Hedging and Optimization in a Geometric Additive Market.

José M. Corcuera
Faculty of Mathematics
University of Barcelona

Amamef, Vienna, September 2007

Outline

(9) Hedging in an additive model

- The Market model
- The stock price formula
- Equivalent Martingale Measures
- Power-Jump Processes
- Example

Outline

(1) Hedging in an additive model

- The Market model
- The stock price formula
- Equivalent Martingale Measures
- Power-Jump Processes
- Example
(2) Portfolio optimization
- Utility functions
- Optimal wealth
- Example
- A class of utility functions

Outline

(1) Hedging in an additive model

- The Market model
- The stock price formula
- Equivalent Martingale Measures
- Power-Jump Processes
- Example
(2) Portfolio optimization
- Utility functions
- Optimal wealth
- Example
- A class of utility functions
(3) References
- Our market model, denoted by M, will be a (stochastic) exponential additive model consisting of a riskfree bond $B=\left\{B_{t}, t \geq 0\right\}$, where $B_{t}=\exp \left(\int_{0}^{t} r_{s} \mathrm{~d} s\right)$, with r_{s} deterministic, and a risky stock $S=\left\{S_{t}, t \geq 0\right\}$ which verifies

$$
\begin{equation*}
\frac{\mathrm{d} S_{t}}{S_{t-}}=\mathrm{d} Z_{t}, \quad S_{0}>0 \tag{1}
\end{equation*}
$$

where Z is a natural additive process with local characteristics (with respect to the Lebesgue measure) $\left(c_{t}^{2}, \nu_{t}, \gamma_{t}\right)$.

- Our market model, denoted by M, will be a (stochastic) exponential additive model consisting of a riskfree bond $B=\left\{B_{t}, t \geq 0\right\}$, where $B_{t}=\exp \left(\int_{0}^{t} r_{s} \mathrm{~d} s\right)$, with r_{s} deterministic, and a risky stock $S=\left\{S_{t}, t \geq 0\right\}$ which verifies

$$
\begin{equation*}
\frac{\mathrm{d} S_{t}}{S_{t-}}=\mathrm{d} Z_{t}, \quad S_{0}>0 \tag{1}
\end{equation*}
$$

where Z is a natural additive process with local characteristics (with respect to the Lebesgue measure) $\left(c_{t}^{2}, \nu_{t}, \gamma_{t}\right)$.

- Except when $\left(Z_{t}\right)$ is a Brownian motion or a Poisson process, the above described models are incomplete: contingent claims cannot, in general, be hedged by a self-financing portfolio. This is equivalent to the fact that there are many equivalent "martingale measures": probability measures (equivalent to the original one) under which the discounted stock values are martingales.

From the Lévy-Itô decomposition, one can assume that Z in (1) can be written as

$$
\begin{equation*}
Z_{t}=\int_{0}^{t} c_{s} \mathrm{~d} W_{s}+X_{t} \tag{2}
\end{equation*}
$$

where $W=\left\{W_{t}, t \in[0, T]\right\}$ is a standard Brownian motion and $X=\left\{X_{t}, t \in[0, T]\right\}$ is a jump process independent of W. Moreover, the jump part is given by

$$
\begin{align*}
X_{t}= & \int_{\{s \in(0, t],|x|<1\}} x\left(J(\mathrm{~d} s, \mathrm{~d} x)-\nu_{s}(\mathrm{~d} x) \mathrm{d} s\right) \tag{3}\\
& +\int_{\{s \in(0, t],|x| \geq 1\}} x J(\mathrm{~d} s, \mathrm{~d} x)+\int_{0}^{t} \gamma_{s} \mathrm{~d} s \tag{4}
\end{align*}
$$

where $J(\mathrm{~d} t, \mathrm{~d} x)$ is a Poisson random measure on $[0, T] \times \mathbb{R} \backslash\{0\}$ with intensity measure $\nu_{t}(\mathrm{~d} x) \mathrm{d} t$

We assume that the family of Lévy measures $\left\{\nu_{t}\right\}_{t \in[0, T]}$ satisfies, for some $\varepsilon>0$ and $\lambda>0$,

$$
\begin{equation*}
\sup _{t \in[0, T]} \int_{(-\varepsilon, \varepsilon)^{c}} \exp (\lambda|x|) \nu_{t}(\mathrm{~d} x)<\infty \tag{5}
\end{equation*}
$$

As a consequence of this assumption, it is easy to show that

$$
\int_{-\infty}^{+\infty}|x|^{i} \nu_{t}(\mathrm{~d} x)<\infty
$$

for all $i \geq 2$ and all $t \in[0, T]$.

Moreover, with these assumptions, the Doob decomposition of X, in terms of a martingale part and a predictable process of finite variation, is given by

$$
X_{t}=L_{t}+\int_{0}^{t} a_{s} \mathrm{~d} s
$$

where $L=\left\{L_{t}, t \geq 0\right\}$ is a martingale and $E_{P}\left[X_{t}\right]=\int_{0}^{t} a_{s} d s$.

