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Model Setup

Filtered probability space: (Q2, F = (Ft)icpo,1], P)
Finite time horizon: T > 0

Money market: bond with stochastic interest rates r

t

ds® = s%rdt, SO =1, ie, s§°):exp(/ rsds>,
0

r uniformly bounded and progressively measurable w.r.t.

Stock market: n stocks with price process S; = (S,“), R Sﬁ”))T, return R:, and
excess return R, where

ds; = Diag(St)(mdt+ O’det) s dR; = ,u,pdf+ ordW;s s dF?[ =dR; — rdt.

W n-dimensional standard Brownian motion w.r.t. 7 and P
drift 4; € R" Fi-adapted and independent of W

volatility o; € R"*" progressively measurable w.r.t. 7,

ot non-singular, and ;' uniformly bounded.
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Risk Neutral Probability Measure

We introduce the risk neutral probability measure ( — for filtering and optimization).

Definition

» Martingale density process

t t
z,:exp(—/ 6 dWs — % / HGSHst)
JO JO

with 6; = o, " (ur — ri1,) the market price of risk

» Risk neutral probability measure P defined by

dP
diP = ZT
E expectation operator under P
» Girsanov’s theorem:

t
W; = W1+/ 0sds
0

defines a P-Brownian motion



Partial Information

Remark

» We consider the case of partial information:
— we can only observe interest rates and stock prices (F'-°) but not the drift

» The portfolio has to be adapted to F"°
— we need the conditional density ¢; = E[Z;|F7
— we need the filter for the drift fi; = E[u| ]

Assumption

» The interest rates r are F°-adapted — F"5 = F°

» Zis a martingale w.r.t. 7 and P

Lemma

» We have FS = 7" = FR _ the market is complete w.r.t. FS
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Consumption and Trading Strategy

Definition
» Trading strategy 7:: n-dimensional, J—"S—adapted, measurable
» Initial capital xo > 0
» Wealth process X™ satisfies
dX = n (uedt + or dWs) + (X7 — 1, 7)) dt

X3 =X
» A strategy is admissible if X{” > 0 a.s. forall t € [0, T]

7 represents the wealth invested in the stocks at time ¢
ni = m/X{" denotes the corresponding fraction of wealth

7/34



Utility Functions

Definition
U: [0,00) — R U {—o0} is a utility function, if U is strictly increasing, strictly concave,
twice continuously differentiable on (0, o), and satisfies the Inada conditions:

U'(c0) = lim U'(x) =0, U'+) = Iirfg U(x)=c0.
X— 00 X
| denotes the inverse function of U’.

Assumption

Ily) < Ky?, |I'(y)] < Ky "forally € (0,00) and a,b,K > 0

Example

Logarithmic utility U(x) = log(x) Power utility U(x) = x“/a for o < 1, a0 # 0.
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Optimization Problem

Optimization Problem

We optimize under partial information!

Objective: Maximize the expected utility from terminal wealth, i.e.,
maximize E[U(X7)]

under (risk) constraints we still have to specify.

The optimization problem consists of two steps:
1. Find the optimal terminal wealth

2. Find the corresponding trading strategy
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Time-Dependent Convex Constraints

» We can write our model under full information with respect to F” as
dH{Zﬂtdt+U[dV17 l‘E[O., T]

where the innovation process V = (V;):c(o, 7 is @ P-Brownian motion defined by

t t ot
Vi = WtJr/ 0;1(/157[15)dS:/ 051 dRsf/ 0;1;}5ds.
0 0 0

» K; represents the constraints on portfolio proportions at time t — 7 € K;
K: is a Fi-progressively measurable closed convex set ) # K; C R” that contains 0

» For each t we define the support function 4;: R” — R U {400} of —K: by

si(y)=sup(—x'y), yeR".

XEK;

—  0t(y) is Fi-progressively measurable
— ¥y 0:(y) is a lower semicontinuous, proper, convex function on its effective
domain K; = {y € R": §i(y) < oo}
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Time-Dependent Convex Constraints

Definition

A trading strategy 7™ is called K;-admissible for initial capital x, > 0 if X{* > 0 a.s. and
ni € Kiforall t € [0, T].

We denote the class of admissible trading strategies for initial capital xo by Ak, (xo).

We introduce the set H of dual processes v;:: [0, T] x Q — K; which are
Ff-progressively measurable processes, satisfying E [foT(Hz/,Hz + 0¢(wr)) dt] < oc.
For each dual process v € ‘H we introduce

» anew interest rate process r;’ = ri + d:(v1).

» anew drift process fif = fit + vt + dt(vt)1n.

» anew market price of risk 07 = o, " (fit — i + v1)

» anew density process ¢” given by d{; = -0y ¢/ dV;
Then:
Solution under constraints = solution under no constraints with new market coefficients!
Problem:
Find optimal »!



Time-Dependent Convex Constraints

Proposition
Suppose xp > 0 and E[U~ (X7)] < oo for alln™ € Ak(xo).

» A trading strategy n™ € Ax(xo) Is optimal, if for some y* > 0, v* € H

~ *

XF =1y ¢r