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Outline

1. Lévy processes and dependence concepts.

2. Association of Lévy processes.

3. Lévy Copulas.

4. Comparison of Lévy processes.

5. Applications: Exit times, credit risk, option prices.
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Lévy-Processes

A stochastic process X = (Xt) with values in IRd is called Lévy-process if
X0 = 0 and

• X has independent increments,

• X has stationary increments,

• ∀t, ε > 0, limh→0P (‖Xt+h −Xt‖ ≥ ε) = 0.
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The Lévy Measure

Let (Xt) be a Lévy process with values in IRd. The measure ν defined by

ν(A) = E
[
|{t ∈ [0, 1] | ∆Xt 6= 0, ∆Xt ∈ A}|

]
where A ∈ IB(IRd) is called the Lévy measure of X.

In what follows we suppose that the Lévy processes under consideration do
not have a Brownian part.
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The Problem

Characterize the dependence structure of a
Lévy process by means of the

(a) Lévy measure.

(b) Lévy copula.
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Dependence Concepts

A random vector X = (X1, . . . , Xd) is said to be

a) (positively) associated if Cov(f(X), g(X)) ≥ 0 for all increasing func-
tions f, g : IRd → IR.

b) positive orthant dependent (POD) if for all t ∈ IRd

FX(t) ≥
d∏

k=1

FXk
(tk) and F̄X(t) ≥

d∏
k=1

F̄Xk
(tk).

c) positive supermodular dependent (PSMD) if Ef(X⊥) ≤ Ef(X) for all
f : IRd → IR supermodular for which the expectation exists where X⊥

is the vector with same marginals as X but independent components.

Note that we have Association ⇒ PSMD ⇒ POD.
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Dependence Concepts for Stochastic Processes

The IRd-valued stochastic process X = (X(t))t≥0 is said to be associated
(POD, PSMD) if and only if

(X(t1), . . . , X(tn))

is associated (POD, PSMD) for all 0 ≤ t1 < t2 < . . . < tn and all n ∈ IN .

Note that in case of Lévy processes this is equivalent to X(t) being
associated (POD, PSMD) for all t ≥ 0.
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Characterization of Dependence by the Lévy Measure

Theorem 1: Let X be an IRd-valued Lévy process with Lévy measure ν.

a) X is associated if and only if ν is concentrated on

IRd
+,− = {x ∈ IRd | xi ≥ 0 ∀i or xi ≤ 0 ∀i}

b) The following statements are equivalent:

(i) X is associated.
(ii) X is POD.
(iii) X is PSMD.

Remark: X(t) associated for a fixed t > 0 does not imply that X is
associated.

Resnick (1988), Samorodnitsky (1995), Liggett (2005), B., Blatter and Müller (2007)
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Lévy Copulas

Let X be an IRd-valued Lévy process. The tail integral of X is the
function U : (IR\{0})d → IR defined by

U(x1, . . . , xd) :=
∏d

i=1 sgn(xi)ν
( ∏d

j=1 I(xj)
)
,

where I(x) = (x,∞) if x ≥ 0 and (−∞, x] if x < 0. Then there exists a

measure defining function F : ĪRd → ĪR with univariate marginals which
are the identity functions on ĪR such that

U(x1, . . . , xd) = F
(
U1(x1), . . . , Ud(xk)

)
for all x ∈

(
IR \ {0}

)d
. This equality has also to be true for all marginals.

F is unique on
∏d

i=1 Ran Ui and is called Lévy copula of X.

Cont and Tankov (2004), Kallsen and Tankov (2006)
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Characterization of Dependence by the Lévy Copula

Theorem 2: Let X be an Rd-valued Lévy process with Lévy copula F . X
is associated (POD, PSMD) if and only if F (u) = 0 for all u /∈ IRd

+,−
where F is uniquely defined.

Example: (Clayton Lévy Copula)

Fθ(u1, u2) =

(|u1|−θ + |u2|−θ)−1
θ1[u∈IR2

+,−]

where θ > 0.

In the figure: θ = 1.
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Warning!!

The Lévy copula is not sufficient to characterize all types of dependence.
E.g. properties like Conditionally increasing in sequence or MTP2 cannot
be characterized.

Example: X is a 2-dimensional compound Poisson process with

ν =
1

3
(δ(1,0) + δ(2,1) + δ(3,3)),

and Y is a 2-dimensional compound Poisson process with

ν =
1

3
(δ(1,1) + δ(2,2) + δ(3,3)).

Both have the same Lévy copula but the first one is neither CIS nor MTP2.
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Stochastic Orders for Processes

X = (X1, ..., Xd) is smaller than X̃ = (X̃1, ..., X̃d) in the

a) supermodular order (X ≤sm X̃), if Ef(X) ≤ Ef(X̃) for all supermod-
ular functions f : IRd → IR such that the expectations exist.

b) concordance order, (X ≤c X̃), if both F̄X(t) ≤ F̄X̃(t) and FX(t) ≤
FX̃(t) for all t ∈ IRd hold.