If we denote $M(\mathrm{~d} t, \mathrm{~d} x)=J(\mathrm{~d} t, \mathrm{~d} x)-\mathrm{d} t \nu_{t}(\mathrm{~d} x)$ the martingale part of X can be written in terms of the compensated Poisson random measure $M(\mathrm{~d} t, \mathrm{~d} x)$ as

$$
L_{t}=\int_{0}^{t} \int_{-\infty}^{+\infty} x M(\mathrm{~d} s, \mathrm{~d} x)
$$

So, in our case the Lévy-Itô decomposition is

$$
Z_{t}=\int_{0}^{t} c_{s} \mathrm{~d} W_{s}+\int_{0}^{t} \int_{-\infty}^{+\infty} x M(\mathrm{~d} s, \mathrm{~d} x)+\int_{0}^{t} a_{s} \mathrm{~d} s
$$

Using Itô's formula for semimartingales one can show that Equation (1) has the solution

$$
\begin{equation*}
S_{t}=S_{0} \exp \left(Z_{t}-\frac{1}{2} \int_{0}^{t} c_{s}^{2} \mathrm{~d} s\right) \prod_{0<s \leq t}\left(1+\Delta Z_{s}\right) \exp \left(-\Delta Z_{s}\right) \tag{6}
\end{equation*}
$$

In order to ensure that $S_{t}>0$ for all $t \geq 0$ a.s., we require that $\Delta Z_{t}>-1$ for all t. Hence, we shall assume that the family of Lévy measures $\left\{\nu_{t}\right\}_{t \in[0, T]}$ is supported on $(-1,+\infty)$. It is interesting to note that we can also write:

$$
S_{t}=S_{0} \exp \left(\bar{Z}_{t}\right)
$$

where

$$
\begin{aligned}
\bar{Z}_{t}= & \int_{0}^{t} c_{s} \mathrm{~d} W_{s}+\int_{0}^{t} \int_{-\infty}^{+\infty} \log (1+x) M(\mathrm{~d} s, \mathrm{~d} x) \\
& +\int_{0}^{t}\left(a_{s}-\frac{c_{s}^{2}}{2}\right) \mathrm{d} s+\int_{0}^{t} \int_{-\infty}^{+\infty}(\log (1+x)-x) \nu_{s}(\mathrm{~d} x) \mathrm{d} s
\end{aligned}
$$

So, stochastic exponential models are the same as usual exponential models. They are simply two ways of expressing the same model.

We look for structure preserving, P-equivalent, martingale measures Q. Under these probabilities Z remains an additive process, the process $\tilde{S}=\left\{\tilde{S}_{t}=\exp \left(-\int_{0}^{t} r_{s} \mathrm{~d} s\right) S_{t}, 0 \leq t \leq T\right\}$ is a Q-martingale and Q and P are equivalent.

We look for structure preserving, P-equivalent, martingale measures Q. Under these probabilities Z remains an additive process, the process $\tilde{S}=\left\{\tilde{S}_{t}=\exp \left(-\int_{0}^{t} r_{s} \mathrm{~d} s\right) S_{t}, 0 \leq t \leq T\right\}$ is a Q-martingale and Q and P are equivalent. We have the following results,

Theorem

Let $Z=\left\{Z_{t}, 0 \leq t \leq T\right\}$ be an additive process with local characteristics $\left(c_{t}^{2}, \nu_{t}, \gamma_{t}\right)$. Then, if there is a probability measure Q equivalent to P, such that Z is a Q-(natural) additive process with local characteristics (with respect to the Lebesgue measure) $\left(\bar{c}_{t}^{2}, \bar{\nu}_{t}, \bar{\gamma}_{t}\right)$ we have:
(i) $\bar{\nu}_{t}(d x)=H(t, x) \nu_{t}(d x)$ for some Borel function $H(t, x): \mathbb{R}^{+} \times \mathbb{R} \rightarrow(0, \infty)$.
(ii) $\overline{\gamma_{t}}=\gamma_{t}+\int_{-\infty}^{+\infty} x \mathbf{1}_{\{|x|<1\}}(H(t, x)-1) \nu_{t}(d x)+G_{t} c_{t}^{2}$ for some Borel function $G_{t}: \mathbb{R}^{+} \rightarrow(0, \infty)$.
(iii) $\bar{c}_{t}=c_{t}$.
for every $0 \leq t \leq T$.

