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Intro
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Let Υt denote a d-dimensional vector of log prices, modelled as a
Brownian semimartingale

Υt =
Z t

0
asds+

Z t

0
σsdWs

? OU modelling of Σ = σ>σ. One-dimensional case: realism and ana-
lytical tractability

? Multipower Variation RMPV: Basis for inference on Σ+t =
R t

0 Σsds
where Σs = σ>s σs and more generally on Σ+r

t =
R t

0 Σr
sds.

? The MPV theory uses SDE representations of dσ (not dΣ ). Need SDE
representations of Σr, in particular Σ1/2
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Volatility and OU processes
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Univariate OU volatility

dσ2
t = �λσ2

t�dt+ dLλt

where λ > 0 is a parameter and L is a subordinator, i.e. a Lévy
process with nonnegative increments.
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Volatility and OU processes
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The solution can be shown to be

σ2
t = e�λtσ2

0+
Z t

0
e�λ(t�s)dLsλ

Provided E(log+(Lt)) < ∞ there is a unique stationary solution
given by

σ2
t =

Z t

�∞
e�λ(t�s)dLλs
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Volatility and OU processes
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There is a vast literature concerning the extension of OU processes
to Rd-valued processes.

By identifying Md, the class of d� d matrices, with Rd2 one imme-
diately obtains matrix valued processes.

So for a given Lévy process (Lt)t2R with values in Md and a linear
operator A : Md ! Md, a solution to the SDE

dXt = AXt�dt+ dLt

is termed a matrix-valued process of Ornstein-Uhlenbeck type.
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Volatility and OU processes
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As in the univariate case one can show that for some given initial
value X0 the solution is unique and given by

Xt = eAtX0+
Z t

0
eA(t�s)dLs.

Provided E(log+ kLtk) < ∞ and σ(A) 2 (�∞, 0) + iR, there exists
a unique stationary solution given by

Xt =
Z t

�∞
eA(t�s)dLs.
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Matrix subordinators
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However, in order to obtain positive semide�nite Ornstein-Uhlenbeck
processes we need to considermatrix subordinators as driving Lévy
processes.

Let S̄+d be the closure of the cone S+d of positive de�nite matrices in
Md.

De�nition A process L with values in S̄+d and having independent
stationary increments is called a matrix subordinator
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In�nite divisibility in the cone S̄+d

Matrix Subordinators and Multivariate OU-based Volatility Models , page 10 of 40

A random matrix M is in�nitely divisible in S̄+d if and only if for each
integer p � 1 there exist p independent identically distributed ran-
dom matrices M1, ..., Mp in S̄+d such that M law

= M1+ ...+ Mp.

Lévy-Khintchine representation (Skorohod (1991))
A random matrix M 2 S̄+d is in�nitely divisible in S̄+d if and only if its
cumulant transform is of the form

C(Θ; M) = itr(γΘ) +
Z

S̄+d
(eitr(XΘ)� 1)ρ(dX), Θ 2 S+d ,

where γ 2 S̄+d is called the drift and the Lévy measure ρ is such
that ρ(S+d nS̄+d ) = 0 and ρ has order of singularityZ

S̄+d
min(1, tr(X))ρ(dX) < ∞.
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In�nite divisibility in the cone S̄+d
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Lévy-Ito decomposition:
If fLtg is a matrix subordinator with the above Lévy-Khintchine rep-
resentation then it has a Lévy-Itô decomposition

Lt = tγ+
Z t

0

Z
S+d nf0g

xµ(ds, dx)

where γ 2 S̄+d is a deterministic drift and µ(ds, dx) a Poisson ran-
dom measure on R+� S̄+d with

E(µ(ds, dx)) = Leb(ds)ν(dx),

Leb denoting the Lebesgue measure and ν the Lévy measure of Lt.
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Examples
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? Quadratic Covariation of d-dimensional Lévy processes
? Gamma type matrix distribution Lévy density:

jΣj�<d>

(tr (XΣ�1))
[d]

etr(�XΣ�1)

where < d >= (d+ 1)/2 and [d] = (d+ 1) d/2.

Kumulant transform:

K(Θ, R) =
Z

S̄+d
log(1+ tr(UΣ1/2ΘΣ1/2))�1dU.
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Examples
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? Bessel matrix distribution Lévy density:

jΣj�<d>
Z

Υ>0
etr(�

n
XΥ�1+ Σ�1Υ)

o �
tr(ΥΣ�1)

��[d]�β dΥ

jΥj<d> .

where X and Υ are the anti-matrices of X and Υ.
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Interlude: CLT for RMPV
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Central Limit Theory for Realised Multipower Variation
(B-N, Jacod, Graversen, Podolskij and Shephard (2006))

Recall : For a wide class of real�valued processes Υ, including all semi-
martingales, the realised quadratic variation process

V(Υ; 2)nt =
[nt]

∑
i=1
(Υ i

n
� Υ i�1

n
)2

converges in probability, as n ! ∞ and for all t � 0, towards the quadratic
variation process V(Υ; 2)t (usually denoted by [Υ, Υ]t).
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Interlude: CLT for RMPV
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Next, let r, s be nonnegative numbers. The realised bipower varia-
tion process of order (r, s) is the increasing processes de�ned as:

V(Υ; r, s)nt = n
r+s

2 �1
[nt]

∑
i=1
jΥ i

n
� Υ i�1

n
jr jΥ i+1

n
� Υ i

n
js.

