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One dimensional diffusions

Consider a one dimensional diffusion

dXt = b(Xt)dt + σ(Xt)dWt,

with b : I → R, σ : I → R, where I = (α, β) is an open
interval.

We assume

∀x ∈ I, σ2(x) > 0,

∀x ∈ I, ∃ε > 0,

∫ x+ε

x−ε

1 + |b(y)|

σ2(y)
dy < ∞.

Under these conditions, we have existence and
uniqueness in law of a weak solution, subject to X0 = x,
x ∈ I. We also assume no explosion
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Let L0 be the infinitesimal generator of the diffusion

L0 u(x) =
σ2(x)

2
u′′(x) + b(x)u′(x), x ∈ I,

for u : I → R twice continuously differentiable.

Define the scale function

p(x) =

∫ x

c
e
−

R y

c

2b(z)

σ2(z)
dz

dy, x ∈ I.

Note that L0 p = 0.
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Define the speed measure

m(dx) =
2

σ2(x)p′(x)
dx.

No explosion if and only if

lim
x→α

v(x) = lim
x→β

v(x) = +∞,

where

v(x) =

∫ x

c
(p(x) − p(y))m(dy).
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Infinite horizon

Given a bounded nonnegative Borel function f : I → R, and
a locally bounded Borel function r : I → R, with inf

I
r > 0,

define
vf (x) = sup

τ∈T 0

Ex

(

e−Λτ f(Xτ )
)

, x ∈ I,

where T 0 is the set of all stopping times with respect to the
natural filtration of X, and Λt =

∫ t
0 r(Xs)ds.

S. Dayanik and I. Karatzas (2003) characterize vf as the
smallest p-concave majorant of f .
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Denote by f̂ the upper semicontinuous envelope of f :

f̂(x) = lim sup
y→x

f(y), x ∈ I.

Theorem 1 The function vf is the only continuous and
bounded function on I, such that vf is the difference of two
convex functions and solves the variational inequality

{

v ≥ f̂ , L0v − rv ≤ 0

(v − f̂) (L0v − rv) = 0

Note that L0v is a measure. We also have vf = v
f̂
.
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Finite horizon

Denote by T 0
t (resp. T̄ 0

t ) the set of all stopping times with
respect to the (right continuous) natural filtration of X, with
values in the interval [0, t) (resp. [0, t]). Consider the
functions uf and vf defined on (0,+∞) × I as follows:

uf (t, x) = sup
τ∈T 0

t

Ex

[

e−Λτ f(Xτ )
]

, (1)

vf (t, x) = sup
τ∈T̄ 0

t

Ex

[

e−Λτ f(Xτ )
]

, (2)

Recall Λt =
∫ t
0 r(Xs) ds. We have uf ≤ vf , and uf = u

f̂
.
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Theorem 2 We have uf = vf and the function vf is jointly
continuous on (0,+∞) × I.
The equality uf = vf is an easy consequence of the
following Proposition.
Proposition 3 Let τ be a stopping time with values in [0, t].
We have

Ex

[

e−Λτ f(Xτ )
]

= lim
s→t,s<t

Ex

[

e−Λτ∧sf(Xτ∧s)
]
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The variational inequality satisfied by the value function
should involve the operator

−
∂

∂t
+ L,

where the operator L is defined by

Lu(t, x) = L0u(t, x) − r(x)u(t, x)

=
σ2(x)

2

∂2u

∂x2
(t, x) + b(x)

∂u

∂x2
(t, x) − r(x)u(t, x)

(t, x) ∈ (0,+∞) × I.
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For a smooth function u, we have

L0u(t, x) =
σ2(x)

2

(

∂2u

∂x2
(t, x) +

2b(x)

σ2(x)

∂u

∂x
(t, x)

)

The scale function p satisfies
d

dx

(

1

p′

)

=
2b

σ2

1

p′
.

Hence

L0u =
σ2p′

2

(

1

p′
∂2u

∂x2
+

2b

σ2

1

p′
∂u

∂x

)

=
σ2p′

2

∂

∂x

(

1

p′
∂u

∂x

)

.
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We now have

−
∂u

∂t
+ Lu = −

∂u

∂t
+ L0u − ru

= −
∂u

∂t
+

σ2p′

2

∂

∂x

(

1

p′
∂u

∂x

)

− ru

Let

Au =
2

σ2p′

(

−
∂u

∂t
+ Lu

)

For a smooth test function Φ with compact support in
(0,+∞) × I, we have

∫ ∫

AuΦdtdx =

∫ ∫

u

(

∂Φ

∂t
+ LΦ

)

dtm(dx)
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Theorem 4 The value function vf is the only continuous
and bounded function on (0,+∞)× I satisfying the following
conditions

1. v ≥ f , Av ≤ 0 on (0,+∞) × I,

2. Av = 0 on the open set
U := {(t, x) ∈ (0,+∞) × I | v(t, x) > f̂(x)},

3. For every x ∈ I, limt→0 v(t, x) = f̂(x).
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Density estimates

We want to prove that if τ is a stopping time with values
in [0, t]. We have

Ex

[

e−Λτ f(Xτ )
]

= lim
s→t,s<t

Ex

[

e−Λτ∧sf(Xτ∧s)
]

Write

Ex

[

e−Λτ∧sf(Xτ∧s)
]

= Ex

[

e−Λτ f(Xτ )1{τ<s}

]

+Ex

[

e−Λsf(Xs)1{τ≥s}

]

.

By dominated convergence,

lim
s→t,s<t

Ex

[

e−Λτ f(Xτ )1{τ<s}

]

= Ex

[

e−Λτ f(Xτ )1{τ<t}

]

,
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Therefore, it suffices to prove that
lims→t,s<t Ex |f(Xs) − f(Xt)| = 0.

This is true if f is continuous.

For an arbitrary f ,

Ex |f(Xs) − f(Xt)| ≤ Ex |f(Xs) − ϕ(Xs)| + Ex |ϕ(Xs) − ϕ(Xt)|

+Ex |ϕ(Xt) − f(Xt)| .

Therefore, we need to prove that, given ε > 0 one can
find a bounded continuous function ϕ such that

sup
t/2≤s≤t

Ex |f(Xs) − ϕ(Xs)| ≤ ε.
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This can be deduced from the following estimate, where
Pth(x) = Exh(Xt).

∫

I

(

d

dx
(Pth)(x)

)2
dx

p′(x)
≤

1

t
||h||2L2(m).

The previous estimate is deduced from a similar
estimate for the resolvent (Uρ)ρ≥0 of the semi-group,
where Uρh(x) = Ex

[∫ ∞
0 e−ρth(Xt)dt

]

Note that Uρh is the unique bounded solution of the
ordinary differential equation

σ2(x)

2
u′′(x) + b(x)u′(x) − ρu(x) + h(x) = 0.
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