Non-Monotone Risk Measures and Monotone Hulls

Damir Filipović
(joint with Michael Kupper)
University of Munich
www.math.Imu.de/~filipo

Mid-Term Conference on Advanced Mathematical Methods for Finance,
Vienna University of Technology,
18 September 2007

Non-Monotone Risk Measures and Monotone Hulls

Damir Filipović
(joint with Michael Kupper)
Vienna Institute of Finance (as of 1 October 2007)

Mid-Term Conference on Advanced Mathematical Methods for Finance,
Vienna University of Technology, 18 September 2007

Overview

- Motivating examples
- Convex monotone cash-invariant functions
- Monotone and cash-invariant hulls
- Examples

Non-Monotone Risk Measures

Suppose the regulator specifies a non-monotone risk measure

$$
\rho: L^{p} \rightarrow(-\infty, \infty]
$$

for the insurance industry to determine the risk capital requirements.

The management may withdraw a positive portion $Z \geq 0$ of the portfolio X without increasing the capital requirement.

How come?

Example: Swiss Solvency Test Risk Measure

Multi-period risk measure

$$
\rho(C)=\operatorname{ES}\left(C_{1}\right)+\gamma \sum_{t=2}^{T} \operatorname{ES}\left(C_{t}-C_{t-1}\right)
$$

where

- $C=\left(C_{0}, C_{1}, \ldots, C_{T}\right)=$ asset-liability value process
- $\mathrm{ES}=$ expected shortfall (at 99% level)
- $\gamma=$ cost of capital spread

Example: let $T=2,0.01<p<0.99$.

$$
\rho(C)=0+\gamma \cdot 1>0
$$

Example: Mean-Variance Risk Measure

Classical framework for asset allocation

$$
\rho(X)=\mathrm{E}[-X]+\frac{\alpha}{2} \operatorname{Var}[X]
$$

Example: Semi-Moment Risk Measure $\rho(X)=\frac{1}{\alpha} \mathbb{E}\left[X_{-}\right]$convex monotone, not cash-invariant

Program

$>$ Characterize convex monotone functions
>Characterize convex cash-invariant functions
> Construct monotone and cash-invariant hulls
$>$ What can we learn from it?
\rightarrow Construct new and rediscover old convex risk measures

Convex functions

$f: L^{p} \rightarrow(-\infty,+\infty]$ convex, $\quad\left(L^{p}\right)^{*}=L^{q}$
The conjugate $f^{*}(\mu):=\sup _{x \in L^{p}}(\langle\mu, x\rangle-f(x))$ is l.s.c. convex.
If f is l.s.c. then $f(x)=\sup _{\mu \in L^{q}}\left(\langle\mu, x\rangle-f^{*}(\mu)\right)$.
$\mu \in \partial f(x):=\left\{\nu \in L^{q} \mid f(y) \geq f(x)+\langle\nu, y-x\rangle\right\}$ (subgradients)
if and only if $f(x)=\langle\mu, x\rangle-f^{*}(\mu)$:

Monotone functions

Polar cone $\left(L_{+}^{p}\right)^{\circ}=L_{-}^{q}$
Definition: f is monotone if $f(X) \leq f(Y)$ for all $X \geq Y$.
Lemma: $f: L^{p} \rightarrow(-\infty,+\infty]$ l.s.c. convex is monotone if and only if $\operatorname{dom}\left(f^{*}\right) \subset L_{-}^{q}$.

Cash-invariant functions

Numeraire ("cash") $\Pi \equiv 1$ (w.l.o.g.)

Definition: f is cash-invariant if $f(x+c \Pi)=f(x)-c, \forall c \in \mathbb{R}$.
Define $\mathcal{D}:=\left\{\mu \in L^{q} \mid\langle\mu, \Pi\rangle=-1\right\} \quad$ (normalized elements)

Lemma: $f: L^{p} \rightarrow(-\infty,+\infty]$ l.s.c. convex is cash-invariant if and only if $\operatorname{dom}\left(f^{*}\right) \subset \mathcal{D}$

Maximal elements

Define

$$
\begin{aligned}
\delta(x \mid \mathcal{C}) & :=\left\{\begin{array}{ll}
0, & x \in \mathcal{C} ; \\
+\infty, & x \notin \mathcal{C} .
\end{array} \text { indicator function of a set } \mathcal{C}\right. \\
\delta^{*}(\mu \mid \mathcal{C}) & =\sup _{x \in \mathcal{C}}\langle\mu, x\rangle=\text { support function of } \mathcal{C}
\end{aligned}
$$

Lemma: Among the l.s.c. convex functions vanishing at $x=0$,

1. $\delta\left(\cdot \mid L_{+}^{p}\right)=\delta^{*}\left(\cdot \mid L_{-}^{q}\right)$ is the greatest monotone;
2. $\delta^{*}(\cdot \mid \mathcal{D})$ is the greatest cash-invariant;
3. $\delta^{*}\left(\cdot \mid L_{-}^{q} \cap \mathcal{D}\right)=-\operatorname{ess} \inf (\cdot)$ is the greatest monotone cashinvariant.

