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Hedging in an additive model The Market model

Our market model, denoted by M, will be a (stochastic)
exponential additive model consisting of a riskfree bond
B = {Bt , t ≥ 0}, where Bt = exp(

∫ t
0 rsds), with rs deterministic,

and a risky stock S = {St , t ≥ 0} which verifies

dSt

St−
= dZt , S0 > 0, (1)

where Z is a natural additive process with local characteristics
(with respect to the Lebesgue measure)

(
c2

t , νt , γt
)
.

Except when (Zt) is a Brownian motion or a Poisson process, the
above described models are incomplete: contingent claims
cannot, in general, be hedged by a self-financing portfolio. This is
equivalent to the fact that there are many equivalent "martingale
measures": probability measures (equivalent to the original one)
under which the discounted stock values are martingales.

José M. Corcuera (University of Barcelona) 3 / 45



fblanc1

Hedging in an additive model The Market model

Our market model, denoted by M, will be a (stochastic)
exponential additive model consisting of a riskfree bond
B = {Bt , t ≥ 0}, where Bt = exp(

∫ t
0 rsds), with rs deterministic,

and a risky stock S = {St , t ≥ 0} which verifies

dSt

St−
= dZt , S0 > 0, (1)

where Z is a natural additive process with local characteristics
(with respect to the Lebesgue measure)

(
c2

t , νt , γt
)
.

Except when (Zt) is a Brownian motion or a Poisson process, the
above described models are incomplete: contingent claims
cannot, in general, be hedged by a self-financing portfolio. This is
equivalent to the fact that there are many equivalent "martingale
measures": probability measures (equivalent to the original one)
under which the discounted stock values are martingales.

José M. Corcuera (University of Barcelona) 3 / 45



fblanc1

Hedging in an additive model The Market model

From the Lévy-Itô decomposition, one can assume that Z in (1) can
be written as

Zt =

∫ t

0
csdWs + Xt , (2)

where W = {Wt , t ∈ [0, T ]} is a standard Brownian motion and
X = {Xt , t ∈ [0, T ]} is a jump process independent of W . Moreover,
the jump part is given by

Xt =

∫
{s∈(0,t],|x |<1}

x (J(ds, dx)− νs(dx)ds) (3)

+

∫
{s∈(0,t],|x |≥1}

xJ(ds, dx) +

∫ t

0
γsds, (4)

where J(dt ,dx) is a Poisson random measure on [0, T ]× R\{0} with
intensity measure νt (dx) dt
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Hedging in an additive model The Market model

We assume that the family of Lévy measures {νt}t∈[0,T ] satisfies, for
some ε > 0 and λ > 0,

sup
t∈[0,T ]

∫
(−ε,ε)c

exp(λ|x |)νt(dx) < ∞. (5)

As a consequence of this assumption, it is easy to show that∫ +∞

−∞
|x |i νt(dx) < ∞

for all i ≥ 2 and all t ∈ [0, T ].
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Hedging in an additive model The Market model

Moreover, with these assumptions, the Doob decomposition of X , in
terms of a martingale part and a predictable process of finite variation,
is given by

Xt = Lt +

∫ t

0
asds,

where L = {Lt , t ≥ 0} is a martingale and EP [Xt ] =
∫ t

0 asds.
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Hedging in an additive model The Market model

If we denote M(dt ,dx) = J(dt ,dx)−dtνt(dx) the martingale part of X
can be written in terms of the compensated Poisson random measure
M(dt ,dx) as

Lt =

∫ t

0

∫ +∞

−∞
xM(ds, dx).
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Hedging in an additive model The Market model

So, in our case the Lévy-Itô decomposition is

Zt =

∫ t

0
csdWs +

∫ t

0

∫ +∞

−∞
xM(ds, dx) +

∫ t

0
asds
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Hedging in an additive model The stock price formula

Using Itô’s formula for semimartingales one can show that Equation (1)
has the solution

