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Preliminaries

Suppose the default time of a certain firm is modelled by some τ
which is a positive random variable defined on (Ω,H,P).

Standard assumption is that P(τ = 0) = 0 and P(τ > t) > 0 for all
t ∈ R+.

There is a reference filtration F = (Ft)t≥0 that models the
information obtained from relevant (or irrelevant) asset prices,
news, accounting information, etc. Typically τ is not an F-stopping
time.

Since default is a public event, however, we define a new filtration
G which is obtained by enlarging F just enough so that τ becomes
a G-stopping time.
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Hazard process of a random time

We are interested in P(τ > T |Gt), which would give a price for the
defaultable zero-coupon bond provided P is some risk-neutral
measure.

The key formula (due to Dellacherie) is that for any Y ∈ H

E[1[τ>t]Y |Gs] = 1[τ>s]

E[1[τ>t]Y |Fs]

P(τ > s|Fs)
,

for s ≤ t .

Define the supermartingale Z by Zt = P(τ > t |Ft). (Z is said to be
the Azema’s supermartingale associated to τ .)

Let Γt = −logZt . Γ is the hazard process associated to τ .
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Martingales associated with Γ

There exists a unique F-predictable and increasing process, A,
with A0 = 0 such that Z + A is an F-martingale.

Define M by Mt = 1[τ>t]eΓt . Then, M is a G-martingale. Moreover,
for any F-martingale m, mM is a G-martingale.

Let Nt = 1[τ>t]. Then N + Λ is a G-martingale where Λ is defined
by dΛ = 1[t≤τ ]

dAt
Zt−

.
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Valuation of defaultable bonds

Most interesting case is when the compensator of N is absolutely
continuous, i.e. dΛt = 1[t≤τ ]λtdt . Suppose this is the case and let
St := P(τ > T |Gt).

Let

Vt := E

[
exp

(
−
∫ T

t
λu

)
du

∣∣∣∣∣Gt

]
. (1)

Duffie, Schroder and Skiadas (1996) have proved that

St = Vt − E[∆Vτ |Gt ],

on the set [τ > t ].
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A simplifying assumption

Often the following martingale invariance property is assumed in
credit risk models:

(H) Every square integrable F-martingale is a G-martingale.

The H-Hypothesis above is equivalent to

P(τ ≤ s|Ft) = P(τ ≤ s|F∞),

for every s ≤ t .

This implies Z has a modification that is decreasing.

If we further assume that Z is predictable, this implies A = 1− Z .

If Z is absolutely continuous, then so is Λ and the process V in (1)
does not jump at τ .
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Suppose F is the filtration generated by some traded risky asset,
whose price process is denoted with S and which is subject to
default. Assume further that the market is arbitrage free and
complete given the filtration F . Blanchet-Scalliet and Jeanblanc
(2004) show that if the market remains arbitrage free when the
filtration is enlarged to G, then there exists some equivalent
martingale measure for S under which H-Hypothesis holds.

The completeness assumption is crucial for the above result. In
Duffie and Lando (2000) the market is arbitrage-free yet the
H-Hypothesis does not hold.

Kusuoka (1999) also presents an example of an arbitrage free
market where the H-Hypothesis is not satisfied. In particular he
shows H-Hypothesis is not stable under a change of measure.
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Brownian local time

Let W be a standard Brownian motion defined on (Ω,F ,P). Define for
a < 0,

τa := inf{t > 0 : Wt = a}.

Let Lx be the local time process of W at level x ∈ R which could be
defined by the following a.s. limit:

lim
ε→0

1
ε

∫ t

0
1[x≤Ws≤x+ε]ds. (2)
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Local time properties

Lx has the following properties:

It satisfies for each t ≥ 0

|Wt − x | − |x | =
∫ t

0+
sgn(Ws − x)dWs + Lx

t . (3)

Lx is continuous and increasing for each x .

(Occupation times formula) For any bounded Borel measurable
g ∫ ∞

−∞
Lx

t g(x)dx =

∫ t

0
g(Ws)ds.

L0
t > 0 for all t > 0.

