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Overview

Dynamic and Static Problem

Dynamic Problem:  V¢(X) = supycpy (x) E[U(YT)]

)

Static:  supxcgem.x E[U(X)] & Dual: sup,sq zepe E[U(yZ7) + %y]

where
o We(%) ={Y|Yr =%+ [; NdS — C;, N € AP, C € KP}
0 ©PVX = X ¢ [P(F7),VZ € DI E(ZTX) < X}, X €R .
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Overview

Finding Optimal Solutions

dynamic optimization problem

0

constrained static problem ——  Lagrange functional —— dual problem
optimal T solution saddleT point l
13) = (U)H() < (A5 [(Zy) V(%)) < Az = Ly V(%)
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Overview

Finding Optimal Solutions

dynamic optimization problem

0

constrained static problem < dual problem

J, optimal solution T

10%) = (U)H8) = A = V()
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Dual Optimizer via Verification

@ Observe: in many cases, the optimal dual optimizer 23,(;) is independent of
% soset Z = 23;(;().

@ Propose candidate Z € D. (Y(X) can be easily derived if Z = 23,(;()).

Q Xo(¥) := I(Y(X)Z7) is optimal solution of supy E(U(X)), s.t. E(Z7X) < %

@ Find strategy to replicate Xp(X)
= Xo(X) is optimal terminal value of the dynamic problem

= Xp(X) is optimal solution of supy E(U(X)), s.t. VZ € D: E(Z7X) < X
— By the duality relation Y(X)Z7 := Y(X)Zr is optimal dual solution.

Y UNIVERSITAT
GIESSEN

@ UniCredit

Christina Niethammer (Uni GieBen/HVB) g-Optimal Signed Martingale Measures September 20, 2007, Vienna 5/25



Overview

Convergence to the primal and dual solution of the
exponential problem

><z

Vom(X)Zom  —  Vexp(X)Zmin (convergence of dual solutions)

12
1%

Xz — x#(x) (convergence of terminal wealths)
Vom(X) — Vexp(X) (convergence of value functions)

~ ~Y

Gom(Vom(X)) —  Pexp(Vexp(X)) (convergence of the dual functions)

92m) — P (convergence of portfolios)
s
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Market Model

Let (2, F, P) be a probability space, T € (0, 00) a finite time horizon, and
F = (Ft)tepo, 1 2 filtration satisfying the usual conditions, i.e.
right-continuity and completeness.

We suppose that a discounted market with n assets is given by
S, = diag(S{M, ..., s{MeX, tefo, 7], S >0, (1)

where X is supposed to be an R™-valued Lévy process with characteristic
triplet (oo*, v, b) on (2, F, P) and N a Poisson random measure with
intensity measure v/(dx)dt, and N(dx, dt) = N(dx, dt) — v(dx)dt
appearing in the Lévy-lt6-decomposition.
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Market Model

Market Model: Semimartingale Decomposition

We assume that the filtration F coincides with IFX, the completion of the
filtration generated by the Lévy process X and E[|S(t)|] < oo for all

t € [0, T]. The second assumption guarantees that S is a special
semimartingale with decomposition §; = Sg + M; + A;, where

dM; = S;_(cdW; + [ (X —1)N(dx, dt))
Rj

and

dA; = St_(—ﬂ -l-/ (eX -1- X1||X||§1)I/(dx))dt.
Rg
Here, 8 = —(b+ %ZJ 0_2J) and S = diag(SM, ..., 5("). 1 denotes the
vector in R” having all entries equal to one, and expressions such as e* are
to be interpreted componentwise, i.e. e¥ = (e, ...,e*) . T
@ Unicredt
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Why introducing a signed version of the g-Optimal measure?

Minimal Entropy Martingale Measure
We set,
D ={Z e UE(Zr) =1, SZ is a local P-martingale},

where U9 denotes the set of R-valued L9(2, P)-uniformly integrable
martingales. A subset is D = {Z € D¢ Z1 > 0 P-a.s.}. We recall the
definition of the minimal entropy martingale measure:

(Min, o) Find Z™" € D8 such that

E[ZTMlog ZF"] = inf E[Z7log Z7].
ZeDs

where
Dt — (7 € D}, E(Ztlog Z7) < o0}

JUSTUS-LIEBIG-
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Why introducing a signed version of the g-Optimal measure?

g-Optimal Martingale Measures

We further study the g-optimal signed martingale measure:
(Mins4) Find Z(9) € D¢ such that

E|Zy1 = inf E[1Z7]7).

dQ5:9) = Z(Tq)dP is called the g-optimal signed martingale measure
Q59 (qSMM).
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Why introducing a signed version of the g-Optimal measure?

g-Optimal Martingale Measures

We further study the g-optimal signed martingale measure:
(Mins4) Find Z(9) € D¢ such that

E|Zy1 = inf E[1Z7]7).

dQ5:9) = Z(Tq)dP is called the g-optimal signed martingale measure
Q59 (qSMM).

Replace, DY by Dd = {Z € D Zr > 0 P-a.s.}, then the solution,
provided its existence, defines the g-optimal equivalent martingale
measure Q(¢:9) (qEMM) with density process Z(9).
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Why introducing a signed version of the g-Optimal measure?