Clearly V(Υ; 2)n = V(Υ; 2, 0)n.

The bipower variation process of order (r, s) for Υ, denoted byV(Υ; r, s)t,
is the limit in probability, if it exists for all t � 0, of V(Υ; r, s)nt .

Uses: Testing for jumps; Estimation of
R t

0 σ4
sds in the presence of

jumps; ...
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Interlude: CLT for RMPV
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Extension to the multidimensional case.

Now Υ = (Υj)1�j�d is taken as d�dimensional.

The realised cross�multipower variation processes are de�ned by

V(Υj1, . . . , ΥjN ; r1, . . . , rN)
n
t

= n
r1+...+rN

2 �1
[nt]

∑
i=1
jΥj1

i
n
� Υj1

i�1
n
jr1 . . . jΥjN

i+N�1
n
� ΥjN

i+N�2
n
jrN .
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Interlude: CLT for RMPV

Matrix Subordinators and Multivariate OU-based Volatility Models , page 17 of 40

More generally still, let

Xn(g, h)t =
1
n

[nt]

∑
i=1

g(
p

n ∆n
i Υ)h(

p
n ∆n

i+1Υ)

where ∆n
i Υ = Υ i

n
�Υ i�1

n
, g and h are two maps on Rd, taking vakues

inMd1,d2 andMd2,d3 respectively. So Xn(g, h)t takes its values in
Md1,d3.

We refer to Xn(g, h) as the realised multipower variation (RMPV)
associated to g and h.
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Interlude: CLT for RMPV
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To derive a CLT for RMPV we need the following structural assumptions:

Hypothesis (H): We have

Υt = Υ0+
Z t

0
asds+

Z t

0
σs� dWs,

where W is a standard d0�dimensional BM, a is predictable Rd�valued
locally bounded, and σ isMd,d0�valued càdlàg with Σ = σσ> invertible.
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Interlude: CLT for RMPV
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Hypothesis (H'): We have

σt = σ0+
Z t

0
a0sds+

Z t

0
σ0s�dWs+

Z t

0
vs�dVs

+
Z t

0

Z
E

ϕ � w(s�, x)(µ� ν)(ds, dx)

+
Z t

0

Z
E
(w� ϕ � w)(s�, x)µ(ds, dx).

where ****
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Interlude: CLT for RMPV

Matrix Subordinators and Multivariate OU-based Volatility Models , page 20 of 40

Hypothesis (K): The function g and h are even and continuously
differentiable, with partial derivatives having at most polynomial growth.

Now, recall that

Xn(g, h)t =
1
n

[nt]

∑
i=1

g(
p

n ∆n
i Υ)h(

p
n ∆n

i+1Υ)

Under (H), (H') and (K), Xn(g, h) converges in probability to a process
X(g, h).
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Interlude: CLT for RMPV
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Theorem CLT for RMPV Under (H), (H') and (K) the process
p

n (Xn(g, h)� X (g, h))
converges stably in law to the limiting process U (g, h) given com-
ponentwise by

U (g, h)jk
t =

d1

∑
j0=1

d3

∑
k0=1

Z t

0
α (σs, g, h)jk,j0k0 dW 0j0k0

s

whereW 0 is a multidimensional Brownian motion, independent of all
the previous random objects, and where the coef�cients α (σs, g, h)
satisfy ****.
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Positive semide�nite matrix processes of OU
type

Matrix Subordinators and Multivariate OU-based Volatility Models , page 22 of 40

dXt = AXt�dt+ dLt

Proposition Let Lt be a matrix subordinator, assume that the lin-
ear operator A satis�es exp(At)(S̄+d ) � S̄+d for all t 2 R+ and let
X0 2 S̄+d .

Then the Ornstein-Uhlenbeck process (Xt)t2R+ satisfying dXt =
AXt�dt+ dLt with initial value X0 takes only values in S̄+d .

If E(log+ kLtk) < ∞ and σ(A) 2 (�∞, 0) + iR, then the unique
stationary solution (Xt)t2R takes values in S̄+d only.
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Positive semide�nite matrix processes of OU
type

Matrix Subordinators and Multivariate OU-based Volatility Models , page 23 of 40

Which linear operators A can one actually take to obtain both a
unique stationary solution and ensure positive semide�niteness?

