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The Merton problem with transaction costs

I Goal: Maximize expected utility from consumption

E
(∫ ∞

0
e−δtu(ct)dt

)
I Here: u(x) = log(x)

I c admissible consumption rate (no debts)
I Bank account: 1 (no interest paid)
I Stock price S: Modeled as geometric Brownian motion
I Proportional transaction costs µ, λ (e.g. 1%)



The Merton problem with transaction costs

Without transaction costs (Merton [1971]):
I Fixed fraction of wealth in stock (e.g. 31%)
I Consumption rate is fixed proportion of wealth
I Both numbers explicitly known

With transaction costs (Magill and Constantinides [1976],
Davis and Norman [1990]):

I Fraction of wealth in stock in fixed corridor (e.g. 20-40%)
I Consumption rate is function of wealth in cash and stock
I Corridor known only as solution to free boundary problem



A general principle
Shadow prices
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Optimal portfolio without transaction costs for shadow price



A general principle
Shadow prices

I Idea: Problem with transaction costs as problem without
transaction costs for different price process

I Shadow price at boundary when optimal strategy transacts

Appearances in various fields:
I Jouini and Kallal [1995]: No-arbitrage
I Lamberton et al. [1998]: Local risk minimization
I Cvitanić and Karatzas [1996], Loewenstein [2000]: Portfolio

optimization

Useful for computations?



Application to Merton problem with transaction costs

Real price processes:
I Stock price(discounted): dSt/St = αdt + σdWt
I Bid price: (1− µ)St
I Ask price: (1 + λ)St

Shadow price process S̃ ∈ [(1− µ)S, (1 + λ)S]:
I S̃t = exp(Ct)St
I Ct = log(S̃t/St) deviation from real price
I Ct ∈ [log(1− µ), log(1 + λ)]
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Application to Merton problem with transaction costs

Real price processes:
I Stock price(discounted): dSt/St = αdt + σdWt
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Dynamics of C?



Application to Merton problem with transaction costs

Ansatz:
I Itô process dCt = α̃(Ct)dt + σ̃(Ct)dWt

⇒ dS̃t/S̃t = Drift(Ct)dt + Diffusion(Ct)dWt

Optimal strategy (without transaction costs):
I Consumption: δṼt

I Fraction of stocks: π(Ct) = Drift(Ct)

Diffusion(Ct)2

I Use transformation 1
1+exp(f (Ct))

= π(Ct)

⇒ Need to determine 3 functions: α̃, σ̃, f
⇒ f (log(1− µ)), f (log(1 + λ)) determine corridor
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Application to Merton problem with transaction costs
I Optimality:

1
1 + exp(−f )

=
Drift

Diffusion2 (I)

I No trading within bounds: dϕt = 0 for optimal ϕ

I Itô’s formula:

dϕt = somefunction(f , f ′, f ′′, α̃, σ̃)dt
+ anotherfunction(f , f ′, α̃, σ̃)dWt

I Hence

0 = somefunction, (II)
0 = anotherfunction (III)

I 3 conditions
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Application to Merton problem with transaction costs

Solution to Equations I-III:

σ̃ =
σ

f ′ − 1

α̃ = −α + σ2
(

f ′
f ′ − 1

) (
1

1 + e−f

)
f satisfies the ODE

f ′′(x) =
( 2δ

σ2 (1 + ef (x))
)

+
(2α

σ2 − 1− 4δ
σ2 (1 + ef (x))

)
f ′(x)

+
(

4α
σ2 + 2− 2δ

σ2 (1 + ef (x)) + 1−e−f (x)

1+e−f (x)

)
(f ′(x))2

+
(

2α
σ2 + 2

1+e−f (x)

)
(f ′(x))3

Still missing:
Boundary conditions for x = log(1− µ) and x = log(1 + λ)



Application to Merton problem with transaction costs

Heuristics for boundary conditions:
I Optimal fraction π(Ct): Reflected diffusion (e.g. between 20%

and 40%) ⇒ local time at boundary
I Hence f (Ct) = log

(
1−π(Ct)

π(Ct)

)
has local time

I Our Ansatz: S̃t (and hence Ct) Itô process, i.e. no local time
at boundary

I Intuition: otherwise infinite position optimal at boundary

Consequence: Contradiction unless f ′ =∞ on boundary
I Boundary conditions

f ′(log(1− µ)) = ∞
f ′(log(1 + λ)) = ∞
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Application to Merton problem with transaction costs
Numerical solution: Consider g = f −1

I ODE for g :

g ′′(y) =
(

1−e−y

1+e−y + 1− 2α
σ2

)
+

(
4α
σ2 − 2− 1−e−y

1+e−y − 2δ
σ2 (1 + ey )

)
g ′(y)

+
(
−2α

σ2 + 1− 4δ
σ2 (1 + ey )

)
(g ′(y))2

−
( 2δ

σ2 (1 + ey )
)
(g ′(y))3

I Free boundary: y1, y2 with

g(y1) = log(1− µ), g ′(y1) = 0
g(y2) = log(1 + λ), g ′(y2) = 0

I Free boundaries y1, y2 determine corridor, g = f −1 determines
dynamics of C and hence S̃ = exp(C)S



Application to Merton problem with transaction costs
Numerical solution ct’d
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Application to Merton problem with transaction costs
Simulation
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Application to Merton problem with transaction costs
Simulation ct’d
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Summary

Computation of conditions:
1. Optimality without transaction costs,
2. Constant trading strategy within bounds,
3. Boundary conditions via Itô process assumption.

Verification:
1. Prove existence of a solution to free boundary problem.
2. Prove existence of corresponding processes S̃ etc.
3. Show that optimal investment in S̃ trades only at boundary.
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