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Motivations of SPDEs

Finance Mathematics: The forward interest rate of a zero bound in
the Heath Jarrow Morton model is is described by a SPDE driven
by Wiener or Lévy noise;

Physics: in thin-film models, SPDEs leads to a better description
of data’s gained by experiments [Grüne, Mecke, Rauscher (2006)];

Physics: Falkovich, Kolokolov, Lebedev, Mezentsev, and Turitsyn
(2004) uses stochastic nonlinear Schrödinger equation to describe
certain parameters in optical soliton transmission;

Population dynamics ....

Biology ....

SPDES driven by Poisson Random Measures – p.2



Outline of the talk

An Example from Finance

Lévy processes - Poisson Random Measure

SPDEs driven by Poisson Random Measure
- Existence and Uniqueness Results

Further Works and Open Questions
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Heath Jarrow Morton Model (1992):

A zero coupon bond with maturity date T is a contract which
guarantees the holder 1 Dollar to be paid at time T .

p(t, x): Price at time t of a zero coupon bond maturing at time t+x;

r(t, x): Forward rate, contracted at t, maturing at time t + x;

R(t) : Short interest rate;







r(t, x) = −∂ log p(t,x)
∂x

p(t, x) = exp
(
−

∫ x

0 r(t, s) ds
)
;

R(t) = r(t, 0).
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Heath Jarrow Morton Model (1992):

The HJM-Model describes the dynamic of the forward interest rate
under the assumption that the bond market is free of arbitrage. In
particular, the forward rate function solves the following SPDE

{

dr(t, x) =
[

∂
∂x

r(t, x) + f(t, x)
]

dt +
∑∞

k=1 σk(t, x)dwk(t), x ≥ 0;

r(t, 0) = R(t), x ≥ 0;

where wk, k ∈ IN, are real valued independent Wiener processes and f

satisfies the well–known HJM drift condition

f(t, x) =

∞∑

k=1

σk(t, x)

∫ x

0
σk(t, y) dy.

Talk of Eberlein on monday morning;
Björk et. all (1997); Filipovic (2001); Ben Goldys and Musiela (2001);
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HJM Model with Lévy noise:

The SPDE of the corresponding model with Lévy noise is given by

{

dr(t, x) =
[

∂
∂x

r(t, x) + f(t, x)
]

dt + b(t)dL(t), x ≥ 0;

r(t, 0) = R(t), x ≥ 0;

where L is an infinite dimensional Lévy processes taking values in a
certain Hilbert space and f satisfies the HJM drift condition.

References for the HJM condition: Björk, Di Masi, Kabanov and
Runggaldier (1997); Björk, Kabanov and Runggaldier (1997); Eberlein,
Jacod and Raible (2005); Peszat and Zabczyk (2007).

Further References: Albeverio, Lytvynov and Mahnig (2004);
Eberlein and Raible (1999); Jakubowski and Zabczyk (2007, 2004);
Rusinek (2006); Marinelli (2006); Tappe (2007) (Talk on friday).
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A typical Example

We are interested in SPDEs of the following type:






du(t, ξ) = ∇u(t−, ξ) dt + g(u(t−, ξ))dL(t)

+ f(u(t−, ξ)) dt, ξ ≥ 0, t > 0;

u(0, ξ) = u0(ξ) ξ ≥ 0;

where u0 ∈ Lp(0, 1), p ≥ 1, g a certain mapping and L(t) is a Lévy
process specified later.
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The Abstract Cauchy Problem

Linear evolution equations, as parabolic, hyperbolic or delay equations,
can often be formulated as an evolution equation in a Banach space E:

Given:

E Banach space,

the pair (A, dom(A)), where A : E → E a linear, in general
unbounded, operator defined on a dense linear subspace dom(A)

of E;

initial value u0 ∈ E;

Problem: The solution to the following initial valued problem:

{

u′(t) = A u(t), t ≥ 0,

u(0) = u0 ∈ E.
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The Wave Equation:

Example 1

(?)







d
dt

u(t, ξ) = ∇u(t, ξ), t > 0, ξ ≥ 0;

u(0, ξ) = u0(ξ), ξ ≥ 0;

