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1. Motivation

• Deficiencies of the copula approach:

1. Unable to explain market quotes: correlation structure imposed exogenously and in a arbi-
trary fashion.

2. Inconsistency across time/maturities.

3. Lack of dynamics: not suitable to price exotic products such as option on tranche spreads.

• Ideally we would like to employ a model which is:

1. Flexible enough to fit market data (i.e. calibrate to standard tranche spreads across the
capital structure and all liquid maturities).

2. Dynamically consistent.

3. Tractable and computationally efficient.

• The key idea behind the dynamic approach developed by Di Graziano and Rogers is to use a
stochastic process (and not a random variable as in the traditional factor model approach) to
drive the common dynamics of the various credits in the portfolio.

• In order to retain tractability and computational efficiency the process chosen to drive the portfolio
common dynamics is a continuous time Markov chain.



2. . . . Some standard result about continuous time Markov
chains

• Let (ξt)t≥0 be a continuous time K-dimensional, Markov chain with infinitesimal generator Q
taking values in the set K ≡ {1, 2, . . . ,K}

• Transition probabilities are given by:

Pij(t) ≡ P (ξt+s = j | ξt = i) =
(
eQt
)
ij

(1)

• Since the process ξt takes values in the finite set K, any function of the chain, f : K → R can be
represented as a K-dimensional vector with ith component given by fi ≡ f(i), i.e.

f1

f2

...

...
fK

 (2)

• Let α(ξ) and f(ξ) be K dimensional vectors, and let Jik(t) represent the number of jumps from
state i to state j up to time t. We have that

Vt(ξ) ≡ E

exp

−∫ t

0

α(ξu)du−
∑
i 6=j

wijJij(t)

 f(ξt) | ξ0 = ξ


=

(
eQ̃tf

)
(ξ)



where

Q̃i
jk = Qjj − αj (j = k);

= exp(−wjk)Qjk (j 6= k).



3. Model set up

• The common dynamics of the names in the porfolio are driven by a continuous time, K-
dimensional, Markov chain (ξt)t≥0 with infinitesimal generator (Q-matrix) Q.

• Conditional on the process ξ, i.e. on Fξ
t ≡ σ(ξs, s ≤ t) default times τi are independent.

• The key modeling ingredient of our approach is given by the conditional survival probability of
the single names

qi
t = P

(
τ i ≥ t | F ξ

t

)
= exp

(
−Ci

t

)
, (3)

where Ci
t is some additive functional of the chain of the form

Ci
t =

∫ t

0

λi(ξu)du +
∑
j 6=k

wi
jkJjk(t). (4)

.

• The short rate is assumed to be a function of the chain. The discount factor is given by

B−1
t ≡ exp

(
−
∫ t

0

r(ξu)du

)
. (5)

• The survival probability is given by

qi
t(ξ0) ≡ E

[
1{τ i≥t} | ξ0

]
= exp(tQ̃i)1(ξ0), (6)



where

Q̃i
jk = Qjj − λi

j (j = k); (7)
= Qjk exp(−wjk) (j 6= k). (8)



4. CDS

• The CDS’s Default leg can be calculated explicitly as,

DLT ≡ E
[
B−1

τ ; τ ≤ T
]

(9)

= E

[∫ T

0

{λ(ξu) +
∑

k

Qξukθξuk}B−1
u exp(−Cu)du

]
(10)

= Q̂−1(exp(Q̂T )− I)λ̃(ξ0) (11)

where λ̃i = λi +
∑

k Qikθik.

• The PV01 of the CDS is given by

PLT ≡ E

[∫ T

0

I{τ>u}B
−1
u du

]
=
∫ T

0

exp(uQ̂)1du

= Q̂−1(exp(Q̂T )− I)1(ξ0)

where

Q̂i
jk = Qjj − rj − λi

j (j = k);

= exp(−wi
jk)Qjk (j 6= k).

• The above calculations allow us to calibrate our model to single name CDS and index spreads.



5. Survival correlation

• Default and survival correlations can be calculated explicitly in this model.

• The pairwise joint survival probability of name i and j is

q̃ij
T (ξt) ≡ P (τ i ≥ T, τ j ≥ t | ξt)

= exp(Q̃ij(T − t))(ξt),

where

Q̃ij
kl = Qkk − λi

k − λj
k (k = l);

= exp(−wi
kl − wj

kl)Qkl (k 6= l).

• ...and the survival correlation at time t for maturity T is

ρT (ξt) =
q̃ij
T (ξt)− q̃i

T (ξt)q̃
j
T (ξt)√

q̃i
T (ξt)(1− q̃i

T (ξt))
√

q̃j
T (ξt)(1− q̃j

T (ξt))
(12)

where
q̃i
T (ξt) = exp(Q̃i(T − t))(ξt). (13)

• In this set-up, the survival (default) correlation is a stochastic process driven by ξ. We are in
front of a dynamic correlation approach.

