Set-valued risk measures

Andreas H. Hamel
University Halle-Wittenberg, on leave
ORFE, Princeton University
andreas.hamel@mathematik.uni-halle.de ahamel@princeton.edu

Set-valued risk measures

1. Introduction: From scalar to set-valued risk measures
2. Primal representation: Risk measures and acceptance sets
3. Dual representation: The central role of set-valued expectation
4. Examples
5. One slide about scalarization
6. A selection of open problems

Risk of a scalar position.

- $A \subseteq L^{p}:=L^{p}(\Omega, \Sigma, P), p \in[0, \infty]$, set of acceptable positions;
- $E \in L^{p}$ reference instrument with $E(\omega)=1$ P-a.s.;
- The "risk" of a position $X \in L^{p}$ is

$$
\varrho(X)=\inf \{t \in \mathbb{R}: X+t E \in A\}
$$

the minimal number of units of the reference instrument E that has to be added to X in order to get an acceptable position;

- The set

$$
R(X)=\{t \in \mathbb{R}: X+t E \in A\}
$$

is the set of all numbers of units of the reference instrument E that can be added to X in order to get an acceptable position;

- Note: $\mathrm{cl}\left(R(X)+\mathbb{R}_{+}\right)=\varrho(X)+\mathbb{R}_{+}$.

Risk of a vector position.

- $A \subseteq L_{d}^{p}:=L_{d}^{p}(\Omega, \Sigma, P), d \geq 1$ set of acceptable positions;
- $E^{i} \in L_{d}^{p}$ reference instrument in market $i \in\{1, \ldots, d\}$ with

$$
E^{1}=\left(\begin{array}{c}
E \\
0 \\
\vdots \\
0
\end{array}\right), E^{2}=\left(\begin{array}{c}
0 \\
E \\
\vdots \\
0
\end{array}\right), \ldots, E^{d}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
E
\end{array}\right)
$$

- Look for linear combinations of reference instruments that give an acceptable position when added to $X \in L_{d}^{p}$:

$$
R(X)=\left\{u \in \mathbb{R}^{d}: X+\sum_{i=1}^{d} u_{i} E^{i} \in A\right\}
$$

- What about $\varrho(X)=\inf \left\{u \in \mathbb{R}^{d}: X+\sum_{i=1}^{d} u_{i} E^{i} \in A\right\}$?

Risk of a vector position.

- Investor/regulator only accepts reference instruments in market $1, \ldots, m$ with $1 \leq m \leq d$:

$$
R(X)=\left\{u \in \mathbb{R}^{m}: X+\sum_{i=1}^{m} u_{i} E^{i} \in A\right\}
$$

- Question: How shall we compare
* positions $X^{1}, X^{2} \in L_{d}^{p}$?
* values $R\left(X^{1}\right), R\left(X^{2}\right)$?
- Answer: By means of convex cones $K \subseteq \mathbb{R}^{d}, K_{m} \subseteq \mathbb{R}^{m}$:
* K gives order for X 's via $C:=\left\{X \in L_{d}^{p}: X(\omega) \in K P\right.$-a.s. $\}$
* K_{m} generates order in \mathbb{R}^{m} and image spaces.

Data and definitions.

- $K \subseteq \mathbb{R}^{d}$ convex cone (models exchange/transaction rates): If $x \in K$ then $\sum_{i=1}^{d} x_{i} E^{i}$ can be exchanged into a position with non-negative entries only. Reasonable: $\mathbb{R}_{+}^{d} \subseteq K$.
- $K_{m}=\left\{u \in \mathbb{R}^{m}:\left(u_{1}, \ldots, u_{m}, 0, \ldots, 0\right)^{T} \in K\right\}$. Then $\mathbb{R}_{+}^{m} \subseteq K_{m}$.
- Image spaces

$$
\begin{aligned}
& \mathcal{F}_{m}:=\left\{M \subseteq \mathbb{R}^{m}: M=\mathrm{cl}\left(M+K_{m}\right)\right\}, \\
& \mathcal{C}_{m}:=\left\{M \subseteq \mathbb{R}^{m}: M=\operatorname{clco}\left(M+K_{m}\right)\right\} ;
\end{aligned}
$$

- R : $L_{d}^{p} \rightarrow \mathcal{F}_{m}$ is convex (sublinear, closed) iff epi R is convex (a convex cone, a closed set) with

$$
\text { epi } R:=\left\{(X, u) \in L_{d}^{p} \times \mathbb{R}^{m}: u \in R(X)\right\} .
$$