Assumptions
Assumption (Cg)

C4 : There exists an 64 € R" such that

eg,(x) = ((q — 1) (e* — 1) + 1)71

defines a real-valued function on the support on v which satisfies

00’04 + /R (e — L)eg,(x) — x1j<1¥(dx) = 3

and
| (e300 — 1= alegq(x) ~ Div(e) < oc.

Cy:(g—-1)0,(e” —1)+1>0,v-ass.

If C; and C are satisfied, we say that C; holds.
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Why introducing a signed version of the g-Optimal measure?

g-Optimal Equivalent Martingale Measure

g-Optimal Equivalent Martingale Measure: Existence

Theorem (Jeanblanc et al., Theorem 2.9)

Suppose (4 holds. Then the gEMM exists and is given by
S(Q;Ua egq - 1)7

where £(f, g) denotes the stochastic exponential with Girsanov para
f,g,i.e.

gt(f g) _ efot f(s)dWs—% fot ||f(5)||2d5+fot fnqag g(S,X)N(dX,dS)

< [T + (s, AX(s)))e8CAXCD.

s<t

meters

However, Cj is very restrictive!
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Why introducing a signed version of the g-Optimal measure? g-Optimal Equivalent Martingale Measure

g-Optimal Equivalent Martingale Measure: Problems

Proposition

Suppose n =1 and P is not a martingale measure. Then:
(i) If C4 holds for some g > 1, then

/ e’ u(dx) < oo (4)
x>1

for some 6 > 0 or the minimal entropy martingale measure does not exist.
(i) If Cq holds for some g > 1, then

/ (€ — 1) — x1qer(de) + (b + 202) <0 (5)
Ro

or upward jumps are bounded, i.e. v([L,o0)) = 0 for some L > 0.
v

Waesssn ™
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Why introducing a signed version of the g-Optimal measure? g-Optimal Equivalent Martingale Measure

g-Optimal Equivalent Martingale Measure: Problems
Proposition

Suppose n =1 and P is not a martingale measure. Then:
(i) If C4 holds for some g > 1, then

/ e’ u(dx) < oo (4)
x>1

for some 6 > 0 or the minimal entropy martingale measure does not exist.
(i) If Cq holds for some g > 1, then

/ (€ — 1) — x1qer(de) + (b + 202) <0 (5)
Ro

or upward jumps are bounded, i.e. v([L,o0)) = 0 for some L > 0.
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hold simultaneously. Condition (5) is rather unlikely (a negative optimal portfolio is induced).
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Why introducing a signed version of the g-Optimal measure? g-Optimal Signed Martingale Measure

g-Optimal Signed Martingale Measure: Existence

Theorem

Suppose that g = 2r2n”_71 for some m € N and that C; holds. Then,
Z9) = £(0,0,eg, — 1)

is the density process of gSMM.

Proposition
Suppose n =1, g(m) = % P is not a martingale measure, and the set
of equivalent martingale measures is nonempty. Then, Cq_(m) holds for
m € N, if and only if
e>™ v (dx) < oo. (6)
x>1

v
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g-Optimal Signed Martingale Measure: Examples

Example

Suppose n = 1.

(i) If v(dx) behaves (up to a slowly varying function) as e~*+*dx for

X — 00, then C;(m) holds for m < Ay /2 and fails for m > A\, /2. However,
Cq fails for all g, if [ (€ — 1) — x1q<1v(dx) + (b + $62) > 0. This tail
behavior is inherent in generalized hyperbolic models and the Kou model.

(ii) If there are constants 79,71 > 0 such that

/ - ey (dx) < oc, (7)

then Cq_(m) holds for all m € N. However (4 fails for all g, if the upward
jumps are not bounded and fRO(eX = 1) = x1<av(dx) + (b + 302) > 0.
A popular model, which satisfies (7) and has unbounded upward jumps is
the Merton model.

v
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Why introducing a signed version of the g-Optimal measure? Minimal Entropy Martingale Measure and Convergence to MEMM

Minimal Entropy Martingale Measure
Assumption (C)

There exists a vector 0, € R" satisfying

/R I(e* — 1)@ 11 [lv(d) < oo (8)

n
0

and 0Loo’ + fRS(eX — 1)l — x1y <1v(dx) = B.

Theorem (Fujiwara/Miyahara or Esche/Schweizer and Hubalek/Sgarra)

(i) If condition C is satisfied, then the entropy minimal martingale measure
is given by
E(0Lo, %1 1),

(ii) If n =1 and there is no 6, satisfying C, then the entropy minimal
martingale measure does not exist.

v
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Why introducing a signed version of the g-Optimal measure? Minimal Entropy Martingale Measure and Convergence to MEMM

Convergence to the Minimal Entropy Martingale Measure

Theorem (MEMM)

Suppose n = 1, the minimal entropy martingale measure exists, and there
is a d > 0 such that 6., specified by condition C, satisfies

/ e(max{0e,-0280}+0)¢" () < o0, (9)
x>1

Then:

(i) If 6 > 0 or upwards jumps are bounded, then C, is satisfied for
sufficiently small g > 1 and the g-optimal equivalent martingale measures
converge to the minimal entropy martingale measure in L"(P), for some
r>1,as g | 1 (in the sense that the densities converge).