U. Çetin (LSE) Local times and default times 20 September 2007 9 / 39



Probability distribution for local times

It is well known that

P(Wt ∈ dw ,Lx
t ∈ dy) =

1√
2πt3

ψ(t ,w , y)dwdx , (4)

where

ψ(t ,w , y) := (|a|+ |w − a|+ y) exp
(
−(|a|+ |w − a|+ y)2

2t

)
,

for y > 0 and w ∈ R. By integrating above we get

P(Lx
t ≤ y) = 2Φ

(
y + |x |√

t

)
− 1,

where Φ is the cumulative probability distribution function of standard
normal.
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In particular, recall a < 0,

P(La
t = 0) = 2Φ

(
− a√

t

)
− 1

= 1− 2Φ

(
a√
t

)
= 1− 2P(Wt ≤ a) = P(τa > t),

due to the reflection principle of brownian motion.

U. Çetin (LSE) Local times and default times 20 September 2007 11 / 39



This is not a coincidence!

It follows from (3) that [τa > t ] ⊂ [La
t = 0]

Therefore, [La
t = 0] = [La

t = 0, τa < t ] ∪ [τa > t ].

Next, use the strong Markov property of W and that L0
t > 0 for all

t > 0 to conclude [La
t = 0] = [τa > t ].
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Observing W through an auxiliary process

Let B be another brownian motion independent of W . Let Y be the
strong solution to the following SDE

dYt = α(t ,Wt ,Yt)dt + dBt , Y0 = 0, (5)

for each t ∈ [0,T ] where α is Lipschitz and T > 0 is a constant. We
further make the following assumption on α.

Assumption 1

E
[∫ T

0 α2(t ,Wt ,Yt)dt
]
<∞.
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Survival probabilities

We are interested in the survival probability Zt := P[τ > t |FY
t ], for

each t ∈ [0,T ] where FY is the minimal filtration generated by Y
satisfying usual hypotheses. Z is a supermartingale with a càdlàg
modification, which we’ll use henceforth.

Next let ζt := P[La
t = 0|FY

t ], t ≥ 0, and observe that ζt = Zt , a.s.
for each t .

It can be checked that ζ also admits a càdlàg modification. Thus,
we may conclude ζ and Z are indistinguishable.
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Joint conditional law of W and La

In order to find the joint conditional law of W and La, we’ll first find that
of W and X ε where

X ε
t :=

1
ε

∫ t

0
1[a≤Ws≤a+ε]ds, (6)

converges to La
t , a.s.. Let R++ stand for the strictly positive real

numbers and f : R++ × R be twice continuously differentiable with
respect to both parameters. Define
ft := f (X ε

t ,Wt), f
(x)
t := ∂

∂x f (X ε
t ,Wt), f

(ww)
t := ∂2

∂w2 f (X ε
t ,Wt) and let

πt(f ) := E[ft |FY
t ].
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Standard results on optimal filtering yield the following

Lemma 1

Let Y satisfy (5) and define αt := α(t ,Wt ,Yt). Then

πt(f ) = f0 +

∫ t

0+

{
1
ε
πs

(
f (x)1[a≤W≤a+ε]

)
+

1
2
πs

(
f (ww)

)}
ds

+

∫ t

0+
πs(fα)− πs(f )πs(α)dBY

s ,

where BY is an FY -Brownian motion defined by

dBY
t = dYt − πt(α)dt .

U. Çetin (LSE) Local times and default times 20 September 2007 16 / 39



SPDEs satisifed by the joint laws

Let
gεW

t (x ,w) := P(X ε
t ∈ dx ,Wt ∈ dw |FY

t )/dxdw ,

for x ∈ R++ and w ∈ R.

Looking at (4) reveals that in general we don’t expect gεW to be
differentiable with respect to its second parameter. Therefore, the
partial derivatives in the next theorem should be understood in the
sense of generalized functions.

Let D be the set of infinitely differentiable functions over R++ × R
with a bounded support. One can view gεw

t as a generalized
function on D depending on a random parameter.
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Lemma 2

Let ᾱt(w ,Yt) := α(t ,w ,Yt)− πt(α). Assume

E

[∫ T

0

∫ ∞

−∞

∫ ∞

0

(
gεW

t (x ,w)ᾱt(w ,Yt)
)2

dxdwdt

]
<∞. (7)

Let

It =

∫ t

0

∫ ∞

0

∫ ∞

−∞
f (x ,w)gεW

s (x ,w)ᾱs(w ,Ys)dwdxdBY
s .