St = S0 exp
(

Zt −
1
2

∫ t

0
c2

s ds
) ∏

0<s≤t

(1 + ∆Zs) exp(−∆Zs). (6)

In order to ensure that St > 0 for all t ≥ 0 a.s., we require that
∆Zt > −1 for all t . Hence, we shall assume that the family of Lévy
measures {νt}t∈[0,T ] is supported on (−1,+∞).
It is interesting to note that we can also write:

St = S0 exp(Z̄t),

where

Z̄t =

∫ t

0
csdWs +

∫ t

0

∫ +∞

−∞
log(1 + x)M(ds, dx)

+

∫ t

0
(as −

c2
s
2

)ds +

∫ t

0

∫ +∞

−∞
(log(1 + x)− x)νs(dx)ds.
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Hedging in an additive model The stock price formula

So, stochastic exponential models are the same as usual exponential
models. They are simply two ways of expressing the same model.
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Hedging in an additive model Equivalent Martingale Measures

We look for structure preserving, P-equivalent, martingale measures
Q. Under these probabilities Z remains an additive process, the
process S̃ = {S̃t = exp(−

∫ t
0 rsds)St , 0 ≤ t ≤ T} is a Q-martingale and

Q and P are equivalent.

We have the following results,
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Hedging in an additive model Equivalent Martingale Measures

Theorem

Let Z = {Zt , 0 ≤ t ≤ T} be an additive process with local
characteristics

(
c2

t , νt , γt
)
. Then, if there is a probability measure Q

equivalent to P, such that Z is a Q-(natural) additive process with local
characteristics (with respect to the Lebesgue measure)

(
c̄2

t , ν̄t , γ̄t
)

we
have:

(i) ν̄t(dx) = H(t , x)νt(dx) for some Borel function
H(t , x) : R+ × R → (0,∞).

(ii) γ̄t = γt +
∫ +∞
−∞ x1{|x |<1}(H(t , x)− 1)νt(dx) + Gtc2

t for some Borel
function Gt : R+ → (0,∞).

(iii) c̄t = ct .

for every 0 ≤ t ≤ T .
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Hedging in an additive model Equivalent Martingale Measures

Theorem
Suppose that we are in the conditions of the previous theorem, then
the density process {dQt

dPt
= ξt , 0 ≤ t ≤ T} is given by

ξt = exp
(∫ t

0
GscsdWs −

1
2

∫ t

0
G2

sc2
s ds

+ lim
ε→0

(∫ t

0

∫
|x |>ε

log H(s, x)J (dt , dx)−
∫ t

0

∫
|x |>ε

(H(s, x)− 1)νs(dx)ds

))
,

(7)

with EP [ξt ] = 1, for every t ∈ [0, T ]. The convergence on the right-hand
side of (7) is uniform in t on any bounded interval, P-a.s.
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Hedging in an additive model Equivalent Martingale Measures

The previous theorems imply that the process W̄ = {W̄t , 0 ≤ t ≤ T}
with

W̄t = Wt −
∫ t

0
Gscsds

is a Brownian motion under Q and also, if νt and ν̄t verify the
moment-condition (5), the process X is a jump additive process
process with Q-Doob-Meyer decomposition

Xt = L̄t +

∫ t

0
asds +

∫ t

0

∫ +∞

−∞
x(H(s, x)− 1)ν(dx)ds,

where L̄ = {L̄t , 0 ≤ t ≤ T} is a Q-martingale and where
ν̄t(dx) = H(t , x)νt(dx) ∀0 ≤ t ≤ T .
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Hedging in an additive model Equivalent Martingale Measures

Now, we want to find an equivalent martingale measure Q under which
the discounted price process S̃ is a martingale. Observing that
∆Lt = ∆L̄t , we have from (6) that

S̃t = S0 exp
(∫ t

0
csdW̄s + L̄t +

∫ t

0

(
as − rs + Gsc2

s −
c2

s
2

)
ds
)

× exp
(∫ t

0

∫ +∞

−∞
x(H(s, x)− 1)νs(dx)

)
ds

∏
0<s≤t

(1 + ∆L̄s) exp(−∆L̄s).