The solution of the Cauchy problem (?) is given by the shift semigroup.
In particular, let (S(t))t≥0 be defined by

S(t)u(x) := u(t + x), u ∈ C,

then u(t) := S(t)u0 is a solution to (?).
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The Laplace Operator

Example 2 In one of the first slides we had the following example: Let
O be a bounded domain in R

d with smooth boundary.







du(t,ξ)
dt

= ∆ u(t, ξ), t > 0, ξ ∈ O;

u(0, ξ) = u0(ξ), ξ ∈ O;

u(t, ξ) = 0, t ≥ 0; ξ ∈ ∂O

Formulated in semigroup theory, (?) gives the following Cauchy
problem:

E := L2(O) or Lp(O), 1 < p < ∞,

A = ∆, u(0) = u0;

dom(A) :=
{
u ∈ L2(O), Au ∈ L2(O), u

∣
∣
∂O

= 0
}

.
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The Abstract Cauchy Problem

Given:

E Banach space,

the pair (A, dom(A)), where A : E → E a linear, in general
unbounded, operator defined on a dense linear subspace dom(A)

of E;

initial value u0 ∈ E;

Problem: The solution to the following initial valued problem:

(?)

{

u′(t) = A u(t), t ≥ 0,

u(0) = u0 ∈ E.
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The Abstract Cauchy problem:

The Cauchy Problem is well posed if:

for arbitrary u0 ∈ dom(A) there exists exactly one strong
differentiable function u(t, u0), t ≥ 0 satisfying (?) for all t ≥ 0.

if {xn} ∈ dom(A) and limn→∞ xn = 0, then for all t ≥ 0 we have

lim
n→∞

u(t, xn) = 0.
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The Abstract Cauchy problem:

Assume a solution exists and let us define the linear operator
S(t) : dom(A) → E by the formula

S(t)x = u(t, u0), ∀u0 ∈ dom(A), ∀t ≥ 0.

The family of operators S(·) can be extended to an operator on E.
Moreover, we have

S(0) = I, S(t + s) = S(t)S(s); ∀t, s ≥ 0.

Definition 1 A semigroup S(t), 0 ≤ t < ∞ of bounded linear operators
on E is a strongly continuous semigroup (C0- semigroup) if

lim
t→0

S(t)x = x, for every x ∈ E.
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The Infinitesimal Generator of a Semigroup

Definition 1 The infinitesimal generator of a semigroup S(·) is a linear
operator defined by







dom(A) :=
{

x ∈ E : ∃ limh→0+
S(h)x−x

h

}

Ax := limh→0+
S(h)x−x

h
, ∀x ∈ dom(A).

SPDES driven by Poisson Random Measures – p.16



Variation of Constants Formula

The Abstract Problem: Given f ∈ L1([0, T ];E). We ask for a solution to

(•)

{

u′(t) = Au(t) + f(t);

u(0) = x ∈ E.

The solution is given by the variation of constant formula

u(t) = S(t)x +

∫ t

0
S(t − s)f(s) ds, t ∈ (0, T ].

and is called the mild solution to (•).
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The Lévy Process L

Let E be a Banach space. Assume that L = {L(t), 0 ≤ t < ∞} is a
E–valued Lévy process over (Ω;F ; P). Then L has the following
properties:

L(0) = 0;

L has independent and stationary increments;

for φ bounded, the function t 7→ Eφ(L(t)) is continuous on R
+;

L has a.s. cádlág paths;

the law of L(1) is infinitely divisible;
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The Lévy Process L

E denotes a separable Banach space and E ′ the dual on E. The
Fourier Transform of L is given by the Lévy - Hinchin - Formula:

E ei〈L(1),a〉 =

(?) exp

{

i〈y, a〉λ +

∫

E

(

eiλ〈y,a〉 − 1 − iλy1{|y|≤1}

)

ν(dy)

}

,

where a ∈ E′, y ∈ E and ν : B(E) → R
+ is a certain measure.

We call these symmetric measures ν : B(E) → R
+ for which (?) is well

defined symmetric Lévy measures. If ν is a σ–finite measure and its
symmetrisation is a symmetric Lévy measure, we call it Lévy measure
(see Linde (1986)).
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Poisson Random Measure

For any A ∈ B(E), the so-called counting measure can be defined by

N(t, A) = ] {s ∈ (0, t] : ∆L(s) = L(s) − L(s−) ∈ A} .

