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SYNOPSIS

The purpose of this talk is to offer an overview of

Stochastic Portfolio Theory, a rich and flexible

framework for analyzing portfolio behavior and eq-

uity market structure. This theory is descriptive as

opposed to normative, is consistent with observ-

able characteristics of actual markets and portfo-

lios, and provides a theoretical tool which is useful

for practical applications.

As a theoretical tool, this framework provides fresh

insights into questions of market structure and ar-

bitrage, and can be used to construct portfolios

with controlled behavior. As a practical tool, Sto-

chastic Portfolio Theory has been applied to the

analysis and optimization of portfolio performance

and has been the basis of successful investment

strategies for close to 20 years.
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1. THE MODEL. Standard Model (Bachelier,
Samuelson,...) for a financial market with n stocks
and d ≥ n factors: for i = 1, . . . , n,

dXi(t) = Xi(t)


bi(t)dt +

d∑

ν=1

σiν(t)dWν(t)




︸ ︷︷ ︸
.

Vector of rates-of-return: b(·) = (b1(·), . . . , bn(·))′.
Matrix of volatilities: σ(·) = (σiν(·))1≤i≤n,1≤ν≤d
will be assumed bounded for simplicity.
♣ Assumption: for every T ∈ (0,∞) we have

n∑

i=1

∫ T

0

∣∣∣ bi(t)
∣∣∣2 dt < ∞ , a.s.

All processes are adapted to a given flow of infor-
mation (or “filtration”) F = {F(t)}0≤t<∞ , which
satisfies the usual conditions and may be strictly
larger than the filtration generated by the driving
Brownian motion W (·) = (W1(·), . . . , Wd(·))′ .

No Markovian, or Gaussian, assumptions...
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Suppose, for simplicity, that the variance/covariance

matrix a(·) = σ(·)σ′(·) has all its eigenvalues bounded

away from zero and infinity: that is,

κ|| ξ||2 ≤ ξ′a(t)ξ ≤ K|| ξ||2 , ∀ ξ ∈ Rd

holds a.s. (for suitable constants 0 < κ < K < ∞ ).

• Solution of the equation for stock-price Xi(·):

d (logXi(t)) = γi(t) dt +
d∑

ν=1

σiν(t) dWν(t)

︸ ︷︷ ︸

with

γi(t) := bi(t)−
1

2
aii(t)

the growth-rate of the ith stock, in the sense

lim
t→∞

1

T

(
logXi(t)−

∫ T

0
γi(t)dt

)
= 0 a.s.
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2. PORTFOLIO. An adapted vector process

π(t) = (π1(t), · · · , πn(t))
′ ;

fully-invested, no short-sales, no risk-free asset:

πi(t) ≥ 0 ,
n∑

i=1

πi(t) = 1 for all t ≥ 0 .

Value Zπ(·) of portfolio:

dZπ(t)

Zπ(t)
=

n∑

i=1

πi(t)
dXi(t)

Xi(t)
= bπ(t)dt+

d∑

ν=1

σπ
ν (t)dWν(t)

with Zπ(0) = 1 . Here

bπ(t) :=
n∑

i=1

πi(t)bi(t) , σπ
ν (t) :=

n∑

i=1

πi(t)σiν(t) ,

are, respectively, the portfolio rate-of-return, and

the portfolio volatilities.
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¶ Solution of this equation:

d
(
logZπ(t)

)
= γπ(t) dt +

n∑

ν=1

σπ
ν (t) dWν(t)

︸ ︷︷ ︸
.

Portfolio growth-rate

γπ(t) :=
n∑

i=1

πi(t)γi(t) + γπ∗ (t) .

Excess growth-rate

γπ∗ (t) :=
1

2




n∑

i=1

πi(t)aii(t)−
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)




︸ ︷︷ ︸
.

Portfolio variance

aππ(t) :=
d∑

ν=1

(σπ
ν (t))2 =

n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t) .

♠ For a given portfolio π(·), let us introduce the
“order statistics” notation, in decreasing order:

π(1) := max
1≤i≤n

πi ≥ π(2) ≥ . . . ≥ π(n) := min
1≤i≤n

πi .
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3. MARKET PORTFOLIO: Look at Xi(t) as

the capitalization of company i at time t . Then

X(t) := X1(t)+. . .+Xn(t) is the total capitalization

of all stocks in the market, and

µi(t) :=
Xi(t)

X(t)
=

Xi(t)

X1(t) + . . . + Xn(t)
> 0

the relative capitalization of the ith company. Clearly
∑n

i=1 µi(t) = 1 for all t ≥ 0, so µ(·) is a portfolio

process, called "market portfolio".