Then a necessary and sufficient condition for S̃ to be a Q-martingale is
Gt and H(t , x) to verify

Gtc2
t + at − rt +

∫ +∞

−∞
x(H(t , x)− 1)νt(dx) = 0.

0 ≤ t ≤ T . Note that,

Zt =

∫ t

0
csdW̄s + L̄t +

∫ t

0
rsds

José M. Corcuera (University of Barcelona) 15 / 45



fblanc1

Hedging in an additive model Power-Jump Processes

The following transformations of Z = {Zt , t ≥ 0} will play an important
role in our analysis. We set

Z (i)
t =

∑
0<s≤t

(∆Zs)
i , i ≥ 2,

where ∆Zs = Zs − Zs−. Define the Q-martingales

H(i)
t = Z (i)

t − EQ(Z (i)
t ), i = 1, 2, . . . ,

with Z (1)
t = Zt . We have the following result

Theorem (Nualart-Schoutens-Balland)
Any Q-square-integrable martingale Mt can be expressed as

Mt = M0 +
∞∑

k=1

∫ t

0
βn

s dH̄(n)
s

where H̄(n)
s are the orthogonal version of the H(n) defined previously

and the β i are predictable processes.
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Hedging in an additive model Power-Jump Processes

Following Corcuera et al.(2005), we complete our market, M, with a
series of additional assets, Y (i) = {Y (i)

t , t ≥ 0}, based on the above
mentioned processes:

Y (i)
t = e

∫ t
0 rsdsH(i)

t , i ≥ 2.

We shall call them "power-jump" assets.

Theorem

The market model, MQ, obtained by enlarging the market M with the
power-jump assets is complete, in the sense that any
square-integrable contingent claim X ∈ L2(Q) can be replicated by an
(admissible) self-financing portfolio.
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Hedging in an additive model Power-Jump Processes

Let X be a square-integrable (with respect to Q) contingent claim.
Consider the squared-integrable martingale Mt := E(e−

∫ T
0 rsdsX |Ft).

By the previous theorem we can write

dMt =
∞∑

k=1

βn
t dH̄(n)

t

= β1
t

dS̃t

S̃t−
+

∞∑
k=2

βk
t dỸ (k)

t
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Hedging in an additive model Power-Jump Processes

Then if we take a self-financing portfolio: ((φi
t)i≥1)0≤t≤T , where φ1

denotes the number of units of the stock, and (φi)i≥2 the number of
jump-power assets of different order, we will have that the discounted
value of this portfolio evolves as

dṼt = φ1
t dS̃t +

∞∑
k=2

φn
t dỸ (n)

t .

So, by taking φ1
t =

β1
t

S̃t−
and φi

t = β i
t we obtain the replicating portfolio.
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Hedging in an additive model Power-Jump Processes

In certain cases we can obtain hedging formulas directly, by using the
Itô formula. In fact assume that the discounted price of the option at
time t can be written as F̃ (s, Ss), F smooth, then by the Itô formula

dF̃ (s, Ss)

=
∂F
∂Ss

dS̃s

+

∫ +∞

−∞

(
F̃ (s, Ss−(1 + y))− F̃ (s, Ss−)− yS̃s−

∂F̃
∂S̃s

)
M̄(ds, dy)

where M̄(dt , dy) = J(dt , dy)− dt ν̄t(dy)
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Hedging in an additive model Power-Jump Processes

Then if we assume now that F̃ (s, Ss−(1 + y)) can be expanded as a
series of powers in y we have

dF̃ (s, Ss)

=
∂F
∂Ss

dS̃s +

∫ +∞

−∞

∑
k≥2

1
k !