Theorem

Suppose that we are in the conditions of the previous theorem, then the density process $\left\{\frac{\mathrm{d} Q_{t}}{\mathrm{~d} P_{t}}=\xi_{t}, 0 \leq t \leq T\right\}$ is given by

$$
\begin{align*}
& \xi_{t}=\exp \left(\int_{0}^{t} G_{s} c_{s} \mathrm{~d} W_{s}-\frac{1}{2} \int_{0}^{t} G_{s}^{2} c_{s}^{2} \mathrm{~d} s\right. \\
& +\lim _{\varepsilon \rightarrow 0}\left(\int_{0}^{t} \int_{|x|>\varepsilon} \log H(s, x) J(\mathrm{~d} t, \mathrm{~d} x)-\int_{0}^{t} \int_{|x|>\varepsilon}(H(s, x)-1) \nu_{s}(\mathrm{~d} x) \mathrm{d} s\right) \tag{7}
\end{align*}
$$

with $E_{P}\left[\xi_{t}\right]=1$, for every $t \in[0, T]$. The convergence on the right-hand side of (7) is uniform in t on any bounded interval, P-a.s.

The previous theorems imply that the process $\bar{W}=\left\{\bar{W}_{t}, 0 \leq t \leq T\right\}$ with

$$
\bar{W}_{t}=W_{t}-\int_{0}^{t} G_{s} c_{s} \mathrm{~d} s
$$

is a Brownian motion under Q and also, if ν_{t} and $\bar{\nu}_{t}$ verify the moment-condition (5), the process X is a jump additive process process with Q-Doob-Meyer decomposition

$$
X_{t}=\bar{L}_{t}+\int_{0}^{t} a_{s} \mathrm{~d} s+\int_{0}^{t} \int_{-\infty}^{+\infty} x(H(s, x)-1) \nu(\mathrm{d} x) \mathrm{d} s
$$

where $\bar{L}=\left\{\bar{L}_{t}, 0 \leq t \leq T\right\}$ is a Q-martingale and where $\bar{\nu}_{t}(\mathrm{~d} x)=H(t, x) \nu_{t}(\mathrm{~d} x) \quad \forall 0 \leq t \leq T$.

Now, we want to find an equivalent martingale measure Q under which the discounted price process \tilde{s} is a martingale. Observing that $\Delta L_{t}=\Delta \bar{L}_{t}$, we have from (6) that

$$
\begin{aligned}
\tilde{s}_{t} & =S_{0} \exp \left(\int_{0}^{t} c_{s} \mathrm{~d} \bar{W}_{s}+\bar{L}_{t}+\int_{0}^{t}\left(a_{s}-r_{s}+G_{s} c_{s}^{2}-\frac{c_{s}^{2}}{2}\right) \mathrm{d} s\right) \\
& \times \exp \left(\int_{0}^{t} \int_{-\infty}^{+\infty} x(H(s, x)-1) \nu_{s}(\mathrm{~d} x)\right) \mathrm{d} s \prod_{0<s \leq t}\left(1+\Delta \bar{L}_{s}\right) \exp \left(-\Delta \bar{L}_{s}\right) .
\end{aligned}
$$

Then a necessary and sufficient condition for \tilde{S} to be a Q-martingale is G_{t} and $H(t, x)$ to verify

$$
G_{t} c_{t}^{2}+a_{t}-r_{t}+\int_{-\infty}^{+\infty} x(H(t, x)-1) \nu_{t}(\mathrm{~d} x)=0 .
$$

$0 \leq t \leq T$. Note that,

$$
Z_{t}=\int_{0}^{t} c_{s} \mathrm{~d} \bar{W}_{s}+\bar{L}_{t}+\int_{0}^{t} r_{s} \mathrm{~d} s
$$

The following transformations of $Z=\left\{Z_{t}, t \geq 0\right\}$ will play an important role in our analysis. We set

$$
Z_{t}^{(i)}=\sum_{0<s \leq t}\left(\Delta Z_{s}\right)^{i}, \quad i \geq 2
$$

where $\Delta Z_{S}=Z_{S}-Z_{S-}$. Define the Q-martingales

$$
H_{t}^{(i)}=Z_{t}^{(i)}-E_{Q}\left(Z_{t}^{(i)}\right), \quad i=1,2, \ldots
$$

with $Z_{t}^{(1)}=Z_{t}$. We have the following result

Theorem (Nualart-Schoutens-Balland)

Any Q-square-integrable martingale M_{t} can be expressed as

$$
M_{t}=M_{0}+\sum_{k=1}^{\infty} \int_{0}^{t} \beta_{s}^{n} \mathrm{~d} \bar{H}_{s}^{(n)}
$$

where $\bar{H}_{s}^{(n)}$ are the orthogonal version of the $H^{(n)}$ defined previously and the β^{i} are predictable processes.

Following Corcuera et al.(2005), we complete our market, M, with a series of additional assets, $Y^{(i)}=\left\{Y_{t}^{(i)}, t \geq 0\right\}$, based on the above mentioned processes:

$$
Y_{t}^{(i)}=e^{\int_{0}^{t} r_{s} \mathrm{~d} s} H_{t}^{(i)}, \quad i \geq 2
$$

We shall call them "power-jump" assets.

