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1. Introduction

Risk of a scalar position.
e ACLP . =LP(2,>X,P), pe€ [0,00], set of acceptable positions;
e I € LP reference instrument with £ (w) =1 P-a.s.;
e The "risk” of a position X € LP is
o(X)=inf{teR: X +tE e A},

the minimal number of units of the reference instrument E
that has to be added to X in order to get an acceptable position;

e [ he set
R(X)={teR: X4+tFk e A}

is the set of all numbers of units of the reference instrument E
that can be added to X in order to get an acceptable position;

e Note: cl (R(X)+R+) = o(X)+Ry.



1. Introduction

Risk of a vector position.
e ACLE :=LN(2,%,P), d>1 set of acceptable positions;

o E' € LE reference instrument in market i € {1,...,d} with
E 0] 0
pl—| O | g2 | E pd—| | |.
N I R 0|
0 0] E

e Look for linear combinations of reference instruments that give
an acceptable position when added to X & LZ:

d
R(X) = {ueRd: X+ Y wE EA};
i=1

e What about ¢(X) =inf{u e R: X + %4, u;Fl € A}



1. Introduction

Risk of a vector position.

e Investor/regulator only accepts reference instruments in market
1,....,m with 1 <m < d:

R(X) = {uERm: X 4+ i u; B EA}
i=1
° How shall we compare
* positions X1, X2 e L7
* values R(Xl) ,R(XQ)?
° By means of convex cones K C R?, K,, C R™:
* K gives order for X's via C := {X € Lfl: X (w)e K P—a.s.}

* K, generates order in R™ and image spaces.



2. Primal representation

Data and definitions.

e X C RY convex cone (models exchange/transaction rates): If
z € K then ¢, x;E' can be exchanged into a position
with non-negative entries only. Reasonable: Ri C K.

o Km:{ueRm: (ul,...,um,O,...,O)TeK}. Then R C Ky,
e Image spaces
m ={M CR™: M =cl (M+ Kmn)},
Cm i ={M CR™: M =clco (M+ Kn)};

e R: Lfl — Fm is convex (sublinear, closed) iff epi R is convex (a
convex cone, a closed set) with

epi R :={(X,u) € L x R™: u € R(X)}.



2. Primal representation

Set-valued measure of risk. Function R: L} — Fp,:
(RO) normalized, i.e. Ky € R(0) and R(0) N —int K, = 0;
(R1) translative w.r.t. EL, ... E™ ¢ (LZ)+, i.e.
m .
VX e L, Vu e R™: R (X—I— > uiE") = R(X)+{—u};
i=1
(R2) C—monotone, i.e., X2 — X! € C implies R (XQ) OR (Xl).

If R satisfies (R0O), (R1), (R2) and is convex then it is called a
convex measure of risk (R : LZ — Cpy, in this case).

If R satisfies (R0O), (R1), (R2) and is sublinear then it is called a
coherent measure of risk (R : LZ — Cpy, in this case).



2. Primal representation

Acceptance set. Subset A C L%:

(AO) u € Km = Y uE' € A u e —int Ky = Y71 wE € A;
(A1) A is radially closed; v e Ky = A+ {zggl uZE"‘} C A;
(A2) A+ C C A.

If A satisfies (AO), (A1), (A2) and is convex then it is called a
convex acceptance set.

If A satisfies (A0), (A1), (A2) and is a convex cone then it is called
a coherent acceptance set.

Radially closed w.r.t. El ... E™:
X e Lf, {uf} CR™ Iimp_ub =0, VkeN: X+ T, ufE' € A
= X € A.



2. Primal representation

Primal representation result. R: L} — Fp,, AC L]

Ap:={XeLl: KnC R(X)}

Ra(X):={ueRm: X+ ¥ uE € A}

Theorem. (i) Let R: LY — Fp, be a measure of risk. Then Ap is
an acceptance set and R = Ry,. If R is convex, so is A. If R is
coherent then A is a coherent acceptance set.

(ii) Let A C Lfl be an acceptance set. Then R4 is a measure of risk
and A = ARA. If A is convex, sois Ry. If Ais a coherent acceptance
set then R4 is a coherent measure of risk.



3. Dual representation

Scalar coherent risk measure. p: LP - RU {+o0}

0(X) = sup E¥[-X]
Qe

with O a set of probability measures, abs. cont. w.r.t. P.

Set—valued coherent risk measure. R : LZ — Cm

R(X) = sup 77
QeQ

What is set—valued E¥ [—X]



3. Dual representation

Set—valued expectation. 1 <p < oo (case p = oo parallel)

11
ct = {zeLyvxec: [ X-zaPzo0}, - =1
p q

m
zd = {ZGC"‘: ZEP[ZZ-]zl}
1=1

Z — m . G |
Fm[X]—{uER ./Q<X—i;qu> ZdPgo}.

o If m=d=1 then FZ[X] = EQ[X] + R, with 99 = 7.

e Z € Z}, = R(X) = F%[-X] is a coherent risk measure on LE.