• Note that the correlation of defaults is obtained endogenously from the model, rather than being
exogenously imposed as in the copula approach.



6. Portfolio loss distribution

• We defined the portfolio loss distribution as

Lt ≡
N∑

i=1

`iI{τi≤t}. (14)

• Let now the loss at default of the ith reference entity be given by li = Ai(1−Ri).

• The Laplace transform of the (discounted) loss process is

E exp(−
∫ t

0

r(ξs)ds− αLt) = E exp(−
∫ t

0

r(ξs)ds− α
N∑

i=1

`iI{τi≤t}) (15)

= E

[
exp(−

∫ t

0

r(ξs)ds)
N∏

i=1

E
[
e−α`i1{τi≤t} | Fξ

t

]]
(16)

= E

[
exp(−

∫ t

0

r(ξs)ds)
N∏

i=1

(
(1− qi

t)ζi(α) + qi
t

) ]
(17)

where ζi(α) = Ee−α`i and

qi
t ≡ exp

−∫ t

0

λi(ξu)du−
∑
j 6=k

wi
jkJjk(t)

 . (18)

• Equation (17) allows us to derive the law of Lt and to price a range of multi-name credit derivatives.



7. Computational approaches

• How do we compute (17)?  1. Exact method;
2. Poisson approximation;
3. Monte Carlo.

(19)

• Exact method: multiply out the product on the RHS of (17). The individual terms of the
resulting sum are exponentials of some additive functional of the chain, and can be computed
explicitly. However for large portfolios this method is inefficient as we need to sum over 2N terms.

• Poisson approximation:

• Conditional on the path of the chain, Lt is approximately compound Poisson with parameter

Λt =
N∑

i=1

(
1− exp(−Ci

t)
)
≈

N∑
i=1

Ci
t (20)

• The discounted Laplace transform of Lt can be approximated by

E exp(−
∫ t

0

r(ξs)ds− αL̄t) = E exp

(
−
∫ t

0

r(ξs)ds +
N∑

i=1

(ζi(α)− 1)Ci
t

)
= eQ̄T 1(ξ0),

where

Q̄jk = Qjj − νj (j = k);
= exp(−wjk)Qjk (j 6= k).



where

ν ≡ r +
N∑

i=1

(1− ζi(α))λi

wjk ≡
N∑

i=1

wi
jk

• ...which is a simple and rapid calculation.

• Monte Carlo

• Calculating (17) boils down to simulating the path of the chain up to T , the maturity of the claim:

1. Let i be the current state of the chain. Generate an exponential(1) random variable z,

2. let τ denote the time elapsed from the last jump: set τ = z/qi,

3. if τ ≥ T , stop otherwise go to step 4,.

4. sample ξ(τ) according to probabilities (qij/qi), where j 6= i and j ≤ M ,

5. go to step 1, and set i = ξ(τ).

• It is enough to simulate the paths of the chain once.

• A new simulation is needed only when the generator Q is altered.



8. Pricing synthetic CDOs

• We have now all the ingredients to price a CDO.

• The PV01 of a CDO can be seen as a portfolio of puts Pt(K) on Lt.

PV 01 =
M∑

j=1

∆iE

[
exp

(
−
∫ t

0

r(ξu)du

)
Φ(LTj

)
]

, (21)

where
Φ(x) =

1
L+ − L−

[(
L+ − x

)+ −
(
L− − x

)+]
, (22)

• define...

Pt(K) = E
[
B−1

t (K − Lt)+
]

(23)
(24)

• Instead of computing the Laplace transform of default distribution, we can calculate the transform
of Pt(K) directly, which saves us a (time consuming) numerical integration step

P̂t(α) ≡
∫ ∞

0

e−αxPt(x)dx

=
∫ ∞

Lt

e−αxE
[
B−1

T (x− Lt)
]
dx

=
1
α2

E exp(−
∫ t

0

r(ξu)du− αLt).



• The default leg equals the expected present value of the tranche’s losses

DL = E

[∫ T

0

B−1
u dΞ(Lu)

]
, (25)

where Ξ(x) = 1− Φ(x).

• Integrating by parts we can simplify (25) to

DL = 1 − E
[
B−1

T Φ(LT )
]

− E

[∫ T

0

r(ξu)B−1
u Φ(Lu)du

]

...which can be computed using the results of the previous section.



9. A note on calibration

• How do we choose the functions λi(·), matrices wi and the infinitesimal generator Q?

• ...the market does it for us!!

• λi, wi and Q are used to match volatility CDS quotes and index quotes as well as tranche spreads.