Then, for each t ∈ [0,T ] and for all f ∈ D

It =

∫ ∞

0

∫ ∞

−∞

∫ t

0
f (x ,w)gεW

s (x ,w)ᾱs(w ,Ys)dBY
s dwdx

=

∫ ∞

−∞

∫ ∞

0

∫ t

0
f (x ,w)gεW

s (x ,w)ᾱs(w ,Ys)dBY
s dxdw .
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Theorem 3

Under the assumptions of Lemma 2, for (x ,w) ∈ R++ × R,

gεW
t (x ,w) = gεW

0 (x ,w)

−
∫ t

0

{
1
ε

∂

∂x
gεW

s (x ,w)1[a≤w≤a+ε] +
1
2
∂2

∂w2 gεW
s (x ,w)

}
ds

+

∫ t

0+
gεW

s (x ,w) (α(s,w ,Ys)− πs(α)) dBY
s ,

where the derivatives are understood in the sense of generalized
functions.
As a corollary to the above theorem we get the conditional law of La

and (La,W ).
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SPDE satisfied by the conditional law of (La, W )

Corollary 4

Let

gL
t (x) := P[La

t ∈ dx |FY
t ]/dx , for x ∈ R++, and

gLW
t (x ,w) := P[La

t ∈ dx ,Wt ∈ dw |FY
t ]/dxdw , for (x ,w) ∈ R++ × R.

Then,

gL
t (x) = gL

0(x)−
∫ t

0+

∂

∂x
gLW

s (x ,a)ds (8)

+

∫ t

0+

∫ ∞

−∞
gLW

s (x ,w) (α(s,w ,Ys)− πs(α)) dwdBY
s ; and

U. Çetin (LSE) Local times and default times 20 September 2007 20 / 39



gLW
t (x ,w) = gLW

0 (x ,w)

−
∫ t

0+

∂

∂x
gLW

s (x ,a)δa(w)ds +
1
2

∫ t

0+

∂2

∂w2 gLW
s (x ,w)ds

+

∫ t

0+
gLW

s (x ,w) (α(s,w ,Ys)− πs(α)) dBY
s , (9)

where ∂
∂x gLW

s (x ,a)δa(w) is the direct product of the generalized
function ∂

∂x gLW
s (·,a) with the delta function at a.
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Note that when α(t , ·, y) is constant for all t and y , αt = πt(α) for
each t . In this case (9) reduces to

gLW
t (x ,w) = gLW

0 (x ,w)−
∫ t

0+

∂

∂x
gLW

s (x ,a)δa(w)ds

+
1
2

∫ t

0+

∂2

∂w2 gLW
s (x ,w)ds.

It can be shown by direct manipulation that (4) satisfies above.
This is no surprise since with this particular choice of α, Y
becomes independent of W .
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General case

Now let θ be a strong solution of

dθt = µ(t , θt)dt + σ(t , θt)dWt , (10)

with θ0 = 0, where µ and σ are deterministic Lipschitz functions. The
observation process, Y , is, again, given by

dYt = α(t , θt ,Yt)dt + dBt . (11)

We now assume that the quadratic covariation of B and W satisfies

d
dt

[B,W ]t = ρ(t , θt ,Yt), (12)

for a deterministic function ρ. In particular, ρ ≡ 0 if B and W are
independent. We suppose τ := inf{t > 0 : θt = a}, for a < 0 is finite
a.s. so that we are not dealing with a vacuous problem.
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Analogously, let

X ε
t =

1
ε

∫ t

0+
1[a≤θs≤a+ε]σ

2(s, θs)ds.

Similarly, X ε
t converges to La

t a.s. for every t , where La is the local
time of θ at a.

We next introduce some notation:

Let

gL
t (x) := P[La

t ∈ dx |FY
t ]/dx , for x ∈ R++,

gLθ
t (x , θ) := P[La

t ∈ dx , θt ∈ dθ|FY
t ]/dxdθ, for (x , θ) ∈ R++ × R, and

gεθ
t (x , θ) := P[X ε

t ∈ dx , θt ∈ dθ|FY
t ]/dxdθ, for (x , θ) ∈ R++ × R.

