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Risk Measures and dynamical setting

• Axiomatic analysis of capital requirements:

A risk measure ρ is a map L∞ → R satisfying certain axioms.

(Artzner et al. (1997, 1999), Delbaen (2000), Föllmer and Schied

(2002), Frittelli and Rosazza Gianin (2002))

• Dynamical setting: Filtered probability space

(Ω,F , (Ft)t=0,...,T , P ), F0 = {∅,Ω}, F = FT .

The time horizon T might be finite or infinite.

The risk of a financial position X ∈ L∞(FT ) is evaluated by the

risk process (ρt(X))t=0,1,....

ρt is a map L∞ → L∞(Ft) taking into account information Ft.

(Artzner et al. (2004), Cheridito et al. (2006), Delbaen (2003),

Detlefsen (2003), Scandolo (2003), Riedel (2004))
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Conditional Convex Risk Measure
A map ρt : L∞ → L∞(Ft) with the following properties for all

X,Y ∈ L∞:

• Conditional Translation Invariance: ∀Xt ∈ L∞t :

ρt(X +Xt) = ρt(X)−Xt

• (Inverse) Monotonicity: X ≤ Y ⇒ ρt(X) ≥ ρt(Y )

• Conditional Convexity: ∀λ ∈ L∞t , 0 ≤ λ ≤ 1:

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y )

• Normalization: ρt(0) = 0.

is called a conditional convex risk measure.

φt := −ρt is a conditional monetary utility function.
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Acceptance Sets

An important characterization of a conditional convex risk measure is

the acceptance set

At :=
{
X ∈ L∞

∣∣ ρt(X) ≤ 0
}
.

ρt is uniquely determined through its acceptance set:

ρt(X) = ess inf
{
Y ∈ L∞t

∣∣ X + Y ∈ At

}
.

→ ρt(X) is the minimal conditional capital requirement needed to

make a financial position X acceptable at time t.
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Robust Representation (cf. Detlefsen and Scandolo (2005))

For a conditional convex risk measure ρt the following are equivalent:

• ρt is continuous from above;

• ρt has the robust representation

ρt(X) = ess sup
Q∈Pt

(
EQ[−X | Ft ]− αmin

t (Q)
)
,

where the penalty function αmin
t is given by

αmin
t (Q) = ess sup

X∈L∞
(EQ[−X | Ft ]− ρt(X)) = ess sup

X∈At

EQ[−X | Ft ]

for Q ∈ Pt :=
{
Q ∈M1(P )

∣∣ Q ≈ P on Ft

}
.
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Problem

In the dynamical setting we obtain for each X a sequence of risk

assessments (ρt(X))t=0,1,.... The question arises:

How are the risk assessments at different times interrelated?

→ Several notions of time consistency.
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(Strong) Time Consistency

• A dynamic convex risk measure (ρt)t=0,1,... is called (strongly) time

consistent, if for all X,Y ∈ L∞ and t ≥ 0 the following holds:

ρt+1(X) = ρt+1(Y ) ⇒ ρt(X) = ρt(Y ).

Equivalent characterization of (strong) time consistency is

• Recursiveness:

ρt = ρt(−ρt+1) ∀ t ≥ 0.

(Artzner et al. (2004), Cheridito et al. (2006), Delbaen (2003), Detlefsen

and Scandolo (2005), Klöppel and Schweizer (2005), Riedel (2004))
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Step by Step

Consider a conditional convex risk measure ρt restricted to the space

L∞(Ft+1), i.e. just looking one step ahead.

The corresponding “one-step” acceptance set is given by

At,t+1 :=
{
X ∈ L∞(Ft+1)

∣∣ ρt(X) ≤ 0
}

and the minimal “one-step” penalty function by

αmin
t,t+1(Q) := ess sup

X∈At,t+1

EQ[−X | Ft ], Q ∈ Pt.
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Equivalent Characterizations
Let (ρt)t=0,1,... be a dynamic convex risk measure such that each ρt is

continuous from above and assume that the set

Q∗ :=
{
Q ∈Me(P )

∣∣ αmin
0 (Q) <∞

}
is nonempty. Then the following conditions are equivalent:

1. (ρt)t=0,1,... is (strongly) time consistent.

2. At = At,t+1 +At+1 ∀ t.

3. αmin
t (Q) = αmin

t,t+1(Q) + EQ[αmin
t+1(Q)|Ft] ∀ t, ∀Q ∈Me(P ).

4. (ρt(X) + αmin
t (Q))t=0,1,... is a Q-supermartingale ∀Q ∈ Q∗.

In each case ρt has a robust representation

ρt(X) = ess sup
Q∈Q∗

(
EQ[−X|Ft]− αmin

t (Q)
)
, t = 0, 1, . . . .
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Dynamics of Penalty Functions

In particular it follows that the penalty function process (αmin
t (Q)) is a

Q-supermartingale for all Q ∈ Q∗ with the Riesz decomposition

αmin
t (Q) = EQ

[ ∞∑
k=t

αmin
k,k+1(Q)

∣∣∣Ft

]
︸ ︷︷ ︸

Q-potential

+ lim
s→∞

EQ

[
αmin

s (Q)|Ft

]
︸ ︷︷ ︸

Q-martingale

and the Doob-decomposition

αmin
t (Q) = EQ

[ ∞∑
k=0

αmin
k,k+1(Q)

∣∣∣Ft

]
+MQ

t −
t−1∑
k=0

αmin
k,k+1(Q).

