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Introduction

Vulnerable Options

@ Vulnerable options = options where the writer of the option
may default, mainly trading on OTC markets

e BIS, the OTC equity-linked option gross market value in the
first half of 2006 USD 6.8 tIn



Introduction
Previous Literature

@ Treatment in complete markets (Hull-White(1995),
Jarrow-Turnbull(1995), Klein(1996));

@ Hung-Liu (2005) : market incompleteness and good deal
bound pricing for vulnerable options. Only Wiener process
setup.




Introduction

Contributions of the current paper

@ Streamlining the existing literature on vulnerable options in
complete markets;

@ Applying the Bjork-Slinko (2005) method of computing good
deal bounds to obtain higher tractability;

@ Applying structural methods for default (intensity based
method - work in progress);

@ Extending the results for european calls to options with
homogeneous payoff functions of the first degree (e.g.
exchange options) ;



Good Deal Bounds

Pricing in incomplete markets

pricing in incomplete markets — no unique EMM
— Nno unique price

@ classical solutions:
e no-arbitrage bounds - too large
e choosing one specific martingale measure
- ad-hoc; economic meaning?
@ alternative solution - GOOD DEAL BOUNDS

o Cochrane and Saa Raquejo (2000)
e Bjork and Slinko (2005)



Good Deal Bounds

Theory of Good Deal Bounds

Main ldea

set a bound on the possible Sharpe Ratio of any portfolio that can
be formed on the market <

— set a bound on the possible Girsanov kernels for potential EMM
< set a bound on the possible prices for the claim




Structural Model
Structural Model

specified under the objective measure P
o traded stock S

dSt = Odtstdt + St'_}’td Wt;
@ assets of the counterparty Y
dYe = pe Yedt + Yi5ed Wy

@ bank account B;

@ the payoff function of the vulnerable option
(D(ST, YT) = max(ST - K,O)/(YT > D) + RI(YT < D),

@ recovery payoff

R=(1- 5)% max[St — K, 0]



Structural Model
Good Deal Bound Problem

The upper good deal bound price process for a vulnerable option
is defined the optimal value process for the following optimal
control problem:

max  ECle T8 (max[St — K,0]/{ YT > D} + RI{YT < D})]
%2

dY: = (pe + 0epr) Yedt + Yo dW,
dS; = rS¢dt + S5 dWs

Qr +Yepr = r

el < B2



Structural Model

Hamilton Jacobi Bellman equation

The HJB equation:

oV

E(sty) +SUpAV(t,S,y) - rv(t757y) = 0
©

V(T,s,y)=®(s,y).

is solved in 2 steps:
@ solving for each t, s, y the embedded static problem
— we obtain the Girsanov Kernel

@ solving the PDE
— we obtain the price of the vulnerable option



The Static Embedded Problem

@ the static embedded problem

oVv
max —opy
® oy
a+yp=r
ol < B?

@ the Girsanov kernel

2
n/ Qy — r r — ot
YL Vi \/ Tt




Results
Results for Vulnerable European Call

@ closed form solution for a vulnerable European call

n(t) = SiN[—a1,—b1,p]
eir(Tit)KN[_éQ) —b2,,0]

1-— T o
DIBSL‘ Y: exp{/ [,Us + 0sps + 057;] dS}N[—a3; bs; _P]
t

K(1 - T
— e_r(T_t)(DIB)Yt eXP{/ (s + Gsps)dsYN (—aa, —ba, p)
t



Results

Factors that influence the size of the GDB interval

@ factors specific to each transaction

o distance to default

o volatility of the assets of the counterparty

e correlation between the assets of the counterparty and the
underlying

o the size of the market price of risk for the underlying



Results

The Variation of o. Far from default

Sigma = 0.15, counterparty far away from default

Sigma = 0.25, counterparty far away from default
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The Variation of 0. Near default

Option prices/bounds

Option prices/bounds

Results
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Results

Factors that influence the size of the GDB interval

@ factors specific to the market

o size of the good deal bound constraint (B)
e the deadweight costs g



The Variation of 5. Near default

Option prices/bounds

Option prices/bounds

Beta = 0,05, counterparty near default

Results

Beta = 0.3, counterparty near default
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The Variation of B. Near default

B=2, counterparty near default

Results

B=2.5, counterparty near default
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Results

Extensions - exchange options

The payoff of a exchange option

(ST, 57, Y7, T) = max[S} — S7,0]/{ Y7 > D} + RI(Yr < D)
(1)

@ in complete markets, we can price an exchange option by
change of measure
@ the result extends to vulnerable exchange options

@ can we apply the same techniques with GDB?



As in the complete market case:

@ having a change of variable for the payoff and martingale
conditions;

@ re-stating the good deal bound condition:
I¢? < B2 — || — 73)|* < B (2)

@ calculating the new relevant Girsanov kernel and correlation
coefficient;

@ substituting them in the formula for a European call



Results
Barrier Options in Complete markets

payoff

Cro e max[St — K,0], ifSe>Lforall0<t< T
o= o, if S < Lforsome0<t<T

remove the path dependency for a vulnerable claim :

no.vlo) = e TEL, [WY (ST, v7)] (3)
2F

_ L\ 2
e T <s> E()(?%,y’ [\UY(ST, YT)]



Results
How?

@ We introduce a new process Z; with the same dynamics as S,
) . 2
but starting point L?

@ Notice that, in this set-up, the payoff of any defaultable claim
can be written as:

WY(Sr,Y7) = W(ST)F(YT),

where F(Y7) = I{Yr > D} + &=9Y1 fy, < p}.



GDB problem for barrier options

The upper good deal bound price process for a vulnerable
down-and-out option is defined the optimal value process for the
following optimal control problem:

max  EQ  [e"T=9d(St, Zr)F(YT))]

2 0,5,2,y
dY: = (1 + Fe) Yedt + YsedW,
dS; = rSedt + SevedWs
dZ; = rZidt + Z15: dW,
ar +ytpe=1r
e < B

Standard



Conclusion

Conclusion

@ We apply the GDB method to vulnerable options;
@ We allow for structural models of default;

@ We extend the results for European call vulnerable options to
other vanilla options with payoff functions homogeneous of
the first degree in S.

@ We extend results for barrier options when the assets of the
counterparty and the underlying are independent



THANK YOU!
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