Dependence Properties and Comparison Results for Lévy Processes with Applications in Finance

Nicole Bäuerle

Wien, September 2007

- 1. Lévy processes and dependence concepts.
- 2. Association of Lévy processes.
- 3. Lévy Copulas.
- 4. Comparison of Lévy processes.
- 5. Applications: Exit times, credit risk, option prices.

Lévy-Processes

A stochastic process $X = (X_t)$ with values in $I\!\!R^d$ is called Lévy-process if $X_0 = 0$ and

- X has independent increments,
- X has stationary increments,
- $\forall t, \varepsilon > 0, \lim_{h \to 0} P(\|X_{t+h} X_t\| \ge \varepsilon) = 0.$

The Lévy Measure

Let (X_t) be a Lévy process with values in $\mathbb{I}\!R^d$. The measure ν defined by

$$u(A)=E\Big[|\{t\in [0,1]\mid \Delta X_t
eq 0, \; \Delta X_t\in A\}|\Big]$$

where $A \in I\!\!B(I\!\!R^d)$ is called the Lévy measure of X.

In what follows we suppose that the Lévy processes under consideration do not have a Brownian part.

Characterize the dependence structure of a Lévy process by means of the

(a) Lévy measure.

(b) Lévy copula.

Dependence Concepts

A random vector $X = (X_1, \ldots, X_d)$ is said to be

- a) (positively) associated if $Cov(f(X), g(X)) \ge 0$ for all increasing functions $f, g: \mathbb{R}^d \to \mathbb{R}$.
- b) positive orthant dependent (POD) if for all $t \in I\!\!R^d$

$$F_X(t) \geq \prod_{k=1}^d F_{X_k}(t_k) \quad ext{and} \quad ar{F}_X(t) \geq \prod_{k=1}^d ar{F}_{X_k}(t_k).$$

c) positive supermodular dependent (PSMD) if $Ef(X^{\perp}) \leq Ef(X)$ for all $f: \mathbb{R}^d \to \mathbb{R}$ supermodular for which the expectation exists where X^{\perp} is the vector with same marginals as X but independent components.

Note that we have Association \Rightarrow PSMD \Rightarrow POD.

Dependence Properties of Stochastic Processes

September 2007 Nicole Bäuerle

Dependence Concepts for Stochastic Processes

The $I\!\!R^d$ -valued stochastic process $X = (X(t))_{t \ge 0}$ is said to be associated (POD, PSMD) if and only if

$$(X(t_1),\ldots,X(t_n))$$

is associated (POD, PSMD) for all $0 \le t_1 < t_2 < \ldots < t_n$ and all $n \in \mathbb{N}$.

Note that in case of Lévy processes this is equivalent to X(t) being associated (POD, PSMD) for all $t \ge 0$.

Characterization of Dependence by the Lévy Measure

Theorem 1: Let X be an \mathbb{R}^d -valued Lévy process with Lévy measure ν .

a) X is associated if and only if ν is concentrated on

$$I\!\!R^d_{+,-} = \{x \in I\!\!R^d \mid \ x_i \geq 0 \ orall i \ ext{or} \ x_i \leq 0 \ orall i\}$$

b) The following statements are equivalent:

- (i) X is associated.
- (ii) X is POD.
- (iii) X is PSMD.

Remark: X(t) associated for a fixed t > 0 does not imply that X is associated.

Resnick (1988), Samorodnitsky (1995), Liggett (2005), B., Blatter and Müller (2007)

Lévy Copulas

Let X be an $I\!\!R^d$ -valued Lévy process. The tail integral of X is the function $U: (I\!\!R \setminus \{0\})^d \to I\!\!R$ defined by

$$U(x_1,\ldots,x_d):=\prod_{i=1}^d \operatorname{sgn}(x_i)
u\Big(\prod_{j=1}^d \mathcal{I}(x_j)\Big),$$

where $\mathcal{I}(x) = (x, \infty)$ if $x \ge 0$ and $(-\infty, x]$ if x < 0. Then there exists a measure defining function $F : \overline{\mathbb{R}}^d \to \overline{\mathbb{R}}$ with univariate marginals which are the identity functions on $\overline{\mathbb{R}}$ such that

$$U(x_1,\ldots,x_d)=Fig(U_1(x_1),\ldots,U_d(x_k)ig)$$

for all $x \in (I\!\!R \setminus \{0\})^d$. This equality has also to be true for all marginals. *F* is unique on $\prod_{i=1}^d \overline{\operatorname{Ran} U_i}$ and is called Lévy copula of *X*.