Set-valued measure of risk. Function $R: L_{d}^{p} \rightarrow \mathcal{F}_{m}$:
(RO) normalized, i.e. $K_{m} \subseteq R(0)$ and $R(0) \cap$-int $K_{m}=\emptyset$;
(R1) translative w.r.t. $E^{1}, \ldots, E^{m} \in\left(L_{d}^{p}\right)_{+}$, i.e.

$$
\forall X \in L_{d}^{p}, \forall u \in \mathbb{R}^{m}: R\left(X+\sum_{i=1}^{m} u_{i} E^{i}\right)=R(X)+\{-u\}
$$

(R2) C-monotone, i.e., $X^{2}-X^{1} \in C$ implies $R\left(X^{2}\right) \supseteq R\left(X^{1}\right)$.
If R satisfies (R0), (R1), (R2) and is convex then it is called a convex measure of risk ($R: L_{d}^{p} \rightarrow \mathcal{C}_{m}$ in this case).

If R satisfies (R0), (R1), (R2) and is sublinear then it is called a coherent measure of risk ($R: L_{d}^{p} \rightarrow \mathcal{C}_{m}$ in this case).

Acceptance set. Subset $A \subseteq L_{d}^{p}$:
(A0) $u \in K_{m} \Rightarrow \sum_{i=1}^{m} u_{i} E^{i} \in A ; u \in-$ int $K_{m} \Rightarrow \sum_{i=1}^{m} u_{i} E^{i} \notin A$;
(A1) A is radially closed; $u \in K_{m} \Rightarrow A+\left\{\sum_{i=1}^{m} u_{i} E^{i}\right\} \subseteq A$;
(A2) $A+C \subseteq A$.
If A satisfies (A0), (A1), (A2) and is convex then it is called a convex acceptance set.

If A satisfies (A0), (A1), (A2) and is a convex cone then it is called a coherent acceptance set.

Radially closed w.r.t. E^{1}, \ldots, E^{m} :
$X \in L_{d}^{p},\left\{u^{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{R}^{m}, \lim _{k \rightarrow \infty} u^{k}=0, \forall k \in \mathbb{N}: X+\sum_{i=1}^{m} u_{i}^{k} E^{i} \in A$
$\Rightarrow X \in A$.

Primal representation result. $R: L_{d}^{p} \rightarrow \mathcal{F}_{m}, A \subseteq L_{d}^{p}$

$$
\begin{aligned}
A_{R} & :=\left\{X \in L_{d}^{p}: K_{m} \subseteq R(X)\right\} \\
R_{A}(X) & :=\left\{u \in \mathbb{R}^{m}: X+\sum_{i=1}^{m} u_{i} E^{i} \in A\right\}
\end{aligned}
$$

Theorem. (i) Let $R: L_{d}^{p} \rightarrow \mathcal{F}_{m}$ be a measure of risk. Then A_{R} is an acceptance set and $R=R_{A_{R}}$. If R is convex, so is A. If R is coherent then A is a coherent acceptance set.
(ii) Let $A \subseteq L_{d}^{p}$ be an acceptance set. Then R_{A} is a measure of risk and $A=A_{R_{A}}$. If A is convex, so is R_{A}. If A is a coherent acceptance set then R_{A} is a coherent measure of risk.

Scalar coherent risk measure. $\varrho: L^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
\varrho(X)=\sup _{Q \in \mathcal{Q}} E^{Q}[-X]
$$

with \mathcal{Q} a set of probability measures, abs. cont. w.r.t. P.

Set-valued coherent risk measure. $R: L_{d}^{p} \rightarrow \mathcal{C}_{m}$

$$
R(X)=\sup _{Q \in \mathcal{Q}} ? ?
$$

Question: What is set-valued $E^{Q}[-X]$??