Theorem

The market model, M_{Q}, obtained by enlarging the market M with the power-jump assets is complete, in the sense that any square-integrable contingent claim $X \in L^{2}(Q)$ can be replicated by an (admissible) self-financing portfolio.

Let X be a square-integrable (with respect to Q) contingent claim. Consider the squared-integrable martingale $M_{t}:=E\left(e^{-\int_{0}^{T} r_{s} d s} X \mid \mathcal{F}_{t}\right)$. By the previous theorem we can write

$$
\begin{aligned}
\mathrm{d} M_{t} & =\sum_{k=1}^{\infty} \beta_{t}^{n} \mathrm{~d} \bar{H}_{t}^{(n)} \\
& =\beta_{t}^{1} \frac{\mathrm{~d} \tilde{S}_{t}}{\tilde{S}_{t-}}+\sum_{k=2}^{\infty} \beta_{t}^{k} \mathrm{~d} \tilde{Y}_{t}^{(k)}
\end{aligned}
$$

Then if we take a self-financing portfolio: $\left(\left(\phi_{t}^{i}\right)_{i \geq 1}\right)_{0 \leq t \leq T}$, where ϕ^{1} denotes the number of units of the stock, and $\left(\phi^{\prime}\right)_{i \geq 2}$ the number of jump-power assets of different order, we will have that the discounted value of this portfolio evolves as

$$
\mathrm{d} \tilde{V}_{t}=\phi_{t}^{1} \mathrm{~d} \tilde{S}_{t}+\sum_{k=2}^{\infty} \phi_{t}^{n} \mathrm{~d} \tilde{Y}_{t}^{(n)}
$$

So, by taking $\phi_{t}^{1}=\frac{\beta_{t}^{1}}{\tilde{S}_{t-}}$ and $\phi_{t}^{i}=\beta_{t}^{i}$ we obtain the replicating portfolio.

In certain cases we can obtain hedging formulas directly, by using the Itô formula. In fact assume that the discounted price of the option at time t can be written as $\tilde{F}\left(s, S_{s}\right), F$ smooth, then by the Itô formula

$$
\begin{aligned}
& \mathrm{d} \tilde{F}\left(s, S_{s}\right) \\
= & \frac{\partial F}{\partial S_{s}} \mathrm{~d} \tilde{S}_{s} \\
& +\int_{-\infty}^{+\infty}\left(\tilde{F}\left(s, S_{s-}(1+y)\right)-\tilde{F}\left(s, S_{s-}\right)-y \tilde{S}_{s-} \frac{\partial \tilde{F}}{\partial \tilde{S}_{s}}\right) \bar{M}(\mathrm{~d} s, \mathrm{~d} y)
\end{aligned}
$$

where $\bar{M}(\mathrm{~d} t, \mathrm{~d} y)=J(\mathrm{~d} t, \mathrm{~d} y)-\mathrm{d} t \bar{\nu}_{t}(\mathrm{~d} y)$

Then if we assume now that $\tilde{F}\left(s, S_{s-}(1+y)\right)$ can be expanded as a series of powers in y we have

$$
\begin{aligned}
& \mathrm{d} \tilde{F}\left(s, S_{s}\right) \\
= & \frac{\partial F}{\partial S_{s}} \mathrm{~d} \tilde{S}_{s}+\int_{-\infty}^{+\infty} \sum_{k \geq 2} \frac{1}{k!} \frac{\partial^{k} \tilde{F}}{\partial y^{k}}{ }_{\mid y=0} y^{k} \bar{M}(\mathrm{~d} s, \mathrm{~d} y) \\
= & \frac{\partial F}{\partial S_{s}} \mathrm{~d} \tilde{S}_{s}+\sum_{k \geq 2} \frac{1}{k!} \frac{\partial^{k} \tilde{F}}{\partial y^{k}}{ }_{\mid y=0}^{\mathrm{d}} \tilde{Y}_{s}^{(k)}
\end{aligned}
$$

For instance, consider derivatives with payoff $S_{T}^{k}, k \geq 2$. Then its discounted price will be given by

$$
\begin{aligned}
\tilde{F}^{(k)}\left(t, S_{t}\right) & =e^{-\int_{0}^{T} r_{\mathrm{s} \mathrm{ds}}} E_{Q}\left(S_{T}^{k} \mid \mathcal{F}_{t}\right)=e^{-\int_{0}^{T} r_{\mathrm{s}} \mathrm{ds}} S_{t}^{k} E_{Q}\left(\left.\left(\frac{S_{T}}{S_{t}}\right)^{k} \right\rvert\, \mathcal{F}_{t}\right) \\
& =e^{-\int_{0}^{T} r_{\mathrm{s} \mathrm{ds}}} S_{t}^{k} E_{Q}\left(\left(\frac{S_{T}}{S_{t}}\right)^{k}\right)=\varphi^{(k)}(t, T) S_{t}^{k}
\end{aligned}
$$