• The number of state of the chain can be adjusted to take into account the availability of market
data.



10. Example: CDX tranche spread calibration

Table 1: Market and model spreads - November 1st
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 35 45 57 36.5 46.23 56.39

0− 3% 2438 4044 5125 2438.4 4008.9 5125
3− 7% 90 209 471 86 222.4 470.8
7− 10% 19 46 112 19.1 45.8 99.7
10− 15% 7 20 53 7 20.4 53.2
15− 30% 3.5 5.75 14 3.5 5.0 14.0
30− 100% 1.73 3.12 4 1.7 2.6 3.8

Table 2: Calibration error - November 1st
Index Traches

Absolute Error 1.11bp 3.77bp
Percentage Error 2.70% 3.47%



Table 3: Market and model spreads - November 2nd
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 34 44 56 34.51 44 53.94

0− 3% 2325 3938 5056 2325 3906 5056
3− 7% 85.5 200 460 84.6 216.8 460
7− 10% 18 45.5 107 18 45.5 101
10− 15% 6.5 19.5 50.5 6.5 19 52.2
15− 30% 3.25 5.25 13.5 3.3 5.3 13.5
30− 100% 1.67 3.04 3.64 1.7 2.4 3.6

Table 4: Calibration error - November 2nd
Index Traches

Absolute Error 0.86bp 3.26bp
Percentage Error 1.73% 2.68%



Table 5: Market and model spreads - November 3th
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 34 44 56 34.6 44.02 53.93

0− 3% 2325 3931 5038 2325 3892.7 5038.5
3− 7% 84.5 200 458.5 84.5 215.7 458
7− 10% 18.5 45.00 107.5 18.4 45 98.7
10− 15% 6.5 19.5 51 6.5 19.1 51.2
15− 30% 3.25 5.25 13.5 3.2 5.2 13.5
30− 100% 1.61 3.06 3.76 1.6 2.4 3.8

Table 6: Calibration error - November 3th
Index Traches

Absolute Error 0.90bp 3.63bp
Percentage Error 1.84% 2.55%



Table 7: Market and model spreads - November 6th
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 33 43 54 34.61 43.88 53.97

0− 3% 2256 3863 4963 2255.9 3794.3 4963.1
3− 7% 77 192 438 77 201.3 438
7− 10% 17 41 98 17 41 93.5
10− 15% 6 18.5 46.5 6 17.1 47
15− 30% 3.13 5.75 12 3.1 5.2 12.8
30− 100% 1.27 2.55 3.23 1.3 2 3.2

Table 8: Calibration error - November 6th
Index Traches

Absolute Error 0.84bp 4.81bp
Percentage Error 2.33% 3.44%



Figure 1: Calibrated portfolio loss density. 5Y Maturity. X axe: Lt, Y axe: density



Figure 2: Calibrated portfolio loss density. 7Y Maturity. X axe: Lt, Y axe: density



Figure 3: Calibrated portfolio loss density. 10Y Maturity. X axe: Lt, Y axe: density



11. What’s next?... Modeling the defaultable equity mar-
ket

• Stock prices can be seen as the expected sum of all future dividends, up to default, appropriately
discounted.

• We assume that the continuous stochastic dividend paid by the firm is given by

dδt

δt
= µ(ξt)dt + σ(ξt)dWt. (26)

• Recall that the conditional probability of survival is given by

qt ≡ P
(
τ > t | Fξ

t

)
= exp

(
−
∫ t

0

λ(ξu)du

)
, (27)

• The stock price at t can be derived as follows

St ≡ Et

[∫ τ

t

B−1
u δudu

]
(28)

= δtv(ξt). (29)

where µ̃ ≡ µ− λ− r and
v(ξ) ≡ −(µ̃ + Q)−11(ξ). (30)



12. Single name equity-credit hybrid options

• The price of a no-default put option with maturity T is given by

PT (k) ≡ E
[
B−1

T

(
ek − es

)+
; τ ≥ T

]
. (31)

where k ≡ log(K) and s ≡ log(ST ).

• The Laplace transform (w.r.t the log-strike) of the no-default put can be computed explicitly

P̂T (η) ≡
∫ ∞

−∞
e−ηkPT (k)dk

=
∫ ∞

−∞
e−ηkE

[
B−1

T

(
ek − es

)+
; τ ≥ T

]
dk

=
δ1−η
0

η(η − 1)
e(Q+zη)T v̂(ξ0)

where v̂(ξ) ≡ v(ξ)1−η for all ξ ∈ {1, . . . , N} and

zη ≡ (1− η)(µ− 1
2
σ2) +

1
2
(1− η)2σ2 − r − λ. (32)

• Remark: The transform of the classical vanilla put can be recovered from the previous calculation
simply by setting the vector λ = 0.
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