One can show, that

N(t, A) is a random variable over (Ω;F ; P);

N(t, A) ∼ Poisson (tν(A)) and N(t, ∅) = 0;

For any pairwise disjoint sets A1, . . . , An, the random variables
N(t, A1), . . . , N(t, An) are pairwise independent;
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Poisson Random Measure

Definition 2 Let (S,S) be a measurable space and (Ω,A, P) a probability

space. A random measure on (S,S) is a family

η = {η(ω, �), ω ∈ Ω}

of non-negative measures η(ω, �) : S → IN0, such that

η(�, ∅) = 0 a.s.

η is a.s. σ–additive.

η is independently scattered, i.e. for any finite family of pairwise

disjoint sets A1, . . . , An ∈ S, the random variables

η(·, A1), . . . , η(·, An)

are pairwise independent.
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Poisson Random Measure

A random measure η on (S,S) is called Poisson random measure iff
for each A ∈ S such that E η(·, A) is finite, η(·, A) is a Poisson random
variable with parameter E η(·, A).

Remark 1 The mapping

S 3 A 7→ ν(A) := E η(·, A) ∈ R

is a measure on (S,S).
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Poisson Random Measure

Let (Z,Z) be a measurable space. If S = Z × R
+, S = Z×̂B(R+), then a

Poisson random measure on (S,S) is called Poisson point process.

Remark 2 Let ν be a Lévy measure on a Banach space E and

• S = E × R
+

• S = B(E)×̂B(R+)

• ν ′ = ν × λ (λ is the Lebegues measure).

Then there exists a time homogeneous Poisson random measure

η : Ω × B(E) × B(R+) → R
+

such that E η( � , A, I) = ν(A)λ(I), A ∈ B(E), I ∈ B(R+),

ν is called the intensity of η.
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Poisson Random Measure

(?) t 7→

∫ t

0

∫

E

z η(dz, ds)

Remark 3 The integral in (?) is well defined if the intensity of η is a
symmetric Lévy measure (and E a certain Banach space).
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Poisson Random Measure

Definition 2 Let
η : Ω × B(E) × B(R+) → R

+

be a Poisson random measure over (Ω;F ; P) and {Ft, 0 ≤ t < ∞} the
filtration induced by η. Then the predictable measure

γ : Ω × B(E) × B(R+) → R
+

is called compensator of η, if for any A ∈ B(E) the process

η(A, (0, t]) − γ(A, [0, t])

is a local martingale over (Ω;F ; P).
Remark 3 The compensator is unique up to a P-zero set and in case
of a time homogeneous Poisson random measure given by

γ(A, [0, t]) = t ν(A), A ∈ B(E).
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Poisson Random Measure

(?) t 7→

∫ t

0

∫

E

z (η − γ)
︸ ︷︷ ︸

:=η̃

(dz, ds)

Remark 4 The integral in (?) is well defined if the intensity of η is a
Lévy measure (and E a certain Banach space).
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Poisson Random Measure

Let L be a E-valued Lévy process and let again N(t, ·) be the counting
measure given by

B(E) 3 A 7→ N(t, A) := ] {s ∈ (0, t] : ∆L(s) = L(s) − L(s−) ∈ A} .

For any interval I = (s, t], let η(·, I) : B(E) → IN0 be defined by

B(E) 3 A 7→ η(A, I) := N(t, A) − N(s,A).

Then the extension of η to B(E)×̂B(R+) gives a Poisson random mea-

sure.
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A typical Example

We are interested in SPDEs of the following type:






du(t, ξ) = ∇u(t−, ξ) dt + g(u(t−, ξ))dL(t)

+ f(u(t−, ξ)) dt, ξ ≥ 0, t > 0;

u(0, ξ) = u0(ξ) ξ ≥ 0;

where u0 ∈ Lp(0, 1), p ≥ 1, g a certain mapping and L(t) is a Lévy
process taking values in a certain Banach space.
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Banach spaces of M type p

Definition 3 (see e.g. Pisier (1986)) Let 1 ≤ p < ∞. A Banach space
E is of M type p (or uniformly p integrable) , iff there exists a constant
C = C(E; p), such that for each discrete E-valued martingale
M = (M1,M2, . . .) one has

sup
n≥1

E|Mn|
p
E ≤ C

∑

n≥1

E|Mn − Mn−1|
p
E .