We assume that all the above densities exist. Assuming further
σ(t , ·) ∈ C2, ρ(t , ·, y) ∈ C1, and µ(t , ·) ∈ C1, set
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L∗gεθ
t (x , θ) = −1

ε
1[a≤θ≤a+ε]σ

2(t , θ)
∂

∂x
gεθ

t (x , θ)− ∂

∂θ

[
gεθ

t (x , θ)µ(t , θ)
]

+
1
2
∂2

∂θ2

[
gεθ

t (x , θ)σ2(t , θ)
]

L∗gLθ
t (x , θ) = −δa(θ)σ

2(t ,a)
∂

∂x
gLθ

t (x ,a)− ∂

∂θ

[
gLθ

t (x , θ)µ(t , θ)
]

+
1
2
∂2

∂θ2

[
gLθ

t (x , θ)σ2(t , θ)
]

N ∗gεθ
t (x , θ) = − ∂

∂θ

[
gεθ

t (x , θ)ρ(t , θ,Yt)σ(t , θ)
]

N ∗gLθ
t (x , θ) = − ∂

∂θ

[
gLθ

t (x , θ)ρ(t , θ,Yt)σ(t , θ)
]
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Analogous results in the general case

Theorem 5

Let θ and Y be as in (10) and (11), respectively. Suppose
σ(t , ·) ∈ C2, ρ(t , ·, y) ∈ C1, and µ(t , ·) ∈ C1 and that, for each ε > 0,∫ t

0

∫ ∫ ∣∣∣f (x , θ)L∗gεθ
s (x , θ)

∣∣∣ dxdθds <∞, and

E[

∫ t

0

∫ ∫
f 2(x , θ) { N ∗gεθ

s (x , θ)

+gεθ
s (x , θ)(α(s, θ,Ys)− πs(α))}2dxdθds] <∞,

for all f ∈ D and t > 0.
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Then,

gεθ
t (x , θ) = gεθ

0 (x , θ) +

∫ t

0
L∗gεθ

s (x , θ)ds

+

∫ t

0

{
N ∗gεθ

s (x , θ) + gεθ
s (x , θ) (α(s, θ,Ys)− πs(α))

}
dBY

s ,

where dBY
s = dYs − πs(α)ds.
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Corollary 6

Under the assumptions of Theorem 5

gLθ
t (x , θ) = gLθ

0 (x , θ) +

∫ t

0
L∗gLθ

s (x , θ)ds

+

∫ t

0

{
N ∗gLθ

s (x , θ) + gLθ
s (x , θ) (α(s, θ,Ys)− πs(α))

}
dBY

s ,

gL
t (x) = gL

0(x)−
∫ t

0+
σ2(s,a)

∂

∂x
gLθ

s (x ,a)ds

+

∫ t

0+

∫ ∞

−∞
gLθ

s (x , θ) (α(s, θ,Ys)− πs(α)) dθdBY
s .
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A special case

Our assumption is that the relevant conditional densities exist. The
following theorem shows a situation when this is the case.

Theorem 7

Let θ satisfy
dθt = dWt + µ(t , θt)dt ,

such that B and W are independent. Suppose
∫ T

0 µ2(t , θt)dt <∞.
Then gL,gεθ, and gLθ exist.
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Some examples

Although the above case in which the densities exist seems very
special, in many practical applications, as long as we are only
interested in finding the default probabilities, the problem can be
reduced to this case after simple transformations.

Example 8

Let V be a geometric Brownian motion, i.e.
Vt = V0exp

(
σWt + 1

2(µ− σ2)t
)
, with V0 > 0 and if τ is the first time

that θ falls below some level c such that V0 > c > 0 then
τ = inf{t > 0 : σWt + 1

2(µ− σ2)t = a}, where a = log c
V0

.
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Example 9

Suppose V satisfies

dVt = µ(t ,Vt)dt + σ(t ,Vt)dWt ,

with V0 = 0 and suppose further that σ > ε > 0 for some ε, and that
default occurs at τ which is the first time that V hits a < 0. Let

F (t , x) = a +

∫ x

a
σ−1(t , v)dv ,

and define θt = F (t ,Vt). Note that τ = inf{t > 0 : θt = a}. Moreover,

dθt = dWt +

{
Ft(t , θt) +

µ(t , θt)

σ(t , θt)
− 1

2
σx(t , θt)

σ2(t , θt)

}
dt ,

where Ft := ∂F
∂t (t , x) and σx := ∂σ

∂x (t , x). Under appropriate integrability
conditions on µ, σ, σx and Ft , one would be able to satisfy the
conditions of Theorem 7.
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Applications to default risk

Consider a company which issues a bond with a face value of $1
and maturity T > 0.