∂k F̃
∂yk

|y=0
ykM̄(ds, dy)

=
∂F
∂Ss

dS̃s +
∑
k≥2

1
k !

∂k F̃
∂yk

|y=0
dỸ (k)

s
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Hedging in an additive model Power-Jump Processes

For instance, consider derivatives with payoff Sk
T , k ≥ 2. Then its

discounted price will be given by

F̃ (k)(t , St) = e−
∫ T

0 rsdsEQ(Sk
T |Ft) = e−

∫ T
0 rsdsSk

t EQ

((
ST

St

)k

|Ft

)

= e−
∫ T

0 rsdsSk
t EQ

((
ST

St

)k
)

= ϕ(k)(t , T )Sk
t
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Hedging in an additive model Power-Jump Processes

Then this derivative can be replicated by using the power-jump assets

dF̃ (k)(t , St) =
kF (k)(t , St−)

St−
dS̃t +

k∑
i=2

F̃ (k)(t , St−)

(
k
i

)
dỸ (i)

t .
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Hedging in an additive model Power-Jump Processes

Define F̃ (1)(t , St) = S̃t , and since:

dỸ (1)
t =

dS̃t

S̃t−
,

we can write

dF̃ (k)(t , St) =
k∑

i=1

e−
∫ t

0 rsdsF (k)(t , St−)

(
k
i

)
dỸ (i)

t

and

dỸ (k)
t =

k∑
i=1

(
k
i

)
(−1)k−i 1

F̃ (i)(t , St−)
dF̃ (i)(t , St).
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Hedging in an additive model Power-Jump Processes

Moreover if we want to hedge in terms of options we can use the
equality:

EQ(e−
∫ T

0 rsds)f (ST )|Ft) = e−
∫ T

0 rsdsf (0) + f ′(0)S̃t +

∫ ∞

0
f
′′
(K )C̃t(K )dK

where C̃t(K ) := e−
∫ T

0 rsdsEQ((ST − K )+|Ft) and f is any smooth
function. This formula provides a static hedge of the payoff f (ST ).
Then, for k ≥ 2,

dF̃ (k)(t , St)

=

∫ ∞

0
k(k − 1)K k−2dC̃t(K )dK
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Hedging in an additive model Power-Jump Processes

Theorem
The market M, enlarged with call options with the same maturity T and
different strikes is a complete market.
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Hedging in an additive model Power-Jump Processes

We know that (Y (i)
t ), i ≥ 1 is a total set of assets, then form any

X ∈ L2(Q) we have that the discounted value of the replicating
portfolio, say Ṽt can be written as

dṼt = lim
m

m∑
k=1

φ
(k ,m)
s dỸ (k)

s

= lim
m

m∑
k=1

k∑
i=1

(
k
i

)
φ

(k ,m)
s (−1)k−i 1

F̃ (i)(t , St−)
dF̃ (i)(t , St)

= lim
m

m∑
k=1

kφ
(k ,m)
s (−1)k−1 1

S̃t−
dS̃t

+ lim
m

m∑
k=2

k∑
i=2

(
k
i

)
φ

(k ,m)
s (−1)k−i

∫∞
0 K i−2dC̃t(K )dK∫∞
0 K i−2C̃t(K )dK
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Hedging in an additive model Power-Jump Processes

In some special cases this simplifies to

dṼt =
dF
dSt |St=0

dS̃t

+
∞∑

k=2

diF
dSi

t |St=0

∫∞
0 K i−2dC̃t(K )dK∫∞
0 K i−2C̃t(K )dK

where F is the price function of the derivative.
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Hedging in an additive model Example

Consider an Asian option struck at K , that is an option with payoff

X =

(
1
T

∫ T

0
Sudu − K

)
+

.