3. Duall representation

Set-valued expectation. $1 \leq p<\infty$ (case $p=\infty$ parallel)

$$
\begin{aligned}
C^{+} & =\left\{Z \in L_{d}^{q}: \forall X \in C: \int_{\Omega} X \cdot Z d P \geq 0\right\}, \frac{1}{p}+\frac{1}{q}=1 \\
\mathcal{Z}_{m}^{q} & =\left\{Z \in C^{+}: \sum_{i=1}^{m} E^{P}\left[Z_{i}\right]=1\right\}
\end{aligned}
$$

$$
F_{m}^{Z}[X]=\left\{u \in \mathbb{R}^{m}: \int_{\Omega}\left(X-\sum_{i=1}^{m} u_{i} E^{i}\right) \cdot Z d P \leq 0\right\}
$$

- If $m=d=1$ then $F_{m}^{Z}[X]=E^{Q}[X]+\mathbb{R}_{+}$with $\frac{d Q}{d P}=Z$.
- $Z \in \mathcal{Z}_{m}^{q} \Rightarrow R(X)=F_{m}^{Z}[-X]$ is a coherent risk measure on L_{d}^{p}.

3. Dual representation

Theorem. $R: L_{d}^{p} \rightarrow \mathcal{C}_{m}$ proper closed convex measure of risk:

$$
\forall X \in L_{d}^{p}: R(X)=\bigcap_{Z \in \mathcal{Z}_{m}^{q}}\left(F_{m}^{Z}[-X]+\mathrm{cl} \bigcup_{X^{\prime} \in A_{R}} F_{m}^{Z}\left[X^{\prime}\right]\right)
$$

R additionally positively homogeneous:

$$
\forall X \in L_{d}^{p}: R(X)=\bigcap_{Z \in \mathcal{Z}_{m}^{q} \cap A_{R}^{+}} F_{m}^{Z}[-X]
$$

Recall. $\varrho(X)=\sup _{Q \in \mathcal{Q}}\left(E^{Q}[-X]-\sup _{X^{\prime} \in A_{\varrho}} E^{Q}\left[X^{\prime}\right]\right)$

Dual summary.

- Basic rule: Replace $E[\cdot]$ by $F_{m}^{Z}[\cdot]$!
- Basic result: Everything as in the extended real-valued case like * Penalty function representation (Föllmer/Schied) * L_{d}^{1}-representation of weak* closed risk measures on L_{d}^{∞} * "dual" ways of defining convex risk measures
- Basic tool: Duality theory for set-valued convex functions

Summary of the summary.

Everything you can do scalar you can do set-valued!!!
4.1. Set-valued expectation. See above.
4.2. Set-valued componentwise expectation. $1 \leq p \leq \infty$

$$
A:=\left\{X \in L_{d}^{p}: E^{P}[X] \in K\right\}, \quad C E(X):=R_{A}(X)
$$

are coherent with $C E(X)=\left\{u \in \mathbb{R}^{m}: E^{P}\left[X+\sum_{i=1}^{m} u_{i} E^{i}\right] \in K\right\}$.
4.3. Set-valued essential infimum. Coherent case

$$
\begin{aligned}
& -E I^{S}(X)=\left\{u \in \mathbb{R}^{m}: X+\sum_{i=1}^{m} u_{i} E^{i} \in C\right\}= \\
& \left\{u \in \mathbb{R}^{m}: P\left(\left\{\omega \in \Omega: X(\omega)+\sum_{i=1}^{m} u_{i} E^{i}(\omega) \notin K\right\}\right)=0\right\} .
\end{aligned}
$$

4.4. Set-valued V@R. $0 \leq \lambda \leq 1$, strong variant
$V @ R_{\lambda}^{S}(X)=\left\{u \in \mathbb{R}^{m}: P\left(\left\{\omega \in \Omega: X(\omega)+\sum_{i=1}^{m} u_{i} E^{i}(\omega) \notin K\right\}\right) \leq \lambda\right\}$.
4.5. Set-valued V@R. $0 \leq \lambda \leq 1$, a weak variant

$$
\begin{aligned}
& V ® R_{\lambda}^{W}(X)= \\
& \qquad\left\{u \in \mathbb{R}^{m}: P\left(\left\{\omega \in \Omega: X(\omega)+\sum_{i=1}^{m} u_{i} E^{i}(\omega) \in-\operatorname{int} K\right\}\right) \leq \lambda\right\} .
\end{aligned}
$$

One can replace -int K by something bigger not intersecting K !

