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Convergence behaviour of the Standard Tree

The convergence of the standard Cox-Ross-Rubinstein
Binomial Tree displays an erratic behaviour and a persistent
bias in pricing Barrier Options

The reason for this behaviour, as pointed out by Boyle (1994),
is that “the barrier will in general lie in between two adjacent
nodes in the lattice”

If the barrier is near to the “starting node”, the standard
method generates a relevant bias
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This Is the Problem

Down-out European Call
Parameters: S=100, K=100, Vpl=25%, r=10%, T=1, Barrier=90
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Boyle and Lau (1994) (1)
Revised Binomial Tree

In case of a constant barrier (H), it is easy to constrain the
time partition such that the barrier lies just above a layer of
horizontal nodes

Recall that, in the CRR model, the down (up) movement is
equal to d = exp

(
− σ

√
T/n

)
(u = exp

(
σ
√

T/n
)
)

In order to obtain the desired result, it is enough to select n
(the number of steps in the tree) such that it is the largest
integer smaller than

F (m) =
m2σ2T(
lnS/H

)2
m = 1, 2, · · · (1)

where m is the number of down (up) steps that takes the
asset price just above (below) the barrier
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Boyle and Lau (1994) (2)
Revised Binomial Tree

Good news:

This method gives good approximation of the price of single
and constant barrier options

Bad news:

It is applicable only to options with a single and constant
barrier for which analytic solutions are available

G. Barone-Adesi, N. Fusari, J. Theal Barrier Option Pricing Using Adjusted Transition Probabilities



Motivation
New Approach

Results

The standard Cox-Ross-Rubinstein Binomial Tree
Previous work

Boyle and Lau (1994) (2)
Revised Binomial Tree

Good news:

This method gives good approximation of the price of single
and constant barrier options

Bad news:

It is applicable only to options with a single and constant
barrier for which analytic solutions are available

G. Barone-Adesi, N. Fusari, J. Theal Barrier Option Pricing Using Adjusted Transition Probabilities



Motivation
New Approach

Results

The standard Cox-Ross-Rubinstein Binomial Tree
Previous work

Boyle and Lau (1994) (2)
Revised Binomial Tree

Good news:

This method gives good approximation of the price of single
and constant barrier options

Bad news:

It is applicable only to options with a single and constant
barrier for which analytic solutions are available

G. Barone-Adesi, N. Fusari, J. Theal Barrier Option Pricing Using Adjusted Transition Probabilities



Motivation
New Approach

Results

The standard Cox-Ross-Rubinstein Binomial Tree
Previous work

Boyle and Lau (1994) (2)
Revised Binomial Tree

Good news:

This method gives good approximation of the price of single
and constant barrier options

Bad news:

It is applicable only to options with a single and constant
barrier for which analytic solutions are available

G. Barone-Adesi, N. Fusari, J. Theal Barrier Option Pricing Using Adjusted Transition Probabilities



Motivation
New Approach

Results

The standard Cox-Ross-Rubinstein Binomial Tree
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Ritchken (1995) (1)
“Stretched” Trinomial Tree

Ritchken proposes an extension of the standard trinomial
model

As usual, the issue is to place the nodes as near as possible
(from above) to the barrier

Recall that, in the trinomial model, up and down movements
are respectively up = exp

(
λσ
√

T/n
)

and

down = exp
(
− λσ

√
T/n

)
It is possible to select the stretch parameter λ such that the
barrier lies exactly on the nodes

For more complex options, such as, options with double
constant barrier, Ritchken proposes a state dependent tree
with two stretch factors that allow to reposition the tree on
the barriers
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Ritchken (1995) (2)
“Stretched” Trinomial Tree

Good news:

This procedure gives a good approximation of the price of
options with single (constant and time varying) and double
(only constant) barriers.