Remark 5 A Banach space is uniformly p convex if there exists a
equivalent norm ‖ · ‖ in E, such that

1

2

(
|x + y|pE + |x − y|pE

)
≤ |x|p + ‖y‖p

E .

Pisier has shown, that if a Banach space E is uniformly p convex then
E is of M–type p.
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Banach spaces of M type p

Example 3 (see e.g. Linde (1986), Chapter 2) If (M,M, P) is a
probability space and p > 1, then the space Lp(M,M, P) is of M -type
p ∧ 2.

Example 4 Let (S,S) be a measurable space. Then L∞(S), L1(S) are
often not M type. The space C([0, 1]; R) is not of M type p.
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Burkholder inequality

Proposition 1 Let E be a Banach space of M -type p, 1 < p ≤ 2. Then
there exists a constant C = C(E; p) < ∞, such that we have for any
discrete E-valued martingale M = (M1,M2, . . .) and for all 1 ≤ r < ∞

E sup
n≥1

|Mn|
r
E ≤ CE




∑

n≥1

|Mn−1 − Mn|
p
E





r
p

.
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The Itô Stochastic Integral

In M -type p Banach spaces on can define the stochastic integral with
respect to Lévy processes by the extension procedure:

Let h be a càglàd step function given by

h(t) =

n∑

i=1

Hi1(ti,ti+1](t), 0 ≤ t ≤ T,

where 0 = t0 ≤ · · · tn = T and Hi : Ω → L(Z,E) is Fti–measurable,
i = 1, . . . , n.
Definition 4 The stochastic integral of h with respect to η is defined by

I(h) :=
n∑

i=1

∫

Z

Hi(z)η(dz; (ti, ti+1]). (♠)
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Definition of the Integral

Let Mp([0, T ];E) be the space of all predictable functions
h : [0, T ] × Ω → L(Z,E) such that

∫ T

0

∫

Z

E|h(s, z)|pE ν(dz) ds < ∞.

Theorem 1 There exists a linear bounded operator

I : Mp([0, T ];E) → Lp(Ω,FT , P;E),

which is a unique bounded extension of the operator defined in (♠).
If h ∈ Mp([0, T ];E) and t > 0 then we put

∫ t

0+

∫

Z

h(s, z) η(dz; ds) := I(1(0,t]h)

and we call the LHS the Itô integral of the process h up to time t.
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Properties of the Stochastic Integral

If h ∈ Mp([0, T ];E), then the process

X(t) =

∫ t

0+

∫

Z

h(s, z) η(dz; ds), t ≥ 0

is an E–valued martingale having a càdlàg modification.

There exists a constant C = C(p,E) < ∞, such that for any
h ∈ Mp([0, T ];E) and for any 0 < r ≤ p(≤ 2)

E sup
0<t≤T

∣
∣
∣
∣

∫ t

0+

∫

Z

h(s, z) η(dz; ds)

∣
∣
∣
∣

r

≤

C

(∫ T

0+

∫

Z

E |h(s, z)|pE ν(dz) ds

) r
p

.
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SPDES - the Abstract Form

Let E be Banach space of M–type p and let A be the infinitesimal
generator of an analytic semigroup in E. Our interest lies in the
following SPDE written in the Itô-form

(1)







du(t) = Au(t−) dt + f(u(t)) dt +
∫

Z
g(u(t−); z)η̃(dz; dt),

u(0) = u0 ∈ E.