Monotone hulls

Infimal convolution $f \square g(X):=\inf _{Z \in L^{p}} f(X-Z)+g(Z)$

Definition: The monotone hull of f is

$$
f_{L_{+}^{p}}(X):=\inf _{Z \geq 0} f(X-Z)=f \square \delta\left(\cdot \mid L_{+}^{p}\right)(X) .
$$

Theorem: $f_{L_{+}^{p}}$ is monotone with $f_{L_{+}^{p}} \leq f$, and $f_{L_{+}^{p}}=f$ if and only if f is monotone. Moreover, $f_{L_{+}^{p}}^{*}=f^{*}+\delta\left(\cdot \mid L_{-}^{q}\right)$ and $f_{L_{+}^{p}}^{* *}$ is the greatest l.s.c. convex monotone function majorized by f.

Cash-invariant hulls

Lemma: $\delta^{*}(X \mid \mathcal{D})= \begin{cases}-\lambda, & \text { if } X=\lambda \Pi, \\ +\infty, & \text { else. }\end{cases}$
Definition: The cash-invariant hull of f is

$$
f_{\Pi}(X):=f \square \delta^{*}(\cdot \mid \mathcal{D})(X)=\inf _{\lambda \in \mathbb{R}} f(X-\lambda \Pi)-\lambda
$$

Theorem: f_{Π} is cash-invariant with $f_{\Pi} \leq f$, and $f_{\Pi}=f$ if and only if f is cash-invariant. Moreover, $f_{\Pi}^{*}=f^{*}+\delta(\cdot \mid \mathcal{D})$, and $f_{\Pi}^{* *}$ is the greatest l.s.c. convex cash-invariant function majorized by f.

Monotone cash-invariant hulls

Theorem: $\delta^{*}(\cdot \mid \mathcal{D}) \square \delta^{*}\left(\cdot \mid L_{-}^{q}\right)=\delta^{*}\left(\cdot \mid L_{-}^{q} \cap \mathcal{D}\right)$. Hence

$$
f_{L_{+}^{p}, \Pi}(X)=\inf _{Y \in L^{p}}(f(X-Y)-\operatorname{ess} \inf Y)
$$

Recipe: $f^{\sharp}:=\left(f^{*}+\delta\left(\cdot \mid L_{-}^{q} \cap \mathcal{D}\right)\right)^{*}$ is the greatest l.s.c. convex monotone cash-invariant function majorized by f

Mean-Variance Risk Measure

$f(X)=\mathbb{E}[-X]+\frac{\alpha}{2} \mathbb{E}\left[X^{2}\right]$ not cash-invariant, not monotone
Cash-invariant hull of f is the mean-variance risk measure:

$$
f_{\Pi}(X)=\inf _{\lambda \in \mathbb{R}}\left(\mathbb{E}[-X]+\frac{\alpha}{2} \mathbb{E}\left[|X-\lambda|^{2}\right]\right)=\mathbb{E}[-X]+\frac{\alpha}{2}\|(X-\mathbb{E}[X])\|_{2}^{2} .
$$

Calculation of f^{\sharp} : write $g(X):=\frac{\alpha}{2} \mathbb{E}\left[X^{2}\right]$, so that

$$
f^{*}(Z)=\sup _{X \in L^{2}}(\mathbb{E}[(Z+1) X]-g(X))=g^{*}(Z+1)
$$

We have $g^{*}(Z)=\sup _{X \in L^{2}} \mathbb{E}\left[Z X-\frac{\alpha}{2} X^{2}\right]=\frac{1}{2 \alpha} \mathbb{E}\left[Z^{2}\right]$ and thus

$$
f^{\sharp}(X)=\sup \left\{\left.\mathbb{E}[-Z X]-\frac{1}{2 \alpha} \mathbb{E}\left[(Z-1)^{2}\right] \right\rvert\, Z \in L_{+}^{2}, \mathbb{E}[Z]=1\right\}
$$

monotone mean-variance risk measure $(\rightarrow$ Maccheroni et al (2005))

Semi-Moment Risk Measure

$f(X)=\frac{1}{\alpha} \mathbb{E}\left[X_{-}\right]$convex monotone, not cash-invariant

