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Standard Problem

Maximize utility of final wealth.

max EP [U (XT )]

Model:

dSt = αStdt + StσdWt,

dBt = rBtdt

Xt = portfolio value at t

ut = relative portfolio weight in stock at t

Wealth dynamics

dXt = Xt {ut(α − r) + r} dt + utXtσdWt

Standard approaches:

• Dynamic programming. (Merton etc)

• Martingale methods. (Huang etc)
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Standard assumption:

• The volatility σ and the mean rate of return α are
known.

Standard results:

• Very explicit results.

• Nice mathematics.

Sad facts from real life:

• The volatility σ can be estimated with some
precision.

• The mean rate of return α can not be estimated at
all.

Example: If σ = 20% and we want a 95% confidence
interval for α, we have to observe S for 1600 years.
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Reformulated Problem

• Model α as random variable or random process.

• Take the estimation procedure explicitly into
account in the optimization problem.
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Extended Standard Problem

Model:

dSt = α(t, Yt)Stdt + Stσ(t, Yt)dWt,

• Y is a “hidden Markov process” which cannot be
observed directly.

• We can only observe S.
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Previous Studies

• Power or exponential utility.

• Y is a diffusion:
(Genotte, Brennan, Brendle)

• Y is a finite state Markov chain:
(Bäuerle–Rieder, Nagai–Runggaldier, Haussmann–
Sass).

Technique:

• Filtering theory.

• Use conditional density as extended state.

• Dynamic programming.

Results:

• Very nice explicit results.

• Sometimes a bit messy.

• Separate study for each model.
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Object of Present Study

• Study a more general problem

• Avoid DynP (regularity, viscosity solutions etc).

• Investigate the general structure.
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Related Zariphopoulou Problem

max EP

[
1
γ
Xγ

T

]

dSt = α(t, Yt)Stdt + Stσt(t, Yt)dWt,

dYt = µ(t, Yt)dt + b(t, Yt)dWt.

Note:
Both S and Y are observable. Same W driving S and
Y . (Zariphopoulou allows for general correlation)

Wealth dynamics

dXt = Xt {ut(αt − r) + r} dt + utXtσdWt

For simplicity we put r = 0
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



Ft + sup
u

{
uαxFx +

1
2
u2σ2x2Fxx + µFy +

1
2
b2Fyy + uxσbFxy

}
= 0,

F (T, s, y) =
xγ

γ
.

Ansatz:

F (t, x, y) =
xγ

γ
G(t, y),

PDE:

Gt +
1
2
b2Gyy +

{
µ +

γαb

σ(1 − γ)

}
Gy +

γα2

2σ2(1 − γ)
G +

γb2

2(1 − γ)
·
G2

y

G
= 0

Non linear! We have a problem!
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PDE:

Gt +
1
2
b2Gyy +

{
µ +

γαb

σ(1 − γ)

}
Gy

+
γα2

2σ2(1 − γ)
G +

γb2

2(1 − γ)
·
G2

y

G
= 0

Clever idea by Zariphopoulou:

G(t, y) = H(t, y)1−γ

Ht +
{

µ +
αβ

σ
b

}
Hy +

1
2
b2Hyy +

βα2

2σ2(1 − γ)
H = 0,

H(T, y) = 1.

Linear!
Feynman-Kac representation.
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Zariphopoulou Result

• Optimal value function

V (t, x, y) =
xγ

γ
H(t, y)1−γ,

• H is given by PDE or by

H(t, y) = E0
t,y

[
exp

{
1
2

∫ T

t

βα2

(1 − γ)σ2
dt

}]
,

where the measure Q0 has likelihood dynamics of
the form

dL0
t = L0

t

(
αβ

σ

)
dWt.

• The optimal control is given by

u∗(t, x, y) =
α

σ2(1 − γ)
+

b

σ
· Hy

H
.
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What on earth is going on?
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Present Paper

Model: (Ω,F , P,F)

dSt = αtStdt + StσtdWt,

• α and σ are general F-adapted

• FS
t ⊆ Ft

• The short rate is assumed to be zero.

Wealth dynamics:

dXt = utαtXtdt + utXtσtdWt,

Problem:
max

u
EP [U(XT )]

over FS-adapted portfolios.
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Strategy

• Start by analyzing the completely observable case.

• Go on to partially observable model.