in an additive market where Bt = e
∫ t

0 rsds. Then the price process is

G(t , St , Vt) =
Bt

BT
EQ [X |Ft ] ,

where Vt := 1
T

∫ t
0 Sudu and X = (VT − K )+. In fact, we have

EQ [X |Ft ] = EQ

[(
1
T

∫ T

0
Sudu − K

)
+

∣∣∣∣∣Ft

]

= StEQ

[(
1
T

∫ T

t

Su

St
du + x

)
+

]
x=

Vt−K
St

= Stφ

(
t ,

Ut

St

)
,
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Hedging in an additive model Example

where Ut := Vt − K and φ (t , x) := EQ

[(
1
T

∫ T
t

Su
St

du + x
)

+

]
is a

deterministic function. Hence,

G(t , St , Vt) =
Bt

BT
Stφ

(
t ,

Ut

St

)
.
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Hedging in an additive model Example

In order to obtain this price function we can solve the PIDE

D0G(t , x1, x2) +
1
T

x1D2G(t , x1, x2) + rtx1D1G(t , x1, x2)

+
1
2

c2
t x2

1 D2
1G(t , x1, x2) +DG(t , x1, x2) = rtG(t , x1, x2),

G(T , x1, x2) = (x2 − K )+ .

where

DG (t , x1, x2) :=∫ +∞

−∞
(F (t , x1 (1 + y) , x2))−G(t , x1, x2)− x1yD1G(t , x1, x2)) ν̄t (dy) .
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Hedging in an additive model Example

In terms of the function φ (t , x) the PIDE can be written as

∂

∂t
φ (t , x) +

(
1
T
− rtx

)
∂

∂x
φ (t , x) +

c2
t x2

2
∂2

∂x2 φ (t , x) + rtφ (t , x)

+

∫ ∞

−1

(
(1 + y)

(
φ

(
t ,

x
1 + y

)
− φ (t , x)

)
+ yx

∂

∂x
φ (t , x)

)
ν̄t(dy) = 0,

φ (T , x) = x+.
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Hedging in an additive model Example

Then the hedging portfolio in terms of the power-jump assets is given
by

φ1
t =

Bt

BT

[
φ

(
t ,

Ut−
St−

)
− Vt−

St−
D1φ

(
t ,

Ut−
St−

)]

φi
t =

Bt

BT

Si
t−Di

1

(
Stφ

(
t , Ut

St

))
i!

, i ≥ 2.
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Portfolio optimization

Fixed a structure preserving martingale measure Q, we are going to
solve the portfolio optimization problem in the market MQ by using the
"martingale method". Given an initial wealth w0 > 0 and an utility
function U we want to find the optimal terminal wealth WT , that is, the
value of WT that maximizes EP(U(WT )) and can be replicated by a
portfolio with initial value w0.
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Portfolio optimization Utility functions

Definition
A utility function is a mapping U : R → R ∪ {−∞} which is strictly
increasing, continuous on {U > −∞}, of class C∞, strictly concave on
the interior of {U > −∞} and satisfies

U ′(∞) := lim
x→∞

U ′(x) = 0.

Denoting by dom(U) the interior of {U > −∞}, we shall consider
only two cases:
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Portfolio optimization Utility functions

Case

dom(U) = (0,∞) in which case U satisfies

U ′(0) := lim
x→0+

U ′(x) = ∞.

Case

dom(U) = R in which case U satisfies

U ′(−∞) := lim
x→−∞

U ′(x) = ∞.

Typical examples for the first case are the so-called HARA utilities
U(x) = x1−p

1−p for p ∈ R+\{0, 1}, and the logarithmic utility
U(x) = log(x). A typical example for the second case is
U(x) = − 1

αe−αx .
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Portfolio optimization Optimal wealth

The corresponding Lagrangian to this optimization problem is

EP(U(WT ))−λT EQ

(
WT

BT
− w0

)
= EP

(
U(WT )− λT

(
dQT

dPT

WT

BT
− w0

))
.

