to

indifference pricing

&o solve u(&p) — &ou' (&) = 0 where

)
) = €65 (.0+ ) [ ﬂf‘;;j X0232X2 x




Proof

* Rewrite equation
Hu = Ay, t)X{us0}
where T{ = H + (1 — p?)a*g, D, .
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Hu= A(y, t)X{u>0} KTH, Stockholm

where T{ = H + (1 — p?)a*g, D, .
* Scale by r3

u(ry + Bo, r’t
ur(y, t) = (r3)

Application to

indifference pricing

and take the limit r — 0

1
Diug — 53(2)D§U0 = AO}/X{uo>0}'
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* Rewrite equation bt A
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7‘A{U = A(y, t)X{u>0} KTH, Stockholm

where T{ = H + (1 — p?)a*g, D, .
* Scale by r3

u(ry + Bo, r’t
ur(y, t) = (r3)

Application to

and take the limit r — 0 indifference pricing

1
Diug — 53(2)D§U0 = AOYX{uo>0}-

* Self-similar solution in the variable £ = —y /\/t.

6(¢) = u(y,t).

3




Free boundary regularity: Gy = K oy
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Theorem 2 There exists a modulus of continuity o(r) such
that

Application to

indifference pricing

(B(), 1) € {(y, 1) - t < (v = K)?a(y = K)}.
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h r + K r2t eitur Arnarson
h(y,t) = (yr’) KTH. Storihaim

and take limit r — 0
1
min(D¢hy — EagD}%hm ho—g) = 0
ho(y,0) = go(y)

Application to

indifference pricing




Proof

* Scale by r
h(ry + K, r?t)
r

he(y,t) =
and take limit r — 0
min(D;hy — %agoﬁho, ho—g) = 0
ho(y,0) = go(y)
% go =y is a strict subsolution to the limit PDE.
4
The limit problem does not have a free boundary.
4
(B(t),t) € {t < (y = K)?o(y — K)}.
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