Cont and Tankov (2004), Kallsen and Tankov (2006)

Characterization of Dependence by the Lévy Copula

Theorem 2: Let X be an \mathbb{R}^d -valued Lévy process with Lévy copula F. X is associated (POD, PSMD) if and only if F(u) = 0 for all $u \notin \mathbb{R}^d_{+,-}$ where F is uniquely defined.

Example: (Clayton Lévy Copula)

 $egin{aligned} F_{ heta}(u_1,u_2) &= \ (|u_1|^{- heta}+|u_2|^{- heta})^{-rac{1}{ heta}} 1_{[u\in I\!\!R^2_{+,-}]} \ ext{where } heta > 0. \end{aligned}$

In the figure: $\theta = 1$.

Warning!!

The Lévy copula is not sufficient to characterize all types of dependence. E.g. properties like Conditionally increasing in sequence or MTP_2 cannot be characterized.

Example: X is a 2-dimensional compound Poisson process with

$$u = rac{1}{3} (\delta_{(1,0)} + \delta_{(2,1)} + \delta_{(3,3)}),$$

and Y is a 2-dimensional compound Poisson process with

$$u = rac{1}{3} (\delta_{(1,1)} + \delta_{(2,2)} + \delta_{(3,3)}).$$

Both have the same Lévy copula but the first one is neither CIS nor MTP_2 .

Stochastic Orders for Processes

 $X = (X_1, ..., X_d)$ is smaller than $ilde{X} = (ilde{X}_1, ..., ilde{X}_d)$ in the

- a) supermodular order $(X \leq_{sm} \tilde{X})$, if $Ef(X) \leq Ef(\tilde{X})$ for all supermodular functions $f : \mathbb{R}^d \to \mathbb{R}$ such that the expectations exist.
- b) concordance order, $(X \leq_c \tilde{X})$, if both $\overline{F}_X(t) \leq \overline{F}_{\tilde{X}}(t)$ and $F_X(t) \leq F_{\tilde{X}}(t)$ for all $t \in \mathbb{R}^d$ hold.

Two stochastic processes $X = (X(t))_{t \ge 0}$ and $\tilde{X} = (\tilde{X}(t))_{t \ge 0}$ are comparable with respect to the order $\preceq \in \{\leq_c, \leq_{sm}\}$ ($X \preceq \tilde{X}$) if

$$(X(t_1),\ldots,X(t_n)) \preceq (\tilde{X}(t_1),\ldots,\tilde{X}(t_n))$$

for all $0 \leq t_1 < t_2 < \ldots < t_n$ and all $n \in \mathbb{N}$.

Comparison Results for Lévy Processes

 $\mathcal{B}_0 := \left\{ f: I\!\!R^d o I\!\!R \mid f ext{ mb, bounded, } \limsup_{x o 0} rac{|f(x)|}{\|x\|^2} < \infty
ight\}$

Theorem 3: For Lévy processes X, \tilde{X} with Lévy measures $\nu, \tilde{\nu}$, the following conditions are equivalent:

(i) $X \leq_{sm} \tilde{X}$. (ii) $\nu \leq_{sm} \tilde{\nu}$, i.e. $\int f d\nu \leq \int f d\tilde{\nu}$ for all supermodular $f \in \mathcal{B}_0$.

Theorem 4: Let d = 2. For Lévy processes X, \tilde{X} with Lévy measures ν , $\tilde{\nu}$ and Lévy copulas F, \tilde{F} the following conditions are equivalent:

(i) $X \leq_c \tilde{X}$. (ii) $X \leq_{sm} \tilde{X}$. (iii) ν and $\tilde{\nu}$ have the same marginal tail integrals and $F \leq \tilde{F}$.

Bergenthum and Rüschendorf (2006), B., Blatter and Müller (2007)

Applications: Exit Times

Suppose the Lévy process $X = (X_1(t), \ldots, X_d(t))_{t \ge 0}$ represents the evolution of d wealth processes. Denote by

$$\tau_j := \inf\{t \ge 0 \mid X_j(t) \le c\}$$

the exit time of process $j = 1, \ldots, d$.