Then this derivative can be replicated by using the power-jump assets

$$
\mathrm{d} \tilde{F}^{(k)}\left(t, S_{t}\right)=\frac{k F^{(k)}\left(t, S_{t-}\right)}{S_{t-}} \mathrm{d} \tilde{S}_{t}+\sum_{i=2}^{k} \tilde{F}^{(k)}\left(t, S_{t-}\right)\binom{k}{i} \mathrm{~d} \tilde{t}_{t}^{(i)} .
$$

Define $\tilde{F}^{(1)}\left(t, S_{t}\right)=\tilde{S}_{t}$, and since:

$$
\mathrm{d} \tilde{Y}_{t}^{(1)}=\frac{\mathrm{d} \tilde{S}_{t}}{\tilde{S}_{t-}}
$$

we can write

$$
\mathrm{d} \tilde{F}^{(k)}\left(t, S_{t}\right)=\sum_{i=1}^{k} e^{-\int_{0}^{t} r_{s} \mathrm{~d} s} F^{(k)}\left(t, S_{t-}\right)\binom{k}{i} \mathrm{~d} \tilde{Y}_{t}^{(i)}
$$

and

$$
\mathrm{d} \tilde{Y}_{t}^{(k)}=\sum_{i=1}^{k}\binom{k}{i}(-1)^{k-i} \frac{1}{\tilde{F}^{(i)}\left(t, S_{t-}\right)} \mathrm{d} \tilde{F}^{(i)}\left(t, S_{t}\right) .
$$

Moreover if we want to hedge in terms of options we can use the equality:

$$
\left.E_{Q}\left(e^{-\int_{0}^{T} r_{s} \mathrm{~d} s}\right) f\left(S_{T}\right) \mid \mathcal{F}_{t}\right)=e^{-\int_{0}^{T} r_{s} \mathrm{~d} s} f(0)+f^{\prime}(0) \tilde{S}_{t}+\int_{0}^{\infty} f^{\prime \prime}(K) \tilde{C}_{t}(K) \mathrm{d} K
$$

where $\tilde{C}_{t}(K):=e^{-\int_{0}^{T} r_{s} \mathrm{~d} s} E_{Q}\left(\left(S_{T}-K\right)_{+} \mid \mathcal{F}_{t}\right)$ and f is any smooth function. This formula provides a static hedge of the payoff $f\left(S_{T}\right)$. Then, for $k \geq 2$,

$$
\begin{aligned}
& \mathrm{d} \tilde{F}^{(k)}\left(t, S_{t}\right) \\
= & \int_{0}^{\infty} k(k-1) K^{k-2} \mathrm{~d} \tilde{C}_{t}(K) \mathrm{d} K
\end{aligned}
$$

Theorem

The market M, enlarged with call options with the same maturity T and different strikes is a complete market.

We know that $\left(Y_{t}^{(i)}\right), i \geq 1$ is a total set of assets, then form any $X \in L^{2}(Q)$ we have that the discounted value of the replicating portfolio, say \tilde{V}_{t} can be written as

$$
\begin{aligned}
\mathrm{d} \tilde{V}_{t} & =\lim _{m} \sum_{k=1}^{m} \phi_{s}^{(k, m)} \mathrm{d} \tilde{Y}_{s}^{(k)} \\
& =\lim _{m} \sum_{k=1}^{m} \sum_{i=1}^{k}\binom{k}{i} \phi_{s}^{(k, m)}(-1)^{k-i} \frac{1}{\tilde{F}^{(i)}\left(t, S_{t-}\right)} \mathrm{d} \tilde{F}^{(i)}\left(t, S_{t}\right) \\
& =\lim _{m} \sum_{k=1}^{m} k \phi_{s}^{(k, m)}(-1)^{k-1} \frac{1}{\tilde{S}_{t-}} \mathrm{d} \tilde{S}_{t} \\
& +\lim _{m} \sum_{k=2}^{m} \sum_{i=2}^{k}\binom{k}{i} \phi_{s}^{(k, m)}(-1)^{k-i} \frac{\int_{0}^{\infty} K^{i-2} \mathrm{~d} \tilde{C}_{t}(K) \mathrm{d} K}{\int_{0}^{\infty} K^{i-2} \tilde{C}_{t}(K) \mathrm{d} K}
\end{aligned}
$$

In some special cases this simplifies to

$$
\begin{aligned}
\mathrm{d} \tilde{V}_{t} & =\frac{\mathrm{d} F}{\mathrm{~d} S_{t \mid S_{t}=0}} \mathrm{~d} \tilde{S}_{t} \\
& +\sum_{k=2}^{\infty} \frac{\mathrm{d}^{i} F}{\mathrm{~d} S_{t \mid S_{t}=0}^{i}} \frac{\int_{0}^{\infty} K^{i-2} \mathrm{~d} \tilde{C}_{t}(K) \mathrm{d} K}{\int_{0}^{\infty} K^{i-2} \tilde{C}_{t}(K) \mathrm{d} K}
\end{aligned}
$$

where F is the price function of the derivative.