. Ownership of µ(·) is tantamount to ownership of

the entire market, since Zµ(·) ≡ c.X(·).

♣ FACT 1: γπ∗ (·) ≥ (κ/2) ·
(
1− π(1)(·)

)
.

Moral: Excess-rate-of growth is non-negative, strictly

positive unless the portfolio concentrates on a sin-

gle stock: diversification helps not only to reduce

variance, but also to “enhance growth”.
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HOW? Consider, for instance, a fixed-proportion
portfolio πi(·) ≡ pi ≥ 0 with

∑n
i=1 pi = 1 and

p(1) = 1− η < 1 . Then

log

(
Zp(T )

Zµ(T )

)
−

n∑

i=1

pi logµi(T ) =
∫ T

0
γ

p∗(t) dt ≥ κη

2
T .

And if limT→∞ 1
T logµi(T ) = 0 (no individual stock

collapses very fast), then this gives almost surely

limT→∞
1

T
log

(
Zp(T )

Zµ(T )

)
≥ κη

2
> 0 :

a significant outperforming of the market.
Remark: Tom Cover’s “universal portfolio”

Πi(t) :=

∫
∆n pi Zp(t) dp∫
∆n Zp(t) dp

, i = 1, · · · , n

has value

ZΠ(t) =

∫
∆n Zp(t) dp∫

∆n dp
∼ max

p∈∆n
Zp(t) .

♣ FACT 2: γπ∗ (·) ≤ 2K ·
(
1− π(1)(·)

)
.



4. DIVERSITY. The market-model M is called

• Diverse on [0, T ], if there exists δ ∈ (0,1) such
that we have a.s.: µ(1)(t) < 1− δ︸ ︷︷ ︸, ∀ 0 ≤ t ≤ T .

• Weakly Diverse on [0, T ], if for some δ ∈ (0,1):

1

T

∫ T

0
µ(1)(t) dt < 1− δ , a.s.

︸ ︷︷ ︸

♣ FACT 3: If M is diverse, then γ
µ∗ (·) ≥ ζ for

some ζ > 0; and vice-versa.

♣ FACT 4: If all stocks i = 1, . . . , n in the market
have the same growth-rate γi(·) ≡ γ(·), then

lim
T→∞

1

T

∫ T

0
γ

µ∗ (t) dt = 0, a.s.

In particular, such a market cannot be diverse
on long time-horizons: once in a while a single
stock dominates such a market, then recedes; sooner
or later another stock takes its place as absolutely
dominant leader; and so on.
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• Here is a quick argument: from γi(·) ≡ γ(·) and

X(·) = X1(·) + · · ·+ Xn(·) we have

lim
T→∞

1

T

(
logX(T )−

∫ T

0
γµ(t)dt

)
= 0 ,

lim
T→∞

1

T

(
logXi(T )−

∫ T

0
γ(t)dt

)
= 0 .

for all 1 ≤ i ≤ n . But then

lim
T→∞

1

T

(
logX(1)(T )−

∫ T

0
γ(t)dt

)
= 0 , a.s.

for the biggest stock X(1)(·) := max1≤i≤n Xi(·) ,

and note X(1)(·) ≤ X(·) ≤ n X(1)(·) . Therefore,

lim
T→∞

1

T

(
logX(1)(T )− logX(T )

)
= 0 , thus

lim
1

T

∫ T

0

(
γµ(t)− γ(t)

)
dt = 0 .

But γµ(t) =
∑n

i=1 µi(t)γ(t) + γ
µ∗ (t) = γ(t) + γ

µ∗ (t) ,

because all growth rates are equal. 2
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♣ FACT 5: In a Weakly Diverse Market there exist

potfolios π(·) that lead to arbitrage relative to

the market-portfolio: with common initial capital

Zπ(0) = Zµ(0) = 1 , and some T ∈ (0,∞), we have

P[Zπ(T ) ≥ Zµ(T )] = 1 , P[Zπ(T ) > Zµ(T )] > 0 .