Then, the optimal terminal wealth is given by

WT =
(
U ′)−1

(
λT

BT

dQT

dPT

)
,

where λT is the solution of the equation

EQ

[
1

BT

(
U ′)−1

(
λT

BT

dQT

dPT

)]
= w0.
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Portfolio optimization Example

Consider U(x) = x1−p

1−p with p ∈ R+ \ {0, 1}. Then we have

WT = w0BT

(
dPT
dQT

) 1
p

EQ

((
dPT
dQT

) 1
p
) = w0BT

(ξT )
− 1

p

EQ

(
(ξT )

− 1
p

) .

where, under some mild conditions on H(x , t),

ξt = exp
(∫ t

0
GscsdW̄s +

1
2

∫ t

0
G2

sc2
s ds +

∫ t

0

∫ +∞

−∞
log H(s, x)M̄ (ds, dx)

−
∫ t

0

∫ +∞

−∞
(H(s, x)− 1− H(s, x) log H(s, x))νs(dx)ds

)
.
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Portfolio optimization Example

It is easy to see that the value of the optimal portfolio at time t is just
the optimal wealth at time t , then

dW̃t = W̃t−

(
−Gtct

p
dW̄t +

∫ +∞

−∞
(e−

1
p log H(t ,x) − 1)M̄ (dt , dx)

)
= W̃t−

(
−Gt

p
dS̃t

S̃t−
+

∫ +∞

−∞
(

1
H(t , x)1/p − 1 +

Gt

p
x)M̄ (dt , dx)

)
then

φ1
t St−
Wt−

= −Gt

p
;

and we have an optimal portfolio only based in bonds and stocks if and
only if

H(t , y) =
1

(1− (Gt/p)y)p , with

Gtc2
t + at − rt +

∫ ∞

−∞
x
(

1
(1− (Gt/p)x)p − 1

)
νt(dx) = 0.
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Portfolio optimization Example

If another, structure preserving martingale, is chosen by the market,
then the optimal portfolio will contain derivatives that, in terms of the
power assets, will be given by

φi
t =

Wt−
i!Bt

∂i

∂yi

1
H(t , y) |y=0

, i ≥ 2

where we assume also that, fixed t , H(t , y) is an analytic function and
that

∞∑
i=2

|mt |i
i!

∂ i

∂y i
1

H(t , y) |y=0
< ∞,

for all 0 ≤ t ≤ T , where

|mt |i =

∫ +∞

−∞
|y |i ν̄t(dy)
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Portfolio optimization A class of utility functions

In order to replicate WT we need to know its price process function
and this depends on the utility considered:

EQ

[
Bt

BT

(
U ′)−1

(
λT

BT
ξT

)
|Ft

]
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Portfolio optimization A class of utility functions

Suppose now that the utility function verifies

(U ′)−1(xy) = a1(x)(U ′)−1(y) + a2(x), for any x , y ∈ (0,∞),

for certain C∞ functions a1(x), a2(x). Then, it is easy to see that the
price function of WT verifies

EQ

[
Bt

BT
WT |Ft

]
= ϕ(t , T )Wt + χ(t , T )
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Portfolio optimization A class of utility functions

Lemma

(U ′)−1(xy) = a1(x)(U ′)−1(y) + a2(x), for any x , y ∈ (0,∞) if and only
if U′(x)

U′′(x) = ax + b, for any x ∈ dom(U), for some a, b ∈ R.

These utility functions include HARA and exponential utilities as
particular cases. For these class of utility functions we can obtain
similar results
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Portfolio optimization A class of utility functions

In fact if U ′(x)/U ′′(x) = ax + b and

EQ(
Bt

BT
|FT ) = ϕ(t , T )Wt + χ(t , T ),

then

φ1
t = Gt

ϕ(t , T )(aWt− + b)

St−

φi
t =

ϕ(t , T )

i!Bt

∂ i

∂y i

(
(U ′)−1(U ′(Wt−)H(t , y))

)
|y=0

, i ≥ 2
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