A mild solution of equation (1) is an adapted E-valued càdlàg process
u = {u(t) : t ∈ [0, T ]} such that for t ≥ 0

u(t) = S(t)u0 +

∫ t

0
S(t − s) f(u(s)) dt +

∫ t

0+

∫

Z

S(t − s)g(u(s−); z) η̃(ds, dz), a.s. .
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SPDEs - Existence and Uniqueness

Theorem 2 (EH, 2005 EJP) Let E be Banach space of M–type p,
B ↪→ E compactly. Assume that

E|u0|
p
B < ∞;

there exists some δf < 1 such that (−A)−δf f : E → E is Lipschitz
continuous;

there exists some δg < 1
p

such that (−A)−δgg : E → L(Z,E)

satisfies
∫

Z

∣
∣
∣(−A)−δg (g(x, z) − g(y, z))

∣
∣
∣

p

ν(dz) ≤ C |x − y|p, x, y ∈ E.

Then, there exists a unique mild solution to Problem (1) such that for
any T > 0

∫ T

0 E|u(s)|p ds < ∞,

and (−A)−δ0u ∈ L0(Ω; ID([0, T ];E)) for some δ0 > δg, δf .
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Outline of the Proof of Theorem 1:

One starts with the following space

Vp :=

{

(−A)−δ0u : Ω → ID([0, T ];E),

∫ T

0
E|u(s)|p ds < ∞

}

with norm

‖u‖Vp
:=

(∫ T

0
E|u(s)|p ds

) 1

p

.

Again, let Vp be the completion of Vp.

Remark 6 If δ0 > 0 then the set Vp is a proper subset of Vp.
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Outline of the Proof of Theorem 2:

First, we define for a fixed u0 the operator

(Ku0
u)(t) = S(t)u0 +

∫ t

0+
S(t − s)f(u(s−))ds

+

∫ t

0+

∫

Z

S(t − s)g(u(s−); z)η̃(dz; ds), t ∈ [0, T ]

and then we show the following Lemma:
Lemma 1 For any u0 ∈ Vγ

the operator Ku0
maps Vp into Vp and

the operator Ku0
is for T small enough a contraction.
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Outline of the Proof of Theorem 2:

Suppose, T > 0 is so small, such that Ku0
: Vp → Vp is a contraction.

Then again follows, that for each u0 ∈ Vγ there exists a unique u∗ ∈ Vp,

such that
Ku0

u∗ = u∗a

and
K

(n)
u0

v −→ u∗

for all v ∈ Vp.

Finally we have to show, that u? ∈ Vp. But since Vp is a proper subset
of Vp, it is not trivial to show (−A)−δ0u? ∈ L0(Ω; ID([0, T ];E)).

aNote, that Ku0
is defined on Vp by extension.
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SPDEs of Reaction Diffusion Type

We are interested in SPDEs of the following type:

(♦)







du(t) =
(
∆u(t−) − u3(t−) + u(t−)

)
dt + dL(t), t ≥ 0,

u(0, ξ) = u0(ξ) 0 ≤ ξ ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

where u0 ∈ Lp(0, 1), p ≥ 1, and L(t) is a Lévy process.
————————————————————–

Or an SPDE given by

(♣)







du(t) = Au(t−) dt + F (t−, u(t−)) dt

+
∫

Z
G(t−, u(t−); z)η(dz; dt),

u(0) = u0 ∈ E,

where F and G are not global Lipschitz, but continuous and bounded,
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Solution of Martingale Type

Definition 5 A martingale solution to equation (♣) is a system

(Ω,F , P, {Ft}t≥0, {η̃(t, z)}t≥0,z∈Z , {u(t)}t≥0)

such that (Ω,F , P) is a complete probability space, {Ft}t≥0 a filtration
on it, {η(t, z)}t≥0,z∈Z is a time homogeneous Poisson Random
measure on B(Z) × B(R+) over (Ω,F , P) (with respect to the filtration
Ft) with intensity ν and u(t) is a B–valued adapted process such that
for any t ∈ [0, T ]

u(t) = e−tAu0 +

∫ t

0
e−(t−s)AF (s, u(s)) ds

+

∫ t

0

∫

Z

e−(t−s)AG(s, u(s−); z) dη̃(dz, ds), a.s..

Work in Progress with Brzezniak.
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Further Works

Numerical Approximation

Wong Zakai Approximation

Existence of Invariant Measure

Uniqueness of the Invariant Measure

Strong Feller Property of the Ornstein Uhlenbeck process

Strong Feller Property of an Arbitrary Solution

Different Type of Equations

. . .

. . .
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The End
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