The condition exp(At)(S+d ) � S+d means that for all t 2 R+ the
exponential operator exp(At) has to preserve positive de�niteness.
So one needs to know �rst which linear operators on S+d preserve
positive de�niteness.



THIELE CENTRE
for applied mathematics in natural science

Positive semide�nite matrix processes of OU
type

Matrix Subordinators and Multivariate OU-based Volatility Models , page 24 of 40

? Let A : Sd ! Sd be a linear operator. Then A(S̄+d ) = S̄+d , if and only
if there exists a matrix B 2 GLd such that A can be represented as
X 7! BXB�.

? Assume the operator A : S̄+d ! S̄+d is representable as X 7! AX +
XA� for some A 2 Md. Then eAt has the representation X 7! eAtXeA�t

and eAt(S̄+d ) = S̄+d for all t 2 R.
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Positive semide�nite matrix processes of OU
type
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For a linear operator A of the latter type (i.e. X 7! AX + XA�) the
SDE for the OU process becomes

dXt = (AXt�+ Xt�A�)dt+ dLt

and the solution is

Xt = eAtX0eA�t+
Z t

0
eA(t�s)dLseA�(t�s).



THIELE CENTRE
for applied mathematics in natural science

Positive semide�nite matrix processes of OU
type

Matrix Subordinators and Multivariate OU-based Volatility Models , page 26 of 40

Theorem Let (Lt)t2R be a matrix subordinator with E(log+ kLtk) <
∞ and let A 2 Md such that σ(A) � (�∞, 0) + iR.

Then the stochastic differential equation of Ornstein-Uhlenbeck type
dXt = (AXt�+ Xt�A�)dt+ dLt

has a unique stationary solution

Xt =
Z t

�∞
eA(t�s)dLseA�(t�s).

Moreover, Xt 2 S̄+d for all t 2 R.
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Positive semide�nite matrix processes of OU
type

Matrix Subordinators and Multivariate OU-based Volatility Models , page 27 of 40

Conditions ensuring that the stationary OU type process Xt is al-
most surely strictly positive de�nite can be obtained:

Theorem If γ 2 S+d or ν(S+d ) > 0, then the stationary distribution
PX of Xt is concentrated on S+d .
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Positive semide�nite matrix processes of OU
type

Matrix Subordinators and Multivariate OU-based Volatility Models , page 28 of 40

Extensive recent work by Christian Pigorsch, LMU, jointly with Robert
Stelzer, TUM, on properties, extensions and applications of this
general multivariate SV-OU framework.
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Roots of positive semide�nite processes

Matrix Subordinators and Multivariate OU-based Volatility Models , page 29 of 40

To discuss the root questions we need a suitable Itô formulae for
�nite variation processes in open sets

De�nition Local Boundedness Let (V, k � kV) be either Rd, S+d
or Sd with d 2 N and equipped with the norm k � kV, let a 2 V
and let (Xt)t2R+ be a V-valued stochastic process. We say that
Xt is locally bounded away from a if there exists a sequence of
stopping times (Tn)n2N increasing to in�nity almost surely and a
real sequence (dn)n2N with dn > 0 for all n 2 N such that kXt �
akV � dn for all 0 � t < Tn.
Likewise, we say for some open set C 2 V that the process Xtis lo-
cally bounded within C if there exists a sequence of stopping times
(Tn)n2N increasing to in�nity almost surely and a sequence of com-
pact convex subsets Dn � C with Dn � Dn+1forall n 2 N such that
Xt 2 Dn for all 0 � t < Tn.
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Roots of positive semide�nite processes
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Proposition Itô formulae for �nite variation processes in open
sets Let (Xt)t2R+ be a cadlag Rd-valued process of �nite varia-
tion (thus a semimartingale) with associated jump measure µX on�

R+�Rdnf0g,B
�

R+�Rdnf0g
��

and let f : C ! Rm be contin-
uously differentiable, where C � Rd is an open set. Assume that
the process (Xt)t2R+ is locally bounded within C. Then:
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Roots of positive semide�nite processes
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the process Xt as well as its left limit process Xt� take values in C
at all times t 2 R+ and

f (Xt) = f (X0) +
Z t

0
D f (Xs�)dXc

s

+
Z t

0

Z
Rdnf0g

( f (Xs�+ x)� f (Xs�))µX(ds, dx).
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Roots of positive semide�nite processes
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Univariate case