Theorem 5: Let X be an \mathbb{R}^d -valued Lévy process. If X is associated (or POD or PSMD) then the exit time points $\tau = (\tau_1, \ldots, \tau_d)$ are associated (and thus also POD and PSMD).

Theorem 6: Let X and \tilde{X} be two \mathbb{R}^d -valued Lévy processes. If $X \leq_{sm} \tilde{X}$ then the exit time points are ordered:

$$au = (au_1, \dots, au_d) \leq_{sm} ilde{ au} = (ilde{ au}_1, \dots, ilde{ au}_d).$$

Applications: Ruin Times

By $X_t^+ := \sum_{i=1}^d X_i(t)$ we denote the one-dimensional risk process for the insurance company. By ψ_{X^+} we denote its probability of ruin, i.e.

$$\psi_{X^+}(u)=P\left(\inf_{t\geq 0}X^+_t<0\mid X^+_0=u
ight).$$

Theorem 7: Suppose we have two portfolios of risk processes X and X which are both $I\!\!R^d$ -valued Lévy processes. If $X \leq_{sm} \tilde{X}$ then for all u > 0:

$$\int_u^\infty \psi_{X^+}(s) ds \leq \int_u^\infty \psi_{ ilde{X}^+}(s) ds.$$

Denuit, Frostig and Levikson (2007), Bregman and Klüppelberg (2006)

Applications: Credit Risk

- \bullet Portfolio of d obligors.
- $\lambda_i(t, \Psi_t, Y_t) = \text{default intensity of obligor } i \text{ at time } t.$
- $\Lambda_i(t):=\int_0^t\lambda_i(s,\Psi_s,Y_s)ds\uparrow\infty$ for $t o\infty$ a.s.
- $au_i := \inf\{t \ge 0 \mid \Lambda_i(t) \ge E_i\}$, default time of obligor i ($E_i \sim \exp(1)$).
- Ψ_t environment process at time t.
- $Y_i(t) = 1_{[E_i,\infty)}(\Lambda_i(t))$, indicator of default.

Applications: Credit Risk

Theorem 8: Assume all necessary measurability and integrability conditions are satisfied and

- (i) The environment process (Ψ_t) is associated and has a.s. càdlàg paths.
- (ii) The default thresholds E are associated and independent from (Ψ_t) .
- (iii) For every obligor $i \in \{1, \ldots, d\}$, the default intensity $\lambda_i(t, \psi, y)$ is increasing in ψ and y and continuous in ψ .

Then the integrated default intensity process $(\Lambda_t) = (\Lambda_1(t), \ldots, \Lambda_d(t))$ is associated and thus $\tau = (\tau_1, \ldots, \tau_d)$ is associated.

B. and Schmock (2007)

Applications: Stock Prices

Let X be an $I\!\!R^d$ -valued Lévy process and let the price processes of d assets satisfy the following stochastic differential equation

$$egin{array}{rll} dS_i(t) &=& S_i(t-)ig[\mu_i(t)dt+\sigma_i(t-)dX_i(t)ig]\ S_i(0) &=& 1 \end{array}$$

where $\mu_i(t), \sigma_i(t)$ are bounded deterministic càdlàg functions.

Further we assume for all $i = 1, \ldots, d$

(A)
$$\sigma_i(t) (X_i(t) - X_i(t-)) \geq -1$$
 for all $t \geq 0$.

Theorem 9: If the Lévy process X is associated (or POD or PSMD), then the price processes are associated (and thus also POD and PSMD).

Applications: Option Pricing

Take a contingent claim with pay-off $H = h(S_1(T), S_2(T))$. Its price is given by $\pi(H) = B_T^{-1} E_Q[h(S_1(T), S_2(T))]$.

Theorem 10: If h is a supermodular function and S_1 and S_2 are associated under Q, then

$$\pi(H) \geq \pi(H^{\perp})$$
 .

where $\pi(H^{\perp})$ is the price of the same option with independent price processes.

Typical functions h which are supermodular are $h(x,y) = \left(\min(x,y) - K\right)^+, h(x,y) = \left(x + y - K\right)^+.$