And not only do such relative arbitrages exist; they

can be described, even constructed, fairly explicitly.

5. DIVERSITY-WEIGHTING & ARBITRAGE

For fixed p ∈ (0,1), set

πi(t) ≡ π
(p)
i (t) :=

(µi(t))
p

∑n
j=1(µj(t))p

, i = 1, . . . , n .

Relative to the market portfolio µ(·), this π(·) de-

creases slightly the weights of the largest stock(s),

and increases slightly those of the smallest stock(s),

while preserving the relative rankings of all stocks.
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We shall show that, in a weakly-diverse market M,

this portfolio

πi(t) ≡ π
(p)
i (t) :=

(µi(t))
p

∑n
j=1(µj(t))p

︸ ︷︷ ︸
, i = 1, . . . , n ,

for some fixed p ∈ (0,1), satisfies

P[Zπ(T ) > Zµ(T )] = 1 , ∀ T ≥ T∗ :=
2

pκδ
· logn .

In particular, π(p)(·) represents an arbitrage oppor-

tunity relative to the market-portfolio µ(·).

z Suitable modifications of π(p)(·) can generate

such arbitrage over arbitrary time-horizons.

The significance of such a result, for practical long-

term portfolio management, cannot be overstated.

Discussion and performance charts can be found in

the monograph Fernholz (2002).
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6: Performance of Diversity-Weighting

Indeed, for this “diversity-weighted” portfolio

πi(t) ≡ π
(p)
i (t) :=

(µi(t))
p

∑n
j=1(µj(t))p

, i = 1, . . . , n

with fixed 0 < p < 1 and D(x) :=
(∑n

j=1 x
p
j

)1/p
,

we have

log

(
Zπ(T )

Zµ(T )

)
= log

(
D(µ(T ))

D(µ(0))

)
+ (1− p)

∫ T

0
γπ∗ (t)dt .

• First term on RHS tends to be mean-reverting,

and is certainly bounded:

1 =
n∑

j=1

xj ≤
n∑

j=1

(xj)
p ≤

(
D(x)

)p
≤ n1−p .

Measure of Diversity: minimum occurs when one

company is the entire market, maximum when all

companies have equal relative weights.
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• We remarked already, that the biggest weight of
π(·) does not exceed the largest market weight:

π(1)(t) := max
1≤i≤n

πi(t) =

(
µ(1)(t)

)p

∑n
k=1

(
µ(k)(t)

)p ≤ µ(1)(t) .

By weak diversity over [0, T ], there is a number
δ ∈ (0,1) for which

∫ T
0 (1 − µ(1)(t)) dt > δ T holds;

thus, from Fact #1:

2

κ
·
∫ T

0
γπ∗ (t) dt ≥

∫ T

0

(
1− π(1)(t)

)
dt

≥
∫ T

0

(
1− µ(1)(t)

)
dt > δ T , a.s.

• From these two observations we get

log

(
Zπ(T )

Zµ(T )

)
> (1− p)

[
κT

2
· δ − 1

p
· logn

]
,

so for a time-horizon

T > T∗ := (2 logn)/pκδ

sufficiently large, the RHS is strictly positive. 2
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Remark: It can be shown similarly that, over suffi-
ciently long time-horizons T > 0, arbitrage relative
to the market can be constructed under

γ∗µ(t) ≥ ζ > 0 , 0 ≤ t ≤ T (1)

for some real ζ , or even under the weaker condition
∫ T
0 γ∗µ(t) ≥ ζ T > 0 .

Open Question, whether this can also be done
over arbitrary horizons T > 0 .

• This result does not presuppose any condition
on the covariance structure (aij(·)) of the mar-
ket, beyond (1). There are examples, such as the
volatility-stabilized model (with α ≥ 0 )

d logXi(t) =
α

2µi(t)
dt +

dWi(t)√
µi(t)

, i = 1, · · · , n

for which variances are unbounded, diversity fails,
but (1) holds: γ∗µ(·) ≡ ((1+α)n−1)/2 , aµµ(·) ≡ 1 .

In this example, arbitrage relatively to the market
can be constructed over arbitrary time-horizons.
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7: STRICT SUPERMARTINGALES.

The existence of relative arbitrage precludes the ex-
istence of an equivalent martingale measure (EMM)
– at least when the filtration F is generated by the
Brownian motion W itself, as we now assume.

