Alexander Kulikov*

MULTIDIMENSIONAL COHERENT RISK MEASURES

* - Moscow State University,

e-mail: kulikov_av@pochta.ru

COHERENT RISK MEASURES

Definition 1.2. (ADEH97) A coherent utility function

on L^{∞} is a map u: L^{∞} → □ with the properties

- (i) (Superadditivity) u(X+Y)≥u(X)+u(Y);
- (ii) (Monotoniaty) If $X \le Y$, then $u(X) \le u(Y)$;
- (iii) (Translation invariance) u(X+m)=u(X)+m for all $m \in \square$;
- (iv) (Positive homogenuity) $u(\lambda X) = \lambda u(X)$ for $\lambda \ge 0$;
- (v) (Fatou property) If $|X_n| \le 1$, $X_n \xrightarrow{P} X$, then $u(X) \ge \overline{\lim}_n u(X_n)$.
- The corresponding coherent risk measure is $\rho(X) = -u(X)$.

PARTIAL ORDERING

 $X \prec Y$ if $X(\omega) - Y(\omega) \in K(\omega)$ P-a.s., where $K(\omega)$ is the cone of currency exchange rates.

AXIOMS

- Definition 1.1. A multidimensional coherent utility function on $(L^{\infty})^d$ is a map u: $(L^{\infty})^d \to C$, $u \neq \square^d$, $u = u + \square^d$ with the properties
- (i) (Superaddtivity) $u(X+Y) \supseteq u(X)+u(Y)$;
- (ii) (Monotonidty) If $X \prec Y$, then $u(X) \subseteq u(Y)$;
- (iii) (Translation invariance) u(X+m)=u(X)+m for all $m \in \square$ ^d;
- (iv) (Positivehomogenuity) $u(\lambda X) = \lambda u(X)$ for $\lambda > 0$;
- (v) (Fatou property) If $||X_n|| \le c$, $X_n \xrightarrow{P} X$, then $u(X) \supseteq \overline{\lim}_n u(X_n)$, i.e. if x belongs to infinitely many $u(X_n)$, then x belongs to u(X).
- The corresponding multidimensional coherent risk measure is $\rho(X) = -u(X)$.

AXIOMS

Remarks.

- (i) If u is a coherent utility function, then $v(X) = (-\infty, u(X)]$ is a multidimensional coherent utility function with d = 1, $K(\omega) = \Box$ _.
- (ii) If u is a multidimensional coherent utility function with d = 1, $K(\omega) = \Box$, then $v(X) = \sup\{x \in \Box : x \in u(X)\}$ is a coherent utility function.

REPRESTATION THEOREMS

Theorem 2.1. A function $u:(L^{\infty})^d \to C$ is a multidimensional coherent utility function iff there exists nonempty set $D \subseteq (L^1)^d$ such that $Z(\omega) \in K^*(\omega)$ P-a.s. and

$$u(X) = \left\{ x \in \mathbb{R}^d : \forall Z \in D \sum_{i=1}^d Ex^i Z^i \le \sum_{i=1}^d EX^i Z^i \right\}, \tag{2.1}$$

where $K^*(\omega)$ -polar to $K(\omega)$, i.e.

$$K^*(\omega) = \{x \in R^d : \forall z \in K(\omega) \langle x, z \rangle \leq 0\}.$$

Theorem 2.2. (ADEH99) A function $u:L^{\infty} \to \square$ is a coherent utility function iff there exists nonempty set $D \subseteq \mathcal{P}$ such that

$$u(X) = \inf_{Q \in D} E_Q X. \tag{2.2}$$

REPRESENTATION THEOREMS

Definition 2.3. The largest set, for which (2.1) is true, is called the <u>determining set</u> for multidimensional coherent utility function.

Definition 2.4. A multidimensional coherent utility

function on $(L^0)^d$ is a map $u:(L^0)^d\to C\cup\{\varnothing\}$ defined as

$$u(X) = \left\{ x \in R^d : \forall Z \in D \ \sum_{i=1}^d E x^i Z^i \le \sum_{i=1}^d E X^i Z^i \right\}, \tag{2.3}$$

where D – set of d-dimensional random vectors $Z \in (L^1)^d$ such that $Z(\omega) \in K^*(\omega)$ P-a.s., and $EX^iZ^i = E(X^iZ^i)^+ - E(X^iZ^i)^-$, with an agreement $(+\infty) - (-\infty) = -\infty$, and if in the sum we have one item equal to $-\infty$, then the sum is equal to $-\infty$.

REPRESENTATION THEOREMS

Remarks.

- The above definitions are the multidimensional analogues of the classical ones.
- (ii) Clearly, the determining set is a convex cone. If multidimensional coherent utility function is on (L∞)^d, then the determining set is(L¹)^d-closed.
- (iii) If D (L¹)^d -closed convex cone and multidimensional coherent utility function is defined by (2.1) or (2.3), then D is the determining set for u.

EXTREME ELEMENTS

Let
$$L = \{ Z \in (L^1)^d : \sum_{i=1}^d EZ^i = 1 \}.$$

Then we can introduce some important spaces:

$$L_{w}^{1}(D) = \left\{ X \in (L^{0})^{d} : \sup_{Z \in D \cap L} \sum_{i=1}^{d} |EZ^{i}X^{i}| < \infty \right\};$$

$$L_s^1(D) = \left\{ X \in (L^0)^d : \sup_{Z \in D \cap L} \sum_{i=1}^d \left| EZ^i X^i \right| \left. I\left\{ \left. \left| X_i \right| > n \right\} > 0 \right\}. \right.$$

EXTREME ELEMENTS

Definition 3.1. Let u be a multidimensional coherent utility function with the determining set D. Let $X \in (L^0)^d$, $x \in \partial u(X)$. We will call a nonzero vector $Z \in D$ an extreme element for X at point x if $\sum_{i=1}^d EZ^i X^i = \sum_{i=1}^d EZ^i x^i$.

The set of extreme elements for X at point x is denoted by $X_D(X,x)$.

Proposition 3.2. If $D \cap L$ is weakly compact and $X \in L_s^1(D)$, then $X_D(X,x) \neq \emptyset$.

EXTREME ELEMENTS

The financial problems, for solution of which we use extreme elements:

(i) Capital allocation;

(ii) Risk contribution.

THANK YOU FOR YOUR ATTENTION!

- Axiomatization of multidimensional coherent risk measures (utility functions) and their connection with coherent risk measures (utility functions) in one-dimensional case.
- Representation of multidimensional coherent utility functions and introducing of the notion determining set in multidimensional case.
- Extreme elements as one of the basic objects for solving some financial problems.