• Use filtering results to reduce the problem to the
completely observable case.
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Completely observable case

Model: (Ω,F , P,F)

dSt = αtStdt + StσtdWt,

• Ft = FW
t

• α and σ are general FW -adapted

Wealth dynamics:

dXt = utαtXtdt + utXtσtdWt,

Problem:
max

u
EP [U(XT )]

over FW -adapted portfolios.
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Martingale approach

Complete market, so we can separate choice of optimal
wealth profile XT from optimal portfolio choice.

max
X∈FT

EP [U(X)]

s.t. budget constraint

EQ [X] = x,

Rewrite budget as

EP [LTX] = x,

where

Lt =
dQ

dP
, on Ft

Lagrangian relaxation

L = EP [U(X)] − λ
(
EP [LTX] − x

)
,
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Relaxed problem

max
X

∫

Ω

{U(X) − λ (LTX − x)} dP.

Separable problem with solution

U ′(X) = λLT

Optimal wealth:

X = F (λLT ) ,

where
F = (U ′)−1

The Lagrange multiplier is determined by the budget
constraint EP [LTX] = x.
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Power utility

X = F (λLT ) , F (y) = y− 1
1−γ ,

Easy calculation gives us.

Result:

• Optimal wealth is given by

X =
x

H0
· L

− 1
1−γ

T ,

• H0 is given by

H0 = EP
[
L−β

T

]
, β =

γ

1 − γ

• Optimal expected utility V0 is given by

V0 =
xγ

γ
H1−γ

0 .

• This is where the fun starts.
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H0 = EP
[
L−β

T

]
, β =

γ

1 − γ
Recall

LT = exp

{
−

∫ T

0

α

σ
dWt −

1
2

∫ T

0

α2

σ2
dt

}
.

Thus

L−β
T = exp

{∫ T

0

βα

σ
dWt +

1
2

∫ T

0

βα2

σ2
dt

}
.

Define the P -martingale L0 by

L0
t = exp

{∫ t

0

(
βα

σ

)
dWs −

1
2

∫ t

0

(
βα

σ

)2

ds

}

We can then write

L−β
T = L0

T exp

{
1
2

∫ T

0

βα2

(1 − γ)σ2
dt

}
.
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H0 = EP

[
L0

T exp

{
1
2

∫ T

0

βα2

(1 − γ)σ2
dt

}]
,

Since L0 is a martingale, it defines a change of measure

L0
t =

dQ0

dP
, on Ft,

Thus

H0 = E0

[
exp

{
1
2

∫ T

0

βα2

(1 − γ)σ2
dt

}]
,

where L0 has P -dynamics

dL0
t = L0

t

(
βα

σ

)
dWt,

Tomas Björk, 2007 19



Results

• Optimal wealth is given by

X =
x

H0
· L

− 1
1−γ

T ,

• H0 is given by

H0 = E0

[
exp

{
1
2

∫ T

0

βα2
t

(1 − γ)σ2
t

dt

}]
,

• L0 = dQ0/dP has dynamics

dL0
t = L0

t

(
βαt

σt

)
dWt,

• Optimal expected utility V0 is given by

V0 =
xγ

γ
H1−γ

0 .

This can in fact be extended
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Results in the observable case

• The optimal wealth process is given by

X?
t = x

Ht

H0
· L

− 1
1−γ

t ,

• Ht is given by

Ht = E0

[
exp

{
1
2

∫ T

t

βα2
s

(1 − γ)σ2
s

ds

}∣∣∣∣∣Ft

]
,

• The optimal expected utility process Vt is given by

Vt =
(X?

t )γ

γ
H1−γ

t .

• L0 = dQ0/dP has dynamics

dL0
t = L0

t

(
βαt

σt

)
dWt,
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Furthermore

• The optimal portfolio process is given by

u∗
t =

αt

σ2
t (1 − γ)

+
1
σt

σH

H

where
dHt = µHdt + σHdWt
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Partially observable case

Model: (Ω,F , P,F)

dSt = αtStdt + StσtdWt,

• FS
t ⊆ Ft

• α is only F-adapted and thus not directly
observable.

• σ is FS
t -adapted (WLOG).

Wealth dynamics:

dXt = utαtXtdt + utXtσtdWt,

Problem:
max

u
EP [U(XT )]

over FS-adapted portfolios.
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Recap on FKK filtering theory

Given some filtration F:

dYt = atdt + dMt

dZT = btdt + dWt

Here all processes are F adapted and

Y = signal process,

Z = observation process,

M = martingale w.r.t. F

W = Wiener w.r.t. F

We assume (for the moment) that M and W are
independent.

Problem:
Compute (recursively) the filter estimate

Ŷt = E
[
Yt| FZ

t

]
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The innovations process

Recall F-dynamics of Z

dZt = btdt + dWt

Our best guess of bt is b̂t, so the genuinely new
information should be

dZt − b̂tdt

The innovations process W̄ is defined by

W̄t = dZt − b̂tdt

Theorem: The process W̄ is FZ-Wiener.