Conference on Advanced Mathematical Methods for Finance, September 18, 2007



Dynamic Convex Risk Measures: Time Consistency, Prudence, and Sustainability 11

Prudence

We introduce weaker notion of time consistency:

• A dynamic convex risk measure (ρt)t=0,1,... is called prudent, if

ρt ≥ ρt(−ρt+1) ∀ t ≥ 0

or equivalently

ρt( ρt(X)− ρt+1(X)︸ ︷︷ ︸
adjustment at t+1

) ≤ 0 ∀ t ≥ 0, ∀X.

• Another equivalent characterization of prudence is

X ∈ At ⇒ −ρt+1(X) ∈ At ∀ t ≥ 0, ∀X

(“stay on the safe side”).
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Equivalent Characterizations

Let (ρt)t=0,1,... be a dynamic convex risk measure such that each ρt is

continuous from above and sensitive. Then the following conditions are

equivalent:

1. (ρt)t=0,1,... is prudent.

2. At ⊆ At,t+1 +At+1 for all t.

3. αmin
t (Q) ≤ αmin

t,t+1(Q) + EQ[αmin
t+1(Q)|Ft] for all t and all

Q ∈Me(P ).
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Equivalent Characterizations (continued)

Moreover, properties 1) - 3) imply the following:

4. The process

ρt(X)−
t−1∑
k=0

αmin
k,k+1(Q), t = 0, 1, . . .

is a Q-supermartingale for all X ∈ L∞ and all Q ∈ Q∞,loc, where

Q∞,loc :=
{
Q ∈Me(P )

∣∣ EQ

[∑t
k=0 α

min
k,k+1(Q)

]
<∞ ∀ t ≥ 0

}
.

Assume further that either T <∞ or

∃Q∗ ∈Me(P ) such that αmin
t,t+1(Q∗) ∈ L∞(Ft) ∀ t ≥ 0.

Then property 4) is equivalent to properties 1) - 3).
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Sustainability

Let (ρt)t=0,1,... be a dynamic risk measure and let X = (Xt)t=0,1,... be a

bounded adapted process. Then we call X sustainable with respect to

the risk measure (ρt), if

ρt(Xt −Xt+1) ≤ 0 for all t = 0, 1, . . . .

• Meaning: We consider X to be a cumulative investment process.

Then Xt+1 −Xt is an adjustment that has to be added at time

t+ 1. If the process X is sustainable, then this future payment is

acceptable with respect to the risk measure ρt.

• A dynamic risk measure (ρt) is prudent iff for each X the risk

process (ρt(X)) is sustainable with respect to (ρt).
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Sustainability (continued)
Suppose that (ρt)t=0,1,... is a dynamic convex risk measure such that

each ρt is continuous from above and let X be any bounded adapted

process. Consider the following properties:

a) The process X is sustainable with respect to the risk measure (ρt).

b) The process

Xt −
t−1∑
k=0

αmin
k,k+1(Q), t = 0, 1, . . .

is a Q-supermartingale for all Q ∈ Q∞,loc.

Then property a) implies property b). Assume further that

∃Q∗ ∈Me(P ) such that αmin
t,t+1(Q∗) ∈ L∞(Ft) ∀ t ≥ 0.

Then properties a) and b) are equivalent.
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Recursive construction

Suppose that T <∞ and let (ρt)t=0,...,T be a dynamic convex risk

measure. Consider a new risk measure (ρ̃t)t=0,...,T defined recursively by

ρ̃T (X) := ρT (X) = −X

ρ̃t(X) := ρt(−ρ̃t+1(X)), t = 0, . . . , T − 1, X ∈ L∞.

• Then (ρ̃t) is again a dynamic convex risk measure and it is

(strongly) time consistent by definition. (cf. Cheridito et al. (2006),

Cheridito and Kupper (2006), Drapeau (2006))

• If the original risk measure (ρt) is prudent, then (ρ̃t) lies below (ρt).
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Recursive construction (continued)

Suppose that T <∞ and let (ρt)t=0,...,T be a dynamic convex risk

measure such that each ρt is continuous from above. Assume further

that for each t = 1, . . . , T − 1

∃ Qt ∈M1(P ) : Qt ≈ P on Ft+1, EQt

[
αmin

t,t+1(Qt)
]
<∞.

Let (ρ̃t)t=0,...,T denote the (strongly) time consistent dynamic convex

risk measure that arises from (ρt) via recursive construction.

Then for each X ∈ L∞ the risk process (ρ̃t(X))t=0,...,T is the smallest

bounded adapted process such that it is sustainable with respect to (ρt)
and covers the final loss.
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