2m

(ii) Suppose g(m) = 52" If 6. <0, then Cy(m) s satisfied for all m € N
and the g(m)-optimal signed martingale measures converge to the minimal
entropy martingale measure in L"(P), for some r > 1, as m T co.

y
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Verification in a General Semimartingale Model

Theorem
Suppose ZeDy, qg= 231”11 and, for some X < 2m, the contingent claim
@m) (3 st | 2m—X
2mE(Z7)

is replicable with a predictable strategy ¥ (#shares held) and ¥ € A7, i.e.

)
1
19lizmany = Il /0 IdM]e' )} [ 2 p) < o0 (11)
T
19l mgny = | /0 [9dA | 2 p) < 0. (12)

Then Z is the density process of the g-optimal signed martingale measure.

v
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Verification and Portfolio Optimization

Replicating Strategy in the above Lévy Setting

Lemma

Suppose that g = 23,”11 for some m € N and that C; holds. Define

m 2m — X :
W = S TE(a — Do (a - Dfl(e — 1))

><Qgst_}et(q_l)es<_/6+ng(eX—l—X].HXHSI)V(dX)) ‘

Then for X < 2m and Z = E(0,0,eg, — 1) the contingent claim

N 1 om — %
XCm(ZY = 2m — 2mZE™ m-—x

L 2m
2mE(Z7"7")

is replicable with initial wealth X and the predictable strategy 9(2™ e A2™.

v
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Consequences for Portfolio Management
The replicating strategy 9™ is the solution of

argmax{ E(uzm(X)); X € ©Cm*} (13)

with respect to the utility function upm(x) = —(1 — 55)2™, where

)

;
emX* — {X e L®™(Q,Fr,P): I e AP st X = >”<+/ 19L,d5u}-
0

Moreover under the assumptions of Theorem MEMM, 9(2™) converges

uniformly in probability to the optimal portfolio of the exponential
problem, U(x) = —e™*, ¥() and

t 5 t
(x+/ 9§ m)dSu)—(x—l—/ 99 ds,)
0 0

Note, if S is a one-dimensional (non-compensated) exponential Poisson

process with jump height 2, there will be arbitrage but the portfolio Tewa&™
. . 72 UniCredit

problem (13) has a solution with 0,y = —(2m — 1)!
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Conclusion

@ in the presence of jumps the g-optimal measure may fail to be equivalent,
but belongs to the larger class of signed martingale measures

@ an analogous representation for the densities of equivalent martingale
measures as stochastic exponentials is not available
= techniques for the equivalent case cannot be generalized

a verification procedure based on a hedging problem yields an explicit
representation of the g-optimal signed martingale measure

restrictive conditions for the equivalent case can be dropped
= in many practically relevant models gMMM is signed

and equivalent measure are presented

convergence of the g-optimal measures to the minimal entropy martingale
measure is established

JUSTUS-LIEBIG-
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Conclusion and Appendix

g-Optimal Equivalent Martingale Measure: Examples

(i) Note that most of the concrete models discussed in the literature, such
as generalized hyperbolic models or the popular jump-diffusion models by
Merton or Kou satisfy [ ., e v(dx) = oo for all § > 0. Hence, C, and

the existence of the MEMM cannot hold simultaneously for these models.

(i) In condition (5) upward jumps are exponentially weighted and
downward jumps are exponentially damped. Hence,

/(eX -1)— x1|X|§11/(dx)

can become negative only, if the Lévy measure gives much more weight to
negative jumps than to positive jumps, leading to an extreme gain-loss
asymmetry in the jumps. In such situation we expect that the
deterministic trend b is large to compensate for the risk of downwardms.esc

(7 UNIVERSITAT
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Proof

Let g = 2m/(2m — 1). We consider the following maximization problems
with utility function upm(x) = —(1 — 5%)2™:

2m
Max; : X®) = argmax{E(uam(X)); X s.t. E(ZrX) < X}
Maxo : X® = argmax{E(uam(X)); X st. VZ € DI : E(ZrX) < X}
Maxs : XO®) = argmax{E(um(X)); X € ©C™M*}
where

)

;
em)% — {X e >™(Q,Fr,P): e AP st X = >”<+/ 19L,d5u}.
0

v
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Conclusion and Appendix

Proof

We have
E(uzm(XW)) = E(u2m(XP)) = E(u2m(X®))) = E(u2m(X*™(2))).
A straightforward calculation shows that the convex dual of wuyp, is given by
lom(y) = (2m —1)y*™/Cm=1) — 2my.

Standard duality theory can be applied to verify that X(2™(Z) is the
maximizer of problem Max;. All inequalities turn into identities. Moreover,

E(uom(X(2))) = E(uam(X®)) < inf  (E(tam(y - Z7)) + %¥)

T ZeDd, y>0
— _ 2m/(2m-1) . 2m/(2m-1)1\ _ =
= nf ((2m )y (Zg‘)g E[z7 ]) (2m X)y>
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