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PORTFOLIO CREDIT LOSS

A credit portfolio consisting of n obligors with exposure

Wi, Wo, ..., Whp.

e Default indicator D; = 1,x.-41, X; standardized log asset value and
¥; default threshold.

o Default probability p; = P(X; < 7;).

o Portfolio loss L=Y7 , w;D;.

e Tail probability P(L > x) for some extreme loss level x.

¢ Value at Risk (VaR): the a-quantile of the loss distribution of L for
some « close to 1.
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LATENT FACTOR MODELS

e Y;...Yy: systematic factors that affect more than one obligor, e.g.,
state of economy, effects of different industries and geographical
regions.

e Z;: idiosyncratic factor that only affects an obligor itself.

e Y4 and Z are independent for all /.

o D;(Y9) and D; (YY) are independent.

o L(YY) =Y w;D;(Y4) becomes a weighted sum of independent
Bernoulli random variables.
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TAIL PROBABILITY: A NUMERICAL INTEGRATION
PROBLEM

P(L> x) = /P(L> x|Y¢) dP(Y9)

The integrand P (L > x|Y?) can be calculated accurately by
¢ the recursive method - Andersen et al (2003)
» the normal approximation - Martin (2004)

¢ the saddlepoint approximation - Martin et al (2001a, b), Huang et
al (2007a)

e review of various methods - Glasserman and Ruiz-Mata (2006),
Huang et al (2007b)
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PROPERTIES OF THE CONDITIONAL TAIL PROBABILITY

Assuming the factor loadings, ay, i=1,---,n, k=1,--- /d are all
nonnegative,

e The mapping
ykl—>P(L>X|Y~|:y1,Y2:y2,...,Yd:yd), k:1,-'~,d

is non-increasing in .
4
VY9 € [ay,by] % [ap, b2] ... X [ag, by]

P(L> x|bs,...bg) < P(L>x|vd) <P(L>x|ay,...aq)

e P(L>x|Yy,Yo,...,Yy) is continuous and differentiable with
respectto Y, k=1,---,d.
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A GAUSSIAN ONE-FACTOR EXAMPLE
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FIGURE: The integrand P(L > 100|Y) as a function of the common factor Y
for portfolio A, which consists of 1000 obligors with w; =1, p; = 0.0033 and
a;=+v0.2,i=1,...,1000.
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THE GAUSSIAN MULTI-FACTOR MODEL

I(f) = P(L> x) / /Y1, o(Yi,...Ya)dYs...dYy,

where f(Y1,... Yq) = P(L> x| V1,... Yy).

e curse of dimensionality: The product quadrature rule becomes
impractical because the number of function evaluations grows
exponentially with d.

¢ (quasi-) Monte Carlo methods: sample uniformly in the cube
[0,1]¢.

o focus on the subregions where the integrand is most irregular =
adaptive integration.
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GLOBALLY ADAPTIVE ALGORITHMS

integration rule

error estimate
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GLOBALLY ADAPTIVE ALGORITHMS FOR NUMERICAL
INTEGRATION

© Choose a subregion from a collection of subregions and subdivide
the chosen subregion.

® Apply an integration rule to the resulting new subregions; update
the collection of subregions.

©® Update the global integral and error estimate; check whether a
predefined termination criterion is met; if not, go back to step 1.
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THE GENZ-MALIK RULE

A polynomial interpolatory rule of degree 7, which integrates
exactly all monomials x1k1 x_é‘z ...x,’,‘d with ¥ k; <7 and fails to
integrate exactly at least one monomial of degree 8.

¢ All integration nodes are inside integration domain.

« Requires 29 +2d?+2d + 1 integrand evaluations for a function of
d variables, most advantageous for problems with d < 8.
Gauss-Legendre quadrature of degree 7 would need 4¢ integrand
evaluations.

o A degree 5 rule embedded in the degree 7 rule is used for error

estimation, no additional integrand evaluations are necessary.

€= |/7—/5|.
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THE GENZ-MALIK RULE

Bounded integral in each subregion.
VYd S [31,b1] X [ag,bg] Lo X [ad,bd]

CZgP@>xwﬁsﬂy:

znwmyw( <%H aj)).

Local bounds aggregate to a global upper bound and a global
lower bound for the whole integration region.

Asymptotic convergence: k — I(f) if we continue with the
subdivision until the global upper bound and lower bound coincide.

Error estimate not so reliable, cf. Lyness & Kaganove (1976),
Berntsen (1989).
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ADAPTIVE MONTE CARLO INTEGRATION

¢ Globally adaptive algorithm using Monte Carlo simulation as a
basic integration rule.

e Asymptotically convergent.
o Unbiased estimate for the tail probability.
e Practical variance estimate, probabilistic error bounds available.

« Error convergence rate at worst O (1 /W).

e Number of sampling points in each subregion independent of
number of dimensions d.
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A 2D EXAMPLE

FIGURE: Adaptive Genz-Malik rule for a 2 factor model. (left) integrand
P(L > x| Yy, Y2); (right) centers of the subregions generated by adaptive
integration.
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A FIVE-FACTOR MODEL

¢ 1000 obligors with w; =1, p; =0.0033, i=1,...,1000, grouped

into 5 buckets of 200 obligors.
¢ Factor loadings

wed (L1 1
1 \/Zafv\/Z?
1 1 _
—3%,0,0,0),1_601, 1800,
1
1.0, oo) i —800,...,1000

e Benchmark: plain MC with hundreds of millions of scenarios.

Adaptive integration for multi-factor portfolio credit loss models

Xinzheng Huang, TU Delft and Rabobank, the Netherlands



A FIVE-FACTOR MODEL: ADAPTIVE GM
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FIGURE: Estimation relative errors of adaptive GM, plain MC and quasi-MC
methods with around N = 108 evaluations for various loss levels.
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A FIVE-FACTOR MODEL: ADAPTIVE MC
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FIGURE: Tail probability P(L > 400) computed by adaptive MC integration
with number of integrand evaluations ranging from 50,000 to 108 and their
corresponding 95% confidence intervals (dotted lines). The dashed line is our
Benchmark.
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A FIVE-FACTOR MODEL: ADAPTIVE MC
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FIGURE: Relative estimation error of P(L > x) by Adaptive MC and plain MC
for different loss levels x.
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CONCLUSIONS

For the calculation of the tail probability in multi-factor portfolio credit
loss models,

e Adaptive algorithms are very suitable and particularly attractive for
large loss levels.

¢ Both adaptive Genz-Malik rule and adaptive Monte Carlo
integration are asymptotically convergent.

¢ The adaptive Monte Carlo integration is able to provide practical
probabilistic error bounds, with error convergence rate at worst

o(um).
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