♠ In particular, if we can find a “market-price-of-
risk” process ϑ(·) with

σ(·)ϑ(·) = b(·) and
∫ T

0
||ϑ(t)||2 dt < ∞ a.s. ,

then it can be shown that the exponential process

L(t) := exp
{
−

∫ t

0
ϑ′(s) dW (s)− 1

2

∫ t

0
||ϑ(s)||2 ds

}

︸ ︷︷ ︸

is a local (and super-)martingale, but not a mar-
tingale: E[L(T )] < 1 .

Same for L(·)Xi(·) : E[L(T )Xi(T )] < Xi(0) .
Typically: limT→∞E[L(T )Xi(T )] = 0 , i = 1, · · · , n.

Examples of diverse and volatility-stabilized mar-
kets satisfying these conditions can be constructed.
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In terms of this exponential supermartingale L(·) ,
we can answer some basic questions, for d = n :

Q.1: On a given time-horizon [0, T ], what is the

maximal relative return in excess of the market

R(T ) := sup{ r > 1 : ∃h(·) s.t. Zh(T )/Zµ(T ) ≥ r , a.s. }
that can be attained by trading strategies h(·)?

(These can sell stock short, or invest/borrow in
a money market at rate r(·), but are required to
remain solvent: Zh(t) ≥ 0 , ∀ 0 ≤ t ≤ T .)

Q.2: Again using such strategies, what is the

shortest amount of time required to guarantee

a return of at least r > 1, times the market?

T(r) := inf{T > 0 : ∃h(·) s.t. Zh(T )/Zµ(T ) ≥ r , a.s. }

¶ Answers: R(T ) = 1/f(T ) and f
(
T(r)

)
= r ,

where f(t) := E
[

e−
∫ t
0 r(s)ds L(t) · X(t)

X(0)

]
↓ 0 .
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8. COMPLETENESS AND OPTIMIZATION

WITHOUT EMM

In a similar vein, given an F(T )−measurable ran-

dom variable Y : Ω → [0,∞) (contingent claim),

we can ask about its “hedging price”

HY (T ) := inf{w > 0 : ∃h(·) s.t. Zw,h(T ) ≥ Y , a.s. } ,︸ ︷︷ ︸

the smallest amount of initial capital needed to

hedge it without risk.

With D(T ) := e−
∫ T
0 r(s)ds , this can be computed

as

HY (T ) = y := E [L(T )D(T )Y ]

(extended Black-Scholes) and an optimal strategy

ĥ(·) is identified via Z y,ĥ(T ) = Y , a.s.

• To wit: such a market is complete, despite the

fact that no EMM exists for it.
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♠ Take Y = (X1(T )− q)+ as an example, and as-

sume r(·) ≥ r > 0 . Simple computation ⊕ Jensen:

X1(0) > HY (T ) ≥
(
E[L(T )D(T )X1(T )]− qe−rT

)+
.

Letting T →∞ we get, as we have seen:

HY (∞) := lim
T→∞

HY (T )

= lim
T→∞

E[L(T )D(T )X1(T )] = 0 .

. Please contrast this, to the situation whereby

an EMM exists on every finite time-horizon [0, T ].

Then at t = 0, you have to pay full stock-price for

an option that you can never exercise!

HY (∞) = X1(0) .

Moral: In some situations, particularly on “long”

time-horizons, it might not be such a great idea to

postulate the existence of EMM’s.
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♣ Ditto with portfolio optimization. Suppose we
are given initial capital w > 0 , finite time-horizon
T > 0 , and utility function u : (0,∞) → R (strictly
increasing and concave, of class C1 , with u′(0+) =
∞ , u′(∞) = 0 .) Compute the maximal expected
utility from terminal wealth

U (w) := sup
h(·)

E
[
u

(
Z w,h(T )

) ]
,

decide whether the supremum is attained and, if
so, identify an optimal trading strategy ĥ(·) .

. Answer: replicating trading strategy ĥ(·) for the
contingent claim

Y = I
(
Ξ(w)D(T )L(T )

)
, i.e., Z w,ĥ(T ) = Y .

Here I(·) is the inverse of the strictly decreasing
“marginal utility” function u′(·) , and Ξ(·) the in-
verse of the strictly decreasing function

W(ξ) := E
[
D(T )L(T ) I (ξ D(T )L(T ))

]
, ξ > 0 .