Let θ be a proxy for the firm value such that

dθt = σ(θt)dWt + µ(θt)dt , (13)

with θ0 = 0 and σ : R 7→ R and µ : R 7→ R are Lipschitz.

Suppose σ(·) > 0.

Let τ be the first time that θ falls below a < 0. The firm will default
and won’t make payments if τ ≤ T .
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Assumption 2

There exists a Q ∼ P under which θ is a square integrable martingale.

θ is not publicly observable. However, the market observes Y
which satisfies

dYt = dBt + α(t , θt ,Yt),

where B is a brownian motion independent of W .

Under the assumption above [La
t = 0] = [τ > t ], a.s.; thus,

Zt = P[τ > t |FY
t ] = P[La

t = 0|FY
t ].
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FY -Doob-Meyer decomposition for Z

Under the assumptions of Theorem 5, it follows from Corollary 6
that

Zt = 1− σ2(a)

∫ t

0+
gLθ

s (0+,a)ds

−
∫ t

0+
E[1[Ls>0](αs − πs(α))|FY

s ]dBY
s

= 1− σ2(a)

∫ t

0+
gLθ

s (0+,a)ds

−
∫ t

0+
E[1[τ>s](αs − πs(α))|FY

s ]dBY
s ,

where gLθ
s (0+,a) := limx↓0 gLθ

s (x ,a).

The above shows Z + A, where At = σ2(a)
∫ t

0+ gLθ
s (0+,a)ds, is an

FY -martingale.
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Price of defaultable bonds

Of course, the market also observes whether the default event has
occurred or not. In other words G with Gt = FY

t ∨ {τ ∧ t} defines
the market’s filtration. Assuming zero interest rates, the fair price
S of this defaultable bond is given by St = 1[τ>t]E[1[τ>T ]|Gt ]. Let
Zt = P[τ > t |FY

t ] for each t . Then, it is well known that

1[τ>t]E[1[τ>T ]|Gt ] = 1[τ>t]Z
−1
t E[ZT |FY

t ]. (14)

Under the (H)-Hypothesis

St = 1[τ>t]E

[
exp

(
σ2(a)

∫ T

t

gLθ
u (0+,a)

Zu
du

)
|Gt

]
.

U. Çetin (LSE) Local times and default times 20 September 2007 35 / 39



An example where (H)-Hypothesis is satisfied

Suppose Y is of the form

dYt = dBt + Ytdt ,

i.e. α(t , θ, y) = y . Then, obviously, αs = πs(α) = Ys. Thus,
(H)-Hypothesis is satisfied. This can be seen either by looking at the
decomposition for Z above or by noticing Y is independent of W ,
hence, τ .
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An example where (H)-Hypothesis is not satisfied

Suppose α : R+ × R× R 7→ R is defined by for a < 0

α(t , θ, y) =

{
0, if θ ≥ a;
(θ − a)2, if θ < a.

Let θ = W and τ as above. Suppose Y satisfies

dYt = dBt + α(t , θt ,Yt)dt .

If (H)-Hypothesis were satisfied, then BY would be a G-martingale.
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Consequently, β defined by βt = BY
t∧τ would be a G-Brownian motion.

Theory of progressive enlargement of filtrations yields

βt = Rt +

∫ t

0
1[τ≥s]

E[1[τ>s](αs − πs(α))|FY
s ]

Zs
ds,

where R is a G-martingale. Due to the particular choice for α

E[1[τ>s](αs − πs(α))|FY
s ] = −ZsE[1{Wt<a}(Wt − a)2|FY

t ].

Therefore,

βt = Rt −
∫ t

0
1[τ≥s]E[1{Ws<a}(Ws − a)2|FY

s ]ds.

This shows β is a not a G-martingale since E[1{Wt<a}(Wt − a)2|FY
t ] is

strictly positive a.s. for each t > 0.
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