4. Examples

4.6. Set-valued AV@R. $1 \leq p<\infty, 0<\lambda \leq 1$,

$$
\mathcal{Z}_{\lambda}:=\left\{Z \in \mathcal{Z}_{m}^{q}: \exists v \in \mathbb{R}_{+}^{m}: \sum_{i=1}^{m} v_{i}=\frac{1}{\lambda}, \forall i=1, \ldots m: Z_{i} \leq v_{i} E\right\}
$$

$$
A V @ R_{\lambda}(X):=\bigcap_{Z \in \mathcal{Z}_{\lambda}} F_{m}^{Z}[-X]
$$

is coherent on L_{d}^{p}. Note: $Z \in \mathcal{Z}_{m}^{q} \Rightarrow Z \geq 0$.
4.7. Entropic risk measure. Convex, but not coherent.

$$
\beta>0, E^{(d)}=(E, \ldots, E)^{T} \in L_{d}^{\infty}
$$

$$
\begin{aligned}
\mathcal{Q}_{m} & =\left\{Q \in b a_{d}: Q \in C^{+}, \sum_{i=1}^{m} \int_{\Omega} E d Q_{i}=1\right\} \\
\widetilde{\mathcal{Q}}_{m} & =\left\{Q \in \mathcal{Q}_{m}: \exists \frac{d Q_{i}}{d P}=Z_{i} \in L^{1}, i=1, \ldots, m\right\} \\
G(Q \mid P) & :=F_{m}^{Q}\left[E^{(d)} \log \left(\sum_{i=1}^{m} \frac{d Q_{i}}{d P}\right)\right]
\end{aligned}
$$

$$
R_{\beta}(X):=\bigcap_{Q \in \widetilde{\mathcal{Q}}_{m}}\left[-\frac{1}{\beta} G(Q \mid P)+F_{m}^{Q}[-X]\right]
$$

4. Examples

Example summary.

- If $m=d=1$ then each of the above examples yields its scalar counterpart.
- Sometimes, there are more and less risk averse set-valued extensions of the same scalar risk measure (ess. infimum, V@R).
- Definitions possible
* direct
* via acceptance sets (primal representation)
* via "penalty functions" (dual representation).

Question: $R(X)$ given. Which $u \in R(X)$ shall I(nvestor) choose?

1. Answer: Choose minimal ("efficient") point w.r.t $\leq_{K_{m}}$.
2. Answer: (strongly related) Realize value of

$$
\varphi_{v}: L_{d}^{p} \rightarrow \mathbb{R} \cup\{ \pm \infty\}, \quad \varphi_{v}(X)=\inf _{u \in R(X)} v^{T} u, \quad v \in K_{m}^{+}
$$

Interpretation.

- $v \in K_{m}^{+}$is vector of "reduced prices" for accepted reference instrument
- $\varphi_{v}(X)$ is minimal price I have to pay for a position of accepted reference instruments that cancels the risk of X.

Result. Commuting diagram for R, φ_{v} and its Fenchel conjugates $\left(\varphi_{v}\right)^{*}=\varphi_{v}^{*},-R^{*}$:

Scalarization sceme.

R	$\stackrel{\text { Scalarization }}{\longleftrightarrow}$	φ_{v}
\uparrow		\uparrow
Conjugation		Conjugation
\downarrow	\downarrow	
$-R^{*}$	Scalarization	φ_{v}^{*}

$-R^{*}: L_{d}^{q} \times K_{m}^{*} \rightarrow \mathcal{C}_{m}$ set-valued Legendre-Fenchel transform of R,

$$
\varphi_{v}^{*}: L_{d}^{q} \rightarrow \mathbb{R} \cup\{ \pm \infty\}, \quad \varphi_{v}^{*}(-Z)=\sup _{u \in-R^{*}(-Z,-v)}-v^{T} u,
$$

Open problems. (a selection)

- Primal representation of set-valued AV@R?
- More (about) entropic risk measures?
- Optimization problems with set-valued risk measures (capital allocation, portfolio optimization etc.)?
- Relationships between set-valued risk measures, vector optimization and scalarization procedures

$$
\longrightarrow \varrho(X)="^{\mathrm{inf}}{ }^{\prime \prime}\left\{u \in \mathbb{R}^{m}: u \in R(X)\right\}
$$

Last slide

And remember: Everything you can do scalar ...
... thank you very much for attention!

Selected references.

1. Jouini, E., Meddeb, M., Touzi, N., Vector-Valued Coherent Risk Measures, Finance and Stochastics, Vol. 8(4), 531-552, (2004)
2. Cascos, I., Molchanov, I, Multivariate Risks and Depth-Trimmed Regions, Finance \& Stochastics, Vol. 11, 373-397, (2007)
3. Hamel, A.H., Heyde, F., Höhne, M., Set-valued Measures of Risk, submitted, 2007