Bad news:

Ritchken’s method does not provide approximation when the
initial price of the underlying is close to the barrier

If a parameter of the option changes (maturity, volatility,
etc...) then the entire lattice must be repositioned before
calculating the new option price

It is not possible to price options with multiple time-varying
barriers
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The standard Cox-Ross-Rubinstein Binomial Tree
Previous work

Further Extensions

Costabile (2001) proposes a discrete time algorithm for pricing
double constant barrier options

Costabile (2002) proposes an extension of the
Cox-Ross-Rubinstein algorithm for pricing options with an
exponential boundary

The problem with these procedures is that they are “ad hoc”
solutions to specific cases; we look for a general algorithm that
allows to approximate simple (single constant barrier) as well as
complex (single and double time-varying) barriers options.
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Probability Adjustment

Baldi, Caramellino and Iovino (1999) derive a series of
approximations for the exit probability of the Brownian bridge
that can be used to price multiple and time-varying barriers
options

Recall that the log of the asset price follows a Brownian
Motion

Baldi et al. use these probabilities to improve the Monte Carlo
calculations, because with the standard procedure it is
possible that the underlying asset price breaches the barrier
without being detected

Here we use these probabilities to improve the
Cox-Ross-Rubinstein binomial tree
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Procedure
A Simple Example: Down-out call (DOC) with constant barrier (1)

pup

p
down

Cup
T0+δt

L

Cdown
T0+δt

CT0

The ”adjusted
tree” is similar to
the standard CRR
model; the
difference relies on
the computation
of the value of the
option in the
nodes just above
the barrier.
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Procedure
A Simple Example: Down-out call (DOC) with constant barrier (2)

pup
(1−

p
δt
L
)

p
down

Cup
T0+δt

L

Cdown
T0+δt

= 0

CT0

That is, we
multiply the usual
probability of
reaching the up
point by one
minus the
conditional
probability (pδt

L )
that the assets
price, in the time
interval, hits the
barrier.
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Procedure
A Simple Example: Down-out call (DOC) with constant barrier (3)

pδt
L = Exit Probability. This is the probability that the asset

price, starting from ST0 and ending in Sup
T0+δt

, hits the barrier

In this case we have

pδt
L (T0,ST0 ,S

up
T0+δt

, L) = exp

(
− 2

σ2δt

)
ln

(
ST0

L

)
ln

(
Sup

T0+δt

L

)

With this probability adjustment the price of the DOC near
the barrier (when Sdown

T0+δt
< L), at time T0, is

CDOC = exp(−rδt)pup(1 − pδt
L )C (Sup

T0+δt
)
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Procedure
General Case

The same procedure can be extended to the pricing of more
complex options with single and multiple time-varying barriers.

Baldi at al. provide exit probability approximations for all
kinds of time-varying barriers

In the paper we focus on:

Single/double constant barriers
Single/double exponential barriers
Single/double (time) linear barriers

This simple procedure avoids the need of repositioning the
tree “on the barrier”
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tree “on the barrier”
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Down-out European Call Price Approximation (1)

Number of Time Steps in the Tree

Stk. P. 500 1000 2000 3000 4000 5000 Alyt. P.

94.0 4.910 4.957 4.915 4.920 4.852 4.886 4.864
(4.863) (4.864) (4.864) (4.864) (4.864) (4.864)

93.0 3.720 3.716 3.733 3.715 3.728 3.722 3.702
(3.70) (3.701) (3.702) (3.701) (3.701) (3.702)

92.0 2.500 2.589 2.515 2.546 2.563 2.521 2.506
(2.504) (2.506) (2.506) (2.506) (2.506) (2.506)

91.5 2.047 1.901 1.894 1.963 1.907 1.945 1.895
(1.894) (1.894) (1.895) (1.895) (1.895) (1.895)

91.0 1.242 1.365 1.263 1.331 1.315 1.279 1.274
— (1.274) (1.274) (1.275) (1.275) (1.274)

90.5 0.810 0.758 0.624 0.663 0.691 0.699 0.642
— — — — (0.642) (0.642)

Table: K=100, Vol=25%, r=10%, T=1, L=90, ()=Ritchken’96.
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Down-out European Call Price Approximation (2)

Number of Time Steps in the Tree

Stk. P. 500 1000 2000 3000 4000 5000 Alyt. P.