Theorem Let (Xt)t2R+ be a given adapted cadlag process which
takes values inR+nf0g, is locally bounded away from zero and can
be represented as

dXt = ctdt+
Z

R+nf0g
g(t�, x)µ(dt, dx)

where ct is a predictable and locally bounded process, µ a Poisson
random measure on R+ �R+nf0g and g(s, x) is Fs �B(R+nf0g)
measurable in (ω, x) and cadlag in s. Moreover, g(s, x) takes only
non-negative values. Then:



THIELE CENTRE
for applied mathematics in natural science

Roots of positive semide�nite processes

Matrix Subordinators and Multivariate OU-based Volatility Models , page 33 of 40

for any 0 < r < 1 the unique positive process Υt = Xr
t is repre-

sentable as

Υ0 = Xr
0, dΥt = atdt+

Z
R+nf0g

w(t�, x)µ(dt, dx),

where the drift
at := rXr�1

t� ct

is predictable and locally bounded and where
w(s, x) := (Xs+ g(s, x))r � (Xs)

r

is Fs � B(R+) measurable in (ω, x) and cadlag in s. Moreover,
w(s, x) takes only non-negative values.
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Roots of positive semide�nite processes
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When applied to subordinators this gives

Corollary Let (Lt)t2R+ be a Lévy subordinator with initial value
L0 2 R+, associated drift γ and jump measure µ. Then for 0 < r <
1 we have that the unique positive process Lr

t is of �nite variation
and

dLr
t = rγLr�1

t� dt+
Z

R+nf0g
((Lt�+ x)r � Lr

t�) µ(dt, dx),

where the drift rγLr�1
t� is predictable. Moreover, the drift is locally

bounded if and only if L0 > 0 or γ = 0.
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Roots of positive semide�nite processes
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Multivariate case Generalisation of previous results:

Theorem Let (Xt)t2R+ be a given adapted cadlag process which
takes values in S+d , is locally bounded within S+d and can be repre-
sented as

dXt = ctdt+
Z

S̄+d nf0g
g(t�, x)µ(dt, dx)

where ct is an S+d -valued, predictable and locally bounded process,
µ a Poisson random measure on R+� S̄+d nf0g, and g(s, x) is Fs�
B(S̄+d nf0g) measurable in (ω, x) and cadlag in s. Furthermore,
g(s, x) takes only values in S̄+d . Then
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Roots of positive semide�nite processes

Matrix Subordinators and Multivariate OU-based Volatility Models , page 36 of 40

the unique positive de�nite square root process Υt =
p

Xt is given
by

Υ0 =
p

X0, dΥt = atdt+
Z

S̄+d nf0g
w(t�, x)µ(dt, dx),

with
at = X�1

t� ct,

where Xt� is the linear operator Z 7!
p

Xt�Z+ Z
p

Xt� on Md and

w(s, x) :=
q

Xs+ g(s, x)�
p

Xs

Moreover, w(s, x) takes only positive semide�nite values.
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Roots of positive semide�nite processes
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Corollary Let (Lt)t2R+ be a matrix subordinator with initial value
L0 2 S̄+d , associated drift γ and jump measure µ. Then the unique
positive semide�nite process

p
Lt is of �nite variation and, provided

that either L0 2 S+d or γ 2 S+d [ f0g,

d
p

Lt = L�1
t�γdt+

Z
S̄+d nf0g

�p
Lt�+ x�

p
Lt�

�
µ(dt, dx),

where Lt� is the linear operator on Md with Z 7!
p

Lt�Z+ Z
p

Lt�.
The drift L�1

t�γ is predictable, and additionally locally bounded pro-
vided L0 2 S̄+d or γ = 0.
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Roots of Ornstein-Uhlenbeck processes

Matrix Subordinators and Multivariate OU-based Volatility Models , page 38 of 40

Finally we specialise to the behaviour of the roots of positive Ornstein-
Uhlenbeck processes.

Recall that the driving Lévy process Lt is assumed to be a (matrix)
subordinator.

Univariate case

Let Xt be a stationary process of OU type with driving Lévy sub-
ordinator Lt (having non-zero Lévy measure) with a vanishing drift
γ. Then for 0 < r < 1 the stationary process Υt = Xr

t can be
represented as

Υt =
Z t

�∞

Z
R+nf0g

e�λr(t�s) ((Xs�+ x)r � Xr
s�) µ(ds, dx).



THIELE CENTRE
for applied mathematics in natural science

Roots of Ornstein-Uhlenbeck processes

Matrix Subordinators and Multivariate OU-based Volatility Models , page 39 of 40

Multivariate case

Proposition Let Xt be a stationary process of OU type with driving
matrix subordinator Lt with a vanishing drift γ. Then the stationary
process Υt =

p
Xt can be represented asZ t

�∞

Z
S̄+d nf0g

�q
eA(t�s)(Xs�+ x)eA�(t�s)�

q
eA(t�s)Xs�eA�(t�s)

�
µ(dx, ds).
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