Set-valued risk measures

Andreas H. Hamel University Halle-Wittenberg, on leave ORFE, Princeton University

andreas.hamel@mathematik.uni-halle.de ahamel@princeton.edu

Set-valued risk measures

- 1. Introduction: From scalar to set-valued risk measures
- 2. Primal representation: Risk measures and acceptance sets
- 3. Dual representation: The central role of set-valued expectation
- 4. Examples
- 5. One slide about scalarization
- 6. A selection of open problems

Risk of a scalar position.

- $A \subseteq L^p := L^p(\Omega, \Sigma, P)$, $p \in [0, \infty]$, set of acceptable positions;
- $E \in L^p$ reference instrument with $E(\omega) = 1$ *P*-a.s.;
- \bullet The "risk" of a position $X \in L^p$ is

 $\varrho(X) = \inf \{t \in \mathbb{R} : X + tE \in A\},\$

the minimal number of units of the reference instrument E that has to be added to X in order to get an acceptable position;

• The set

$R(X) = \{t \in \mathbb{R} : X + tE \in A\}$

is the set of **all** numbers of units of the reference instrument E that can be added to X in order to get an acceptable position;

• Note:
$$\operatorname{cl}\left(R\left(X\right) + \mathbb{R}_{+}\right) = \varrho\left(X\right) + \mathbb{R}_{+}.$$

Risk of a vector position.

- $A \subseteq L^p_d := L^p_d(\Omega, \Sigma, P)$, $d \ge 1$ set of acceptable positions;
- $E^i \in L^p_d$ reference instrument in market $i \in \{1, \ldots, d\}$ with

$$E^{1} = \begin{pmatrix} E \\ 0 \\ \vdots \\ 0 \end{pmatrix}, E^{2} = \begin{pmatrix} 0 \\ E \\ \vdots \\ 0 \end{pmatrix}, \dots, E^{d} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ E \end{pmatrix};$$

• Look for linear combinations of reference instruments that give an acceptable position when added to $X \in L^p_d$:

$$R(X) = \left\{ u \in \mathbb{R}^d \colon X + \sum_{i=1}^d u_i E^i \in A \right\};$$

• What about $\varrho(X) = \inf \left\{ u \in \mathbb{R}^d \colon X + \sum_{i=1}^d u_i E^i \in A \right\}$?

1. Introduction

Risk of a vector position.

• Investor/regulator only accepts reference instruments in market $1, \ldots, m$ with $1 \le m \le d$:

$$R(X) = \left\{ u \in \mathbb{R}^m \colon X + \sum_{i=1}^m u_i E^i \in A \right\}$$

• Question: How shall we compare

* positions $X^1, X^2 \in L^p_d$? * values $R(X^1), R(X^2)$?

• Answer: By means of convex cones $K \subseteq \mathbb{R}^d$, $K_m \subseteq \mathbb{R}^m$:

* K gives order for X's via $C := \{ X \in L^p_d : X(\omega) \in K P\text{-a.s.} \}$

* K_m generates order in \mathbb{R}^m and image spaces.

Data and definitions.

• $K \subseteq \mathbb{R}^d$ convex cone (models exchange/transaction rates): If $x \in K$ then $\sum_{i=1}^d x_i E^i$ can be exchanged into a position with non-negative entries only. Reasonable: $\mathbb{R}^d_+ \subseteq K$.

•
$$K_m = \{ u \in \mathbb{R}^m : (u_1, \dots, u_m, 0, \dots, 0)^T \in K \}$$
. Then $\mathbb{R}^m_+ \subseteq K_m$.