No assumption at all that L(·) should be a mar-
tingale, or that an EMM should exist !
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z Here are some other problems, in which no EMM
assumption is necessary:

#1: Quadratic criterion, linear constraint (Mar-
kowitz, 1952). Minimize the portfolio variance

aππ(t) =
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)

among all portfolios π(·) with rate-of-return

bπ(t) =
n∑

i=1

πi(t)bi(t) ≥ b0

at least equal to a given constant.

#2: Quadratic criterion, quadratic constraint.
Minimize the portfolio variance

aππ(t) =
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)

among all portfolios π(·) with growth-rate at least
equal to a given constant γ0:

n∑

i=1

πi(t)bi(t) ≥ γ0 +
1

2

n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t) .

22



#3: Maximize the probability of reaching a given
“ceiling” c before reaching a given “floor” f , with
0 < f < 1 < c < ∞ . More specifically, maximize
P [Tc < Tf ] , with Tc := inf{ t ≥ 0 : Zπ(t) = c } .

In the case of constant coëfficients γi and aij , the
solution to this problem is find a portfolio π that
maximizes the mean-variance, or signal-to-noise,
ratio (Pestien & Sudderth, MOR 1985):

γπ

aππ
=

∑n
i=1 πi(γi +

1
2aii)∑n

i=1
∑n

j=1 πiaijπj
− 1

2
,

#4: Minimize the expected time E [Tc ] until a
given “ceiling” c ∈ (1,∞) is reached.

Again with constant coëfficients, it turns out that
it is enough to maximize the drift in the equation
for logZw,π(·), namely

γπ =
∑n

i=1 πi

(
γi +

1
2aii

)
− 1

2
∑n

i=1
∑n

j=1 πiaijπj ,

the portfolio growth-rate (Heath, Orey, Pestien &
Sudderth, SICON 1987).
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#5: Maximize the probability P [Tc < T ∧ Tf ] of
reaching a given “ceiling” c before reaching a given
“floor” f with 0 < f < 1 < c < ∞ , by a given
“deadline” T ∈ (0,∞).

Always with constant coëfficients, suppose there is
a portfolio π̂ = (π̂1, . . . , π̂n)′ that maximizes both
the signal-to-noise ratio and the variance,

γπ

aππ
=

∑n
i=1 πi(γi +

1
2aii)∑n

i=1
∑n

j=1 πiaijπj
− 1

2
and aππ ,

over all π1 ≥ 0, . . . , πn ≥ 0 with
∑n

i=1 πi = 1. Then
this portfolio π̂ is optimal for the above criterion
(Sudderth & Weerasinghe, MOR 1989).

This is a big assumption; it is satisfied, for instance,
under the (very stringent) condition that, for some
G > 0 , we have

bi = γi +
1

2
aii = −G , for all i = 1, . . . , n .

Open Question: As far as I can tell, nobody seems
to know the solution to this problem, if such “si-
multaneous maximization” is not possible.
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9. SOME CONCLUDING REMARKS

We have surveyed a framework, called Stochastic

Portfolio Theory, for studying the behavior of port-

folio rules – and exhibited simple conditions, such

as “diversity” (there are others...), which can lead

to arbitrages relative to the market.

All these conditions, diversity included, are descrip-

tive as opposed to normative, and can be tested

from the predictable characteristics of the model

posited for the market. In contrast, familiar as-

sumptions, such as the existence of an equivalent

martingale measure (EMM), are normative in na-

ture, and cannot be decided on the basis of pre-

dictable characteristics in the model; see example

in [KK] (2006).

The existence of such relative arbitrage is not the

end of the world; it is not heresy, or scandal, either.
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Under reasonably general conditions, one can still
work with appropriate “deflators” L(·)D(·) for the

purposes of hedging derivatives and of portfolio op-

timization.

Considerable computational tractability is lost, as

the marvelous tool that is the EMM goes out of

the window; nevertheless, big swaths of the field

of Mathematical Finance remain totally or mostly

intact, and completely new areas and issues thrust
themselves onto the scene.

There is a lot more scope to this Stochastic Port-

folio Theory than can be covered in one talk. For
those interested, there is the survey paper with R.

Fernholz, at the bottom of the page

www.math.columbia.edu/ ∼ ik/preprints.html

It contains a host of open problems.

Please let us know if you solve some of them!
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