Two stochastic processes X = (X(t))t≥0 and X̃ = (X̃(t))t≥0 are

comparable with respect to the order � ∈ {≤c,≤sm} ( X � X̃) if

(X(t1), . . . , X(tn)) � (X̃(t1), . . . , X̃(tn))

for all 0 ≤ t1 < t2 < . . . < tn and all n ∈ IN .
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Comparison Results for Lévy Processes

B0 :=
{
f : IRd → IR | f mb, bounded, lim supx→0

|f(x)|
‖x‖2 < ∞

}
Theorem 3: For Lévy processes X, X̃ with Lévy measures ν, ν̃, the
following conditions are equivalent:

(i) X ≤sm X̃.
(ii) ν ≤sm ν̃, i.e.

∫
fdν ≤

∫
fdν̃ for all supermodular f ∈ B0.

Theorem 4: Let d = 2. For Lévy processes X, X̃ with Lévy measures ν, ν̃
and Lévy copulas F , F̃ the following conditions are equivalent:

(i) X ≤c X̃.
(ii) X ≤sm X̃.
(iii) ν and ν̃ have the same marginal tail integrals and F ≤ F̃ .

Bergenthum and Rüschendorf (2006), B., Blatter and Müller (2007)
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Applications: Exit Times

Suppose the Lévy process X = (X1(t), . . . , Xd(t))t≥0 represents the
evolution of d wealth processes. Denote by

τj := inf{t ≥ 0 |Xj(t) ≤ c}

the exit time of process j = 1, . . . , d.

Theorem 5: Let X be an IRd-valued Lévy process. If X is associated (or
POD or PSMD) then the exit time points τ = (τ1, . . . , τd) are associated
(and thus also POD and PSMD).

Theorem 6: Let X and X̃ be two IRd-valued Lévy processes. If X ≤sm X̃
then the exit time points are ordered:

τ = (τ1, . . . , τd) ≤sm τ̃ = (τ̃1, . . . , τ̃d).
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Applications: Ruin Times

By X+
t :=

∑d
i=1Xi(t) we denote the one-dimensional risk process for the

insurance company. By ψX+ we denote its probability of ruin, i.e.

ψX+(u) = P

(
inf
t≥0

X+
t < 0 | X+

0 = u

)
.

Theorem 7: Suppose we have two portfolios of risk processes X and X̃
which are both IRd-valued Lévy processes. If X ≤sm X̃ then for all u > 0:∫ ∞

u

ψX+(s)ds ≤
∫ ∞

u

ψX̃+(s)ds.

Denuit, Frostig and Levikson (2007), Bregman and Klüppelberg (2006)
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Applications: Credit Risk

• Portfolio of d obligors.

• λi(t,Ψt, Yt) = default intensity of obligor i at time t.

• Λi(t) :=
∫ t

0 λi(s,Ψs, Ys)ds ↑ ∞ for t → ∞ a.s.

• τi := inf{t ≥ 0 | Λi(t) ≥ Ei}, default time of obligor i (Ei ∼ exp(1)).

• Ψt environment process at time t.

• Yi(t) = 1[Ei,∞)(Λi(t)), indicator of default.
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Applications: Credit Risk

Theorem 8: Assume all necessary measurability and integrability conditions
are satisfied and

(i) The environment process (Ψt) is associated and has a. s. càdlàg paths.

(ii) The default thresholds E are associated and independent from (Ψt).

(iii) For every obligor i ∈ {1, . . . , d}, the default intensity λi(t, ψ, y) is
increasing in ψ and y and continuous in ψ.

Then the integrated default intensity process (Λt) =
(
Λ1(t), . . . ,Λd(t)

)
is

associated and thus τ = (τ1, . . . , τd) is associated.

B. and Schmock (2007)
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Applications: Stock Prices

Let X be an IRd-valued Lévy process and let the price processes of d
assets satisfy the following stochastic differential equation

dSi(t) = Si(t−)
[
µi(t)dt+ σi(t−)dXi(t)

]
Si(0) = 1

where µi(t), σi(t) are bounded determinsitic càdlàg functions.

Further we assume for all i = 1, . . . , d

(A) σi(t)
(
Xi(t) −Xi(t−)

)
≥ −1 for all t ≥ 0.

Theorem 9: If the Lévy process X is associated (or POD or PSMD), then
the price processes are associated (and thus also POD and PSMD).
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Applications: Option Pricing

Take a contingent claim with pay-off H = h(S1(T ), S2(T )). Its price is
given by π(H) = B−1

T EQ[h(S1(T ), S2(T ))].

Theorem 10: If h is a supermodular function and S1 and S2 are associated
under Q, then

π(H) ≥ π(H⊥)

where π(H⊥) is the price of the same option with independent price
processes.

Typical functions h which are supermodular are
h(x, y) =

(
min(x, y) −K

)+
, h(x, y) =

(
x+ y −K

)+
.
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