• Image spaces

 $\mathcal{F}_m := \{ M \subseteq \mathbb{R}^m : M = \mathsf{cl} (M + K_m) \},\$

 $\mathcal{C}_m := \{ M \subseteq \mathbb{R}^m : M = \operatorname{cl} \operatorname{co} (M + K_m) \};$

• $R: L^p_d \to \mathcal{F}_m$ is convex (sublinear, closed) iff epi R is convex (a convex cone, a closed set) with

$$epi R := \{ (X, u) \in L^p_d \times \mathbb{R}^m \colon u \in R(X) \}.$$

Set-valued measure of risk. Function $R: L_d^p \to \mathcal{F}_m$: (R0) normalized, i.e. $K_m \subseteq R(0)$ and $R(0) \cap -\text{int } K_m = \emptyset$; (R1) translative w.r.t. $E^1, \ldots, E^m \in (L_d^p)_+$, i.e.

$$\forall X \in L_d^p, \ \forall u \in \mathbb{R}^m : \ R\left(X + \sum_{i=1}^m u_i E^i\right) = R\left(X\right) + \{-u\};$$

(R2) *C*-monotone, i.e., $X^2 - X^1 \in C$ implies $R(X^2) \supseteq R(X^1)$.

If R satisfies (R0), (R1), (R2) and is convex then it is called a convex measure of risk $(R : L_d^p \to \mathcal{C}_m$ in this case).

If R satisfies (R0), (R1), (R2) and is sublinear then it is called a coherent measure of risk $(R : L_d^p \to C_m$ in this case).

2. Primal representation

Acceptance set. Subset $A \subseteq L_d^p$: (A0) $u \in K_m \Rightarrow \sum_{i=1}^m u_i E^i \in A$; $u \in -\text{int } K_m \Rightarrow \sum_{i=1}^m u_i E^i \notin A$; (A1) A is radially closed; $u \in K_m \Rightarrow A + \left\{ \sum_{i=1}^m u_i E^i \right\} \subseteq A$; (A2) $A + C \subseteq A$.

If A satisfies (A0), (A1), (A2) and is convex then it is called a convex acceptance set.

If A satisfies (A0), (A1), (A2) and is a convex cone then it is called a coherent acceptance set.

Radially closed w.r.t. E^1, \ldots, E^m : $X \in L^p_d, \{u^k\}_{k \in \mathbb{N}} \subset \mathbb{R}^m, \lim_{k \to \infty} u^k = 0, \forall k \in \mathbb{N} : X + \sum_{i=1}^m u^k_i E^i \in A$ $\Rightarrow X \in A.$ **Primal representation result.** $R: L^p_d \to \mathcal{F}_m$, $A \subseteq L^p_d$

$$A_R := \left\{ X \in L_d^p : K_m \subseteq R(X) \right\}$$
$$R_A(X) := \left\{ u \in \mathbb{R}^m : X + \sum_{i=1}^m u_i E^i \in A \right\}$$

Theorem. (i) Let $R: L_d^p \to \mathcal{F}_m$ be a measure of risk. Then A_R is an acceptance set and $R = R_{A_R}$. If R is convex, so is A. If R is coherent then A is a coherent acceptance set.

(ii) Let $A \subseteq L_d^p$ be an acceptance set. Then R_A is a measure of risk and $A = A_{R_A}$. If A is convex, so is R_A . If A is a coherent acceptance set then R_A is a coherent measure of risk. Scalar coherent risk measure. $\varrho: L^p \to \mathbb{R} \cup \{+\infty\}$

$$\varrho\left(X\right) = \sup_{Q \in \mathcal{Q}} E^{Q}\left[-X\right]$$

with Q a set of probability measures, abs. cont. w.r.t. P.

Set-valued coherent risk measure. $R: L^p_d \to \mathcal{C}_m$

 $R(X) = \sup_{Q \in \mathcal{Q}} ??$

Question: What is set-valued $E^Q[-X]$??