Monotone cash-invariant hull of f is

$$
f_{\Pi}(X)=\inf _{\lambda \in \mathbb{R}}\left(\frac{1}{\alpha} \mathbb{E}\left[(X-\lambda)_{-}\right]-\lambda\right)=\frac{1}{\alpha} \mathbb{E}\left[(X-\hat{\lambda})_{-}\right]-\hat{\lambda}
$$

where optimizer $\hat{\lambda}$ satisfies $\mathbb{P}[X<\hat{\lambda}] \leq \alpha \leq \mathbb{P}[X \leq \hat{\lambda}]$; i.e. $\hat{\lambda}$ is an α-quantile of X. Hence

$$
f_{\Pi}(X)=E S_{\alpha}[X]
$$

\Rightarrow expected shortfall is the cash-invariant hull of f

Exponential Risk Measure

$f(X)=\mathbb{E}[\exp (-X)]-1$ convex monotone, not cash-invariant

Monotone cash-invariant hull of f is

$$
f_{\Pi}(X)=\inf _{\lambda \in \mathbb{R}}(\mathbb{E}[\exp (-X+\lambda)-1-\lambda)=\log \mathbb{E}[\exp (-X)]
$$

\Rightarrow entropic risk measure is the cash-invariant hull of f

Generalized: $f(X)=\mathbb{E}[g(X)]$ with $g: \mathbb{R} \rightarrow \mathbb{R}$ convex, $g(0)=0$

Swiss Solvency Test Risk Measure

 $\rho(C)=\mathrm{ES}\left(C_{1}\right)+\gamma \sum_{t=2}^{T} \mathrm{ES}\left(\Delta C_{t}\right)$ not monotoneWrite $\rho(C)=f\left(C_{1}, \Delta C_{2}, \ldots, \Delta C_{T}\right)$ for $f(X)=\mathrm{ES}\left(X_{1}\right)+\gamma \sum_{t=2}^{T} \mathrm{ES}\left(X_{t}\right)$ on model space $E=\prod_{t=1}^{T} L^{p}\left(\mathcal{F}_{t}\right)$ with dual $E^{*}=\prod_{t=1}^{T} L^{q}\left(\mathcal{F}_{t}\right)$

Order cone $\mathcal{P}=\left\{X \in E \mid \sum_{s=1}^{t} X_{s} \geq 0 \forall t \leq T\right\}$
Polar cone $\mathcal{P}^{\circ}=\left\{\mu \in E^{*} \mid \mathbb{E}\left[\mu_{t}-\mu_{t+1} \mid \mathcal{F}_{t}\right] \leq 0 \forall t \leq T\right\}\left(\mu_{T+1}:=0\right)$
Define $\mathcal{M}_{t}:=\left\{\mu \in L^{q}\left(\mathcal{F}_{t}\right) \mid \mathbb{E}[\mu]=-1\right.$ and $\left.-1 / \alpha \leq \mu \leq 0\right\}$
Then $f^{*}(\mu)=\delta\left(\mu_{1} \mid \mathcal{M}_{1}\right)+\sum_{t=2}^{T} \delta\left(\mu_{t} \mid \gamma \mathcal{M}_{t}\right)$
Hence $\operatorname{dom} f^{*}=\mathcal{M}_{1} \times \gamma \prod_{t=2}^{T} \mathcal{M}_{t}$
Lemma: $\mu \in \operatorname{dom} f^{*} \cap \mathcal{P}^{\circ}$ if and only if $\mu_{1}=(1-\gamma) \nu_{1}+\gamma \mathbb{E}\left[\nu_{T} \mid \mathcal{F}_{1}\right]$ and $\mu_{t}=\gamma \mathbb{E}\left[\nu_{T} \mid \mathcal{F}_{t}\right]$ for $t \geq 2$, for some $\nu_{1} \in \mathcal{M}_{1}, \nu_{T} \in \mathcal{M}_{T}$.

Hence $f^{\sharp}(X)=\sup _{\mu \in \operatorname{dom} f^{*} \cap \mathcal{P}^{\circ}}\langle\mu, X\rangle=(1-\gamma) \operatorname{ES}\left(X_{1}\right)+\gamma \operatorname{ES}\left(\sum_{t} X_{t}\right)$
\Rightarrow Monotone Hull $\rho_{\mathcal{P}}(C)=(1-\gamma) \mathrm{ES}\left(C_{1}\right)+\gamma \mathrm{ES}\left(C_{T}\right)$

Conclusion

- We found tractable ways to explicitly calculate monotone and cash-invariant hulls.
\rightarrow Fix defective risk measures
\rightarrow Construct new ones
- Thanks!