Thus the FZ-dynamics of Z are

dZt = b̂tdt + dW̄t
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Back to the model

dSt = αtStdt + StσtdWt,

Define Z by

dZt =
1

Stσt
dSt

i.e.
dZt =

αt

σt
dt + dWt

We then have

dZt =
α̂t

σt
dt + dW̄t

where W̄ is FS-Wiener.

Thus we have price dynamics

dSt = α̂tStdt + StσtdW̄t,

We are back in the completely observable case!
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The mathbfFS martingale measure Q̄ is defined by

dQ̄

dP
= L̄t, on FS

t , (1)

with L given by

dL̄t = L̄t

(
−α̂

σ

)
dW̄t. (2)

The measure Q̄0 is defined by

dQ̄0

dP
= L̄0

t , on FS
t ,

with L̄0 given by

dL̄0
t = L̄0

t

(
α̂β

σ

)
dW̄t.
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Main results

With notation as above, the following hold.

• The optimal wealth process X̄∗ is given by

X̄∗
t = x · H̄t

H̄0
L̄
− 1

1−γ
t ,

where

H̄t = E0̄

[
exp

{
1
2

∫ T

t

βα̂2

(1 − γ)σ2
ds

}∣∣∣∣∣F
S
t

]
,

and the expectation is taken under Q̄0.

• The optimal portfolio weight ū∗ is given by

ū∗ =
α̂

σ2(1 − γ)
+

1
σ
·
σH̄

H̄
,

where σH̄ is the diffusion term of H̄, i.e. H̄ has
dynamics of the form

dH̄t = µH̄(t)dt + σH̄(t)dW̄t.
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Results ctd

Furthermore, the optimal utility process V̄t is given by

Vt =

(
X̄∗

t

)γ

γ
H̄1−γ

t ,
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The Markovian Case

Model:

dSt = α(t, Yt)Stdt + StσdWt,

dYt = µ(t, Yt)dt + b(t, Yt)dVt,

• For simplicity we assume that W and V are
independent Wiener.

• We can observe S but not Y .

• Note that σ cannot depend upon Y .

Our general results still hold, so again we project onto
FS and obtain

dSt = ̂α(t, Yt)Stdt + StσdW̄t,

We now assume that Y has a conditional density
process pt(y) w.r.t. Lebesgue measure.
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Recall
dSt = ̂α(t, Yt)Stdt + StσdW̄t,

The conditional density pt satisfies the DMZ equation

dpt(y) = A?pt(y)dt

+ pt(y)
{

α(t, y) −
∫

R

α(t, y)pt(y)dy

}
dW̄t

A =
∂

∂t
+ µ(t, y)

∂

∂y
+

1
2
σ2(t, y)

∂2

∂y2

dW̄t =
1

Stσ
· dSt −

α̂(t, pt)
σ

dt

α̂(t, p) =
∫

R

α(t, y)p(y)dy

The pair (S, p) is Markov!
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We need to compute things like

H̄t = E0

[
exp

{
1
2

∫ T

t

βα̂2
s

(1 − γ)σ2
ds

}∣∣∣∣∣F
S
t

]
,

Now
̂α(t, Yt) = α̂(t, pt),

so H̄t is of the form

H̄t = H(t, pt)

The pair (S, p) is Markov so we can use Kolmogorov.
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Result

• The optimal value function V is given by

V (t, x, q) =
xγ

γ
H̄(t, q)1−γ,

H̄(t, p) = E0
t,q

[
exp

{
1
2

∫ T

t

βα̂2(s, ps)
(1 − γ)σ2

ds

}]
,

• The measure Q̄0 has likelihood dynamics

dL̄0
t = L̄0

t

(
α̂(t, pt)β

σ

)
dWt.

• The optimal control is given by

u∗(t, q) =
α̂(t, p)

σ2(1 − γ)
+

1
σ2

·
H̄p(t, p)[αp]

H(t, p)
,

• H satisfies an infinite dimensional parabolic PDE.
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What on earth is going on?

• What is the economic significance of the Q0?

• For log utility Q0 = P .

• For exponential utility Q0 = Q.

???

Tomas Björk, 2007 34



The FKK filter equations

For the model

dYt = atdt + dMt

dZT = btdt + dWt

where M and W are independent, we have the FKK
non-linear filter equations

dŶt = âtdt +
{
Ŷtbt − Ŷtb̂t

}
dW̄t

dW̄t = dZt − b̂tdt

Remark: It is easy to see that

ht = E
[(

Yt − Ŷt

) (
bt − b̂t

)∣∣∣FZ
t

]
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