Set-valued expectation. $1 \le p < \infty$ (case $p = \infty$ parallel) $C^+ = \left\{ Z \in L_d^q : \forall X \in C : \int_{\Omega} X \cdot Z \, dP \ge 0 \right\}, \frac{1}{p} + \frac{1}{q} = 1$ $\mathcal{Z}_m^q = \left\{ Z \in C^+ : \sum_{i=1}^m E^P \left[Z_i \right] = 1 \right\}$

$$F_m^Z[X] = \left\{ u \in \mathbb{R}^m : \int_{\Omega} \left(X - \sum_{i=1}^m u_i E^i \right) \cdot Z \, dP \le 0 \right\}.$$

- If m = d = 1 then $F_m^Z[X] = E^Q[X] + \mathbb{R}_+$ with $\frac{dQ}{dP} = Z$.
- $Z \in \mathcal{Z}_m^q \Rightarrow R(X) = F_m^Z[-X]$ is a coherent risk measure on L_d^p .

Theorem. $R: L_d^p \to \mathcal{C}_m$ proper closed convex measure of risk:

$$\forall X \in L_d^p : R(X) = \bigcap_{Z \in \mathcal{Z}_m^q} \left(F_m^Z[-X] + \mathsf{cl} \bigcup_{X' \in A_R} F_m^Z[X'] \right).$$

R additionally positively homogeneous:

$$\forall X \in L_d^p : R(X) = \bigcap_{Z \in \mathcal{Z}_m^q \cap A_R^+} F_m^Z [-X].$$

Recall. $\varrho(X) = \sup_{Q \in \mathcal{Q}} \left(E^Q \left[-X \right] - \sup_{X' \in A_\varrho} E^Q \left[X' \right] \right)$

Dual summary.

- Basic rule: Replace $E[\cdot]$ by $F_m^Z[\cdot]!$
- Basic result: Everything as in the extended real-valued case like
 - * Penalty function representation (Föllmer/Schied)
 - * L_d^1 -representation of weak* closed risk measures on L_d^∞
 - * "dual" ways of defining convex risk measures
- Basic tool: Duality theory for set-valued convex functions

Summary of the summary.

Everything you can do scalar you can do set-valued!!!

4.1. Set-valued expectation. See above.

4.2. Set-valued componentwise expectation. $1 \le p \le \infty$ $A := \{X \in L_d^p : E^P[X] \in K\}, \quad CE(X) := R_A(X)$ are coherent with $CE(X) = \{u \in \mathbb{R}^m : E^P[X + \sum_{i=1}^m u_i E^i] \in K\}.$

4.3. Set-valued essential infimum. Coherent case

$$-EI^{S}(X) = \left\{ u \in \mathbb{R}^{m} : X + \sum_{i=1}^{m} u_{i}E^{i} \in C \right\} = \left\{ u \in \mathbb{R}^{m} : P\left(\left\{ \omega \in \Omega : X(\omega) + \sum_{i=1}^{m} u_{i}E^{i}(\omega) \notin K \right\} \right) = 0 \right\}.$$

4.4. Set-valued V@R. $0 \le \lambda \le 1$, strong variant

$$V @R^{S}_{\lambda}(X) = \left\{ u \in \mathbb{R}^{m} : P\left(\left\{ \omega \in \Omega : X(\omega) + \sum_{i=1}^{m} u_{i} E^{i}(\omega) \notin K \right\} \right) \leq \lambda \right\}$$

4.5. Set-valued V@R. $0 \le \lambda \le 1$, a weak variant

$$V @ R^W_\lambda(X) = \left\{ u \in \mathbb{R}^m \colon P\left(\left\{ \omega \in \Omega \colon X(\omega) + \sum_{i=1}^m u_i E^i(\omega) \in -\text{int } K \right\} \right) \le \lambda \right\}.$$

One can replace -int K by something bigger not intersecting K!