90.4 0.649 0.642 0.576 0.508 0.521 0.537 0.515
— — — — — (0.515)

90.3 0.476 0.490 0.479 0.450 0.419 0.390 0.387
— — — — — — —

90.2 0.303 0.316 0.327 0.328 0.323 0.316 0.258
— — — — — —

90.1 0.142 0.146 0.152 0.156 0.159 0.161 0.129
— — — — — — —

90.05 0.068 0.069 0.071 0.072 0.073 0.074 0.065
— — — — — —

90.01 0.013 0.013 0.013 0.013 0.013 0.013 0.013
— — — — — —

Table: K=100, Vol=25%, r=10%, T=1, L=90, ()=Ritchken’96.
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Convergence Behaviour
Double Knock-out European Call with Constant Barriers

Double knock-out European Call Option
Parameters: S=100, K=80, Vol=25%, r=10%, T=1, U=120, L=85 
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Convergence Behaviour
Down-out European Call with Exponential Barrier

Down-out European Call with Exponential Barrier
Parameters: S=95, K=100, Vol=25%, r=10%, T=1, Slope=0.05, Intercept=90
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Convergence Behaviour
Down-out European Call with Linear Barrier

Down-out European Call with Linear Barrier
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Double Knock-out European Call with Short Maturity

Vol U L KI FD Approx1 Approx2

1500 500 25.12 24.47 25.12 25.12
σ = 0.20 1200 800 24.16 24.69 24.77 24.76

1050 950 2.15 2.15 2.18 2.17

1500 500 36.58 36.04 36.59 36.58
σ = 0.30 1200 800 29.45 29.40 29.52 29.46

1050 950 0.27 0.27 0.28 0.28

1500 500 47.58 47.31 47.86 47.85
σ = 0.40 1200 800 25.84 25.82 25.89 25.94

1050 950 0.02 0.01 0.02 0.02

Table: U = Upper Barrier, L = Lower Barrier, KI = Kunitomo and Ikeda
method, FD = Finite Difference method, Approx1 = 1000 time-divisions,
Approx2 = 2000 time-divisions. Parameters:
S0 = 1000,K = 1000, r = 5%,T = 0.5.
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Down-out European Call with Exponential Barrier

Slope=-0.1 Slope=0.1

Tree Lvls. Cost. Adj. Tree Lvls Cost. Adj.

17 7.002 6.841 24 5.020 5.227

77 6.958 6.871 92 4.949 5.091

181 6.920 6.920 203 4.934 5.041

327 6.910 6.930 356 4.934 5.016

515 6.912 6.935 552 4.932 4.999

2100 6.902 6.927 2174 4.929 4.964

4754 6.900 6.919 4865 4.929 4.952

Analytic 6.896 Analytic 4.928

Table: Comparison of results between the adjusted-probability method
and the extended Cox-Ross-Rubinstein method of Costabile(2002)
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Double Knock-out European Call

Tree Lvls. Option Value Option Value Option Value
Case 1 Case 2 Case 3

1000 0.0414 0.0184 0.0774

2000 0.0412 0.0181 0.0765

3000 0.0412 0.0182 0.0767

4000 0.0413 0.0181 0.0765

5000 0.0411 0.0181 0.0765

Analyt. Value 0.0411 0.0178 0.0762

Table: Comparison of results between the adjusted-probability method
and the analytical values calculated by Geman and Yor (1996).
Case1: S0 = 2,K = 2, σ = 20%, r = 2%,T = 1y , L = 1.5,U = 2.5
Case2: S0 = 2,K = 2, σ = 50%, r = 5%,T = 1y , L = 1.5,U = 3
Case3: S0 = 2,K = 1.75, σ = 50%, r = 5%,T = 1y , L = 1.5,U = 3
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Goals of the Paper

The “Adjusted Tree”:

does not require to reposition the tree “on the barrier”

demonstrates good convergence properties towards the
analytical price for both single and double constant barriers
options

produces an accurate approximation when the stock price is
very close to the barrier

produces an accurate approximation for options with
short-term maturity

can produce price approximation for time-varying barrier
options including exponential, single linear and double linear
barriers
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