Consider an Asian option struck at K, that is an option with payoff

$$
X=\left(\frac{1}{T} \int_{0}^{T} S_{u} \mathrm{~d} u-K\right)_{+}
$$

in an additive market where $B_{t}=e^{\int_{0}^{t} r_{s} d s}$. Then the price process is

$$
G\left(t, S_{t}, V_{t}\right)=\frac{B_{t}}{B_{T}} E_{Q}\left[X \mid \mathcal{F}_{t}\right]
$$

where $V_{t}:=\frac{1}{T} \int_{0}^{t} S_{u} \mathrm{~d} u$ and $X=\left(V_{T}-K\right)_{+}$. In fact, we have

$$
\begin{aligned}
E_{Q}\left[X \mid \mathcal{F}_{t}\right] & =E_{Q}\left[\left.\left(\frac{1}{T} \int_{0}^{T} S_{u} \mathrm{~d} u-K\right)_{+}\right|_{\mathcal{F}}\right] \\
& =S_{t} E_{Q}\left[\left(\frac{1}{T} \int_{t}^{T} \frac{S_{u}}{S_{t}} \mathrm{~d} u+x\right)_{+}\right]_{x=\frac{v_{t}-K}{s_{t}}} \\
& =S_{t} \phi\left(t, \frac{U_{t}}{S_{t}}\right)
\end{aligned}
$$

where $U_{t}:=V_{t}-K$ and $\phi(t, x):=E_{Q}\left[\left(\frac{1}{T} \int_{t}^{T} \frac{S_{u}}{S_{t}} \mathrm{~d} u+x\right)_{+}\right]$is a deterministic function. Hence,

$$
G\left(t, S_{t}, V_{t}\right)=\frac{B_{t}}{B_{T}} S_{t} \phi\left(t, \frac{U_{t}}{S_{t}}\right)
$$

In order to obtain this price function we can solve the PIDE

$$
\begin{aligned}
& D_{0} G\left(t, x_{1}, x_{2}\right)+\frac{1}{T} x_{1} D_{2} G\left(t, x_{1}, x_{2}\right)+r_{t} x_{1} D_{1} G\left(t, x_{1}, x_{2}\right) \\
& +\frac{1}{2} c_{t}^{2} x_{1}^{2} D_{1}^{2} G\left(t, x_{1}, x_{2}\right)+\mathcal{D} G\left(t, x_{1}, x_{2}\right)=r_{t} G\left(t, x_{1}, x_{2}\right) \\
& G\left(T, x_{1}, x_{2}\right)=\left(x_{2}-K\right)_{+}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{D} G\left(t, x_{1}, x_{2}\right):= \\
& \left.\int_{-\infty}^{+\infty}\left(F\left(t, x_{1}(1+y), x_{2}\right)\right)-G\left(t, x_{1}, x_{2}\right)-x_{1} y D_{1} G\left(t, x_{1}, x_{2}\right)\right) \bar{\nu}_{t}(\mathrm{~d} y) .
\end{aligned}
$$

In terms of the function $\phi(t, x)$ the PIDE can be written as

$$
\begin{aligned}
& \frac{\partial}{\partial t} \phi(t, x)+\left(\frac{1}{T}-r_{t} x\right) \frac{\partial}{\partial x} \phi(t, x)+\frac{c_{t}^{2} x^{2}}{2} \frac{\partial^{2}}{\partial x^{2}} \phi(t, x)+r_{t} \phi(t, x) \\
& +\int_{-1}^{\infty}\left((1+y)\left(\phi\left(t, \frac{x}{1+y}\right)-\phi(t, x)\right)+y x \frac{\partial}{\partial x} \phi(t, x)\right) \bar{\nu}_{t}(\mathrm{~d} y)=0 \\
& \phi(T, x)=x_{+}
\end{aligned}
$$

Then the hedging portfolio in terms of the power-jump assets is given by

$$
\begin{gathered}
\phi_{t}^{1}=\frac{B_{t}}{B_{T}}\left[\phi\left(t, \frac{U_{t-}}{S_{t-}}\right)-\frac{V_{t-}}{S_{t-}} D_{1} \phi\left(t, \frac{U_{t-}}{S_{t-}}\right)\right] \\
\phi_{t}^{i}=\frac{B_{t}}{B_{T}} \frac{S_{t-}^{i} D_{1}^{i}\left(S_{t} \phi\left(t, \frac{U_{t}}{S_{t}}\right)\right)}{i!}, \quad i \geq 2
\end{gathered}
$$

Fixed a structure preserving martingale measure Q, we are going to solve the portfolio optimization problem in the market M_{Q} by using the "martingale method". Given an initial wealth $w_{0}>0$ and an utility function U we want to find the optimal terminal wealth \mathcal{W}_{T}, that is, the value of \mathcal{W}_{T} that maximizes $E_{P}\left(U\left(\mathcal{W}_{T}\right)\right)$ and can be replicated by a portfolio with initial value w_{0}.

Definition

A utility function is a mapping $U: \mathbb{R} \rightarrow \mathbb{R} \cup\{-\infty\}$ which is strictly increasing, continuous on $\{U>-\infty\}$, of class C^{∞}, strictly concave on the interior of $\{U>-\infty\}$ and satisfies

$$
U^{\prime}(\infty):=\lim _{x \rightarrow \infty} U^{\prime}(x)=0
$$

Denoting by $\operatorname{dom}(U)$ the interior of $\{U>-\infty\}$, we shall consider only two cases:

Case

$\operatorname{dom}(U)=(0, \infty)$ in which case U satisfies

$$
U^{\prime}(0):=\lim _{x \rightarrow 0^{+}} U^{\prime}(x)=\infty
$$

Case

$\operatorname{dom}(U)=\mathbb{R}$ in which case U satisfies

$$
U^{\prime}(-\infty):=\lim _{x \rightarrow-\infty} U^{\prime}(x)=\infty
$$

Typical examples for the first case are the so-called HARA utilities $U(x)=\frac{x^{1-p}}{1-p}$ for $p \in \mathbb{R}_{+} \backslash\{0,1\}$, and the logarithmic utility $U(x)=\log (x)$. A typical example for the second case is $U(x)=-\frac{1}{\alpha} e^{-\alpha x}$.

The corresponding Lagrangian to this optimization problem is
$E_{P}\left(U\left(\mathcal{W}_{T}\right)\right)-\lambda_{T} E_{Q}\left(\frac{\mathcal{W}_{T}}{B_{T}}-w_{0}\right)=E_{P}\left(U\left(\mathcal{W}_{T}\right)-\lambda_{T}\left(\frac{\mathrm{~d} Q_{T}}{\mathrm{~d} P_{T}} \frac{\mathcal{W}_{T}}{B_{T}}-w_{0}\right)\right)$
Then, the optimal terminal wealth is given by

$$
\mathcal{W}_{T}=\left(U^{\prime}\right)^{-1}\left(\frac{\lambda_{T}}{B_{T}} \frac{\mathrm{~d} Q_{T}}{\mathrm{~d} P_{T}}\right),
$$

where λ_{T} is the solution of the equation

$$
E_{Q}\left[\frac{1}{B_{T}}\left(U^{\prime}\right)^{-1}\left(\frac{\lambda_{T}}{B_{T}} \frac{\mathrm{~d} Q_{T}}{\mathrm{~d} P_{T}}\right)\right]=w_{0} .
$$

Consider $U(x)=\frac{x^{1-p}}{1-p}$ with $p \in \mathbb{R}_{+} \backslash\{0,1\}$. Then we have

$$
\mathcal{W}_{T}=w_{0} B_{T} \frac{\left(\frac{\mathrm{~d} P_{T}}{\mathrm{~d} Q_{T}}\right)^{\frac{1}{\rho}}}{E_{Q}\left(\left(\frac{\mathrm{~d} P_{T}}{\mathrm{~d} Q_{T}}\right)^{\frac{1}{\rho}}\right)}=w_{0} B_{T} \frac{\left(\xi_{T}\right)^{-\frac{1}{\rho}}}{E_{Q}\left(\left(\xi_{T}\right)^{-\frac{1}{\rho}}\right)} .
$$

where, under some mild conditions on $H(x, t)$,

$$
\begin{aligned}
\xi_{t} & =\exp \left(\int_{0}^{t} G_{s} c_{s} \mathrm{~d} \bar{W}_{s}+\frac{1}{2} \int_{0}^{t} G_{s}^{2} c_{s}^{2} \mathrm{~d} s+\int_{0}^{t} \int_{-\infty}^{+\infty} \log H(s, x) \bar{M}(\mathrm{~d} s, \mathrm{~d} x)\right. \\
& \left.-\int_{0}^{t} \int_{-\infty}^{+\infty}(H(s, x)-1-H(s, x) \log H(s, x)) \nu_{s}(\mathrm{~d} x) \mathrm{d} s\right) .
\end{aligned}
$$

It is easy to see that the value of the optimal portfolio at time t is just the optimal wealth at time t, then

$$
\begin{aligned}
& \mathrm{d} \tilde{\mathcal{W}}_{t}=\tilde{\mathcal{W}}_{t-}\left(-\frac{G_{t} c_{t}}{p} \mathrm{~d} \bar{W}_{t}+\int_{-\infty}^{+\infty}\left(e^{-\frac{1}{p} \log H(t, x)}-1\right) \bar{M}(\mathrm{~d} t, \mathrm{~d} x)\right) \\
& =\tilde{\mathcal{W}}_{t-}\left(-\frac{G_{t} \mathrm{~d} \tilde{S}_{t}}{p} \frac{\tilde{S}_{t-}}{\tilde{S}_{t-\infty}}+\int_{-\infty}^{+\infty}\left(\frac{1}{H(t, x)^{1 / p}}-1+\frac{G_{t}}{p} x\right) \bar{M}(\mathrm{~d} t, \mathrm{~d} x)\right)
\end{aligned}
$$

then

$$
\frac{\phi_{t}^{1} S_{t-}}{\mathcal{W}_{t-}}=-\frac{G_{t}}{p}
$$

and we have an optimal portfolio only based in bonds and stocks if and only if

$$
\begin{gathered}
H(t, y)=\frac{1}{\left(1-\left(G_{t} / p\right) y\right)^{p}}, \text { with } \\
G_{t} c_{t}^{2}+a_{t}-r_{t}+\int_{-\infty}^{\infty} x\left(\frac{1}{\left(1-\left(G_{t} / p\right) x\right)^{p}}-1\right) \nu_{t}(\mathrm{~d} x)=0
\end{gathered}
$$

If another, structure preserving martingale, is chosen by the market, then the optimal portfolio will contain derivatives that, in terms of the power assets, will be given by
where we assume also that, fixed $t, H(t, y)$ is an analytic function and that

$$
\sum_{i=2}^{\infty} \frac{\left|m_{t}\right|_{i}}{i!} \frac{\partial^{i}}{\partial y^{i}} \frac{1}{H(t, y)_{\mid y=0}}<\infty
$$

for all $0 \leq t \leq T$, where

$$
\left|m_{t}\right|_{i}=\int_{-\infty}^{+\infty}|y|^{i} \bar{\nu}_{t}(\mathrm{~d} y)
$$

In order to replicate \mathcal{W}_{T} we need to know its price process function and this depends on the utility considered:

$$
E_{Q}\left[\left.\frac{B_{t}}{B_{T}}\left(U^{\prime}\right)^{-1}\left(\frac{\lambda_{T}}{B_{T}} \xi_{T}\right) \right\rvert\, \mathcal{F}_{t}\right]
$$

Suppose now that the utility function verifies

$$
\left(U^{\prime}\right)^{-1}(x y)=a_{1}(x)\left(U^{\prime}\right)^{-1}(y)+a_{2}(x), \text { for any } x, y \in(0, \infty),
$$

for certain C^{∞} functions $a_{1}(x), a_{2}(x)$. Then, it is easy to see that the price function of \mathcal{W}_{T} verifies

$$
E_{Q}\left[\left.\frac{B_{t}}{B_{T}} \mathcal{W}_{T} \right\rvert\, \mathcal{F}_{t}\right]=\varphi(t, T) \mathcal{W}_{t}+\chi(t, T)
$$

Lemma

$\left(U^{\prime}\right)^{-1}(x y)=a_{1}(x)\left(U^{\prime}\right)^{-1}(y)+a_{2}(x)$, for any $x, y \in(0, \infty)$ if and only if $\frac{U^{\prime \prime}(x)}{U^{\prime \prime}(x)}=a x+b$, for any $x \in \operatorname{dom}(U)$, for some $a, b \in \mathbb{R}$.

These utility functions include HARA and exponential utilities as particular cases. For these class of utility functions we can obtain similar results

In fact if $U^{\prime}(x) / U^{\prime \prime}(x)=a x+b$ and

$$
E_{Q}\left(\left.\frac{B_{t}}{B_{T}} \right\rvert\, \mathcal{F}_{T}\right)=\varphi(t, T) \mathcal{W}_{t}+\chi(t, T)
$$

then

$$
\begin{aligned}
\phi_{t}^{1} & =G_{t} \frac{\varphi(t, T)\left(a \mathcal{W}_{t-}+b\right)}{S_{t-}} \\
\phi_{t}^{i} & =\frac{\varphi(t, T)}{i!B_{t}} \frac{\partial^{i}}{\partial y^{i}}\left(\left(U^{\prime}\right)^{-1}\left(U^{\prime}\left(\mathcal{W}_{t-}\right) H(t, y)\right)\right)_{\mid y=0}, \quad i \geq 2
\end{aligned}
$$

Balland，P．（2002）Deterministic implied volatility models． Quantitative Finance 2：31－44．
䍰 Corcuera，J．M．，Guerra（2007）Dynamic complex hedging in additive markets．Preprint IMUB，393．Barcelona，July 2007. Avalaible at http：／／www．imub．ub．es／publications／preprints／index2007．html．

嗇 Corcuera，J．M．，Nualart，D．，Schoutens，W．（2005） Completion of a Lévy Market by Power－Jump－Assets．Finance and Stochastics 9（1），109－127．
庫 Corcuera，J．M．，Guerra，J．，Nualart，D．，Schoutens，W． （2006）Optimal investment in a Lévy Market．Applied Mathematics and Optimization 53，279－309．