4. Examples

4.6. Set-valued AV@R. $1 \le p < \infty$, $0 < \lambda \le 1$,

$$\mathcal{Z}_{\lambda} := \left\{ Z \in \mathcal{Z}_m^q : \exists v \in \mathbb{R}_+^m : \sum_{i=1}^m v_i = \frac{1}{\lambda}, \forall i = 1, \dots m : Z_i \le v_i E \right\},\$$

$$AV@R_{\lambda}(X) := \bigcap_{Z \in \mathcal{Z}_{\lambda}} F_m^Z[-X]$$

is coherent on L^p_d . Note: $Z \in \mathcal{Z}^q_m \Rightarrow Z \ge 0$.

4.7. Entropic risk measure. Convex, but not coherent. $\beta > 0, E^{(d)} = (E, \dots, E)^T \in L^{\infty}_d$,

$$\mathcal{Q}_{m} = \left\{ Q \in ba_{d} : Q \in C^{+}, \sum_{i=1}^{m} \int_{\Omega} E \, dQ_{i} = 1 \right\}$$
$$\tilde{\mathcal{Q}}_{m} = \left\{ Q \in \mathcal{Q}_{m} : \exists \frac{dQ_{i}}{dP} = Z_{i} \in L^{1}, i = 1, \dots, m \right\}$$
$$G(Q|P) := F_{m}^{Q} \left[E^{(d)} \log \left(\sum_{i=1}^{m} \frac{dQ_{i}}{dP} \right) \right],$$

$$R_{\beta}(X) := \bigcap_{Q \in \widetilde{\mathcal{Q}}_m} \left[-\frac{1}{\beta} G(Q|P) + F_m^Q[-X] \right].$$

4. Examples

Example summary.

- If m = d = 1 then each of the above examples yields its scalar counterpart.
- Sometimes, there are more and less risk averse set-valued extensions of the same scalar risk measure (ess. infimum, V@R).
- Definitions possible
 - * direct
 - * via acceptance sets (primal representation)
 - * via "penalty functions" (dual representation).

Question: R(X) given. Which $u \in R(X)$ shall I(nvestor) choose?

- **1.** Answer: Choose minimal ("efficient") point w.r.t \leq_{K_m} .
- 2. Answer: (strongly related) Realize value of

$$\varphi_v : L^p_d \to \mathbb{R} \cup \{\pm \infty\}, \quad \varphi_v (X) = \inf_{u \in R(X)} v^T u, \quad v \in K^+_m.$$

Interpretation.

- $v \in K_m^+$ is vector of "reduced prices" for accepted reference instrument
- $\varphi_v(X)$ is minimal price I have to pay for a position of accepted reference instruments that cancels the risk of X.

Result. Commuting diagram for R, φ_v and its Fenchel conjugates $(\varphi_v)^* = \varphi_v^*, -R^*$:

Scalarization sceme.

 $-R^* \colon L^q_d \times K^*_m \to \mathcal{C}_m \text{ set-valued Legendre-Fenchel transform of } R,$ $\varphi^*_v \colon L^q_d \to \mathbb{R} \cup \{\pm \infty\}, \quad \varphi^*_v (-Z) = \sup_{u \in -R^*(-Z, -v)} -v^T u,$

6. Open problems

Open problems. (a selection)

- Primal representation of set-valued AV@R?
- More (about) entropic risk measures?
- Optimization problems with set-valued risk measures (capital allocation, portfolio optimization etc.)?
- Relationships between set-valued risk measures, vector optimization and scalarization procedures

$$\longrightarrow \varrho(X) = "\inf" \{ u \in \mathbb{R}^m \colon u \in R(X) \}$$

Last slide

And remember: Everything you can do scalar ...

... thank you very much for attention!

Selected references.

1. Jouini, E., Meddeb, M., Touzi, N., *Vector-Valued Coherent Risk Measures*, Finance and Stochastics, Vol. 8(4), 531-552, (2004)

2. Cascos, I., Molchanov, I, *Multivariate Risks and Depth-Trimmed Regions*, Finance & Stochastics, Vol. 11, 373-397, (2007)

3. Hamel, A.H., Heyde, F., Höhne, M., *Set–valued Measures of Risk*, submitted, 2007