3. Dual representation

Theorem. R: Lg — Cm, proper closed convex measure of risk:

vXelh: R(X)= () |[Fll-X]14+c U FZ|X/
Zezl X'eAR

R additionally positively homogeneous:

vXelh: R(X)= () FZ[-X].
ZeZhnAY

Recall. po(X) = SUpQeg (EQ [—X] — SUDX’EAQ EQ [X/D



3. Dual representation

Dual summary.

e Basic rule: Replace E[-] by FZ []!

e Basic result: Everything as in the extended real—valued case like
* Penalty function representation (Follmer/Schied)
* L}l—representation of weak™* closed risk measures on Lgo
* "dual” ways of defining convex risk measures

e Basic tool: Duality theory for set—valued convex functions

Summary of the summary.

Everything you can do scalar you can do set—valued!!!



4. Examples

4.1. Set—valued expectation. See above.

4.2. Set—valued componentwise expectation. 1 <p<
A={Xxell: EP[X]e K}, CE(X):=Ry(X)

are coherent with CE (X) = {u cR™: EP [X +>m . uZEz] c K}.
4.3. Set—valued essential infimum. Coherent case

m .
—EIS(X)z{ueRm: X—I—ZuZEZGC}:
1=1

1 =1

{uERm: P({wEQ: X(w)—l—'iuiEi(w)gK}):O}.



4. Examples

4.4. Set—valued V@GR. 0 < X< 1, strong variant

V@Ri(X)Z{uERm: P({wEQ:X(w)—I- iuﬁ?%w)%K}) S)\}.

1 =1

4.5. Set—valued VOR. 0 < A <1, a weak variant

VeRY (X) =

{uERm: P({wEQ: X (w) + iuiEi(w)E—intK}> <)\}.

=1

One can replace —int K by something bigger not intersecting K



4. Examples

4.6. Set—valued AVEOR. 1 <p<oo, O0< A1,

ks 1
ZAzz{ZEZﬂ,,L: Jv e R ZW:X’ Vizl,...m:ZigviE},
i=1

AV@Ry (X) := () FZ[-X]
ZEZ,

is coherent on LY. Note: Z € 2}, = Z > 0.



4. Examples

4.7. Entropic risk measure. Convex, but not coherent.
B3>0, ED = (E,..., E)T e L%,

_ . RS _
Om = {QGbCLd.QEC ,i;/QEdQZ—l}

~ d )
O = {QEQm: ad%

B log (fﬁ Cfa)

1=1

=Zi€L1,z’:1,...,m}

G(QIP) = FY

Y

Rg(X):= () [—%G (Q| P) + F¥ [—X]] .
QEOm




4. Examples

Example summary.

o If m=d =1 then each of the above examples yields its scalar
counterpart.

e Sometimes, there are more and less risk averse set—valued
extensions of the same scalar risk measure (ess. infimum, VGR).

e Definitions possible
* direct

* via acceptance sets (primal representation)

* via " penalty functions” (dual representation).



5. One slide about scalarization

R (X) given. Which u € R(X) shall I(nvestor) choose?
Choose minimal (" efficient”) point w.r.t <g .

(strongly related) Realize value of

[P RU {400}, X)= inf vlu, wveKT.
Pv d { } v (X) wER(X) m

Interpretation.

o v C Kn"{ is vector of "reduced prices”’ for accepted reference in-
strument

e vy (X) is minimal price I have to pay for a position of accepted
reference instruments that cancels the risk of X.

Result. Commuting diagram for R, ¢, and its Fenchel conjugates
(po)™ = w3, —R™:



5. One slide about scalarization

Scalarization sceme.

Scalarization
R — Py
T T
Conjugation Conjugation
| |
_R* Scalarization 90:

—R*: Lfl x K} — Cm set—valued Legendre—Fenchel transform of R,

Oy Lg — RU{xoo}, ¢ (—2)= sup —v'ly,
ue—R*(—Z,—v)



6. Open problems

Open problems. (a selection)
e Primal representation of set—valued AVOR?
e More (about) entropic risk measures?

e Optimization problems with set—valued risk measures
(capital allocation, portfolio optimization etc.)?

e Relationships between set—valued risk measures, vector
optimization and scalarization procedures

—s o (X)) ="inf"{ueR™: ue R(X)}



Last slide

And remember: Everything you can do scalar ...

. thank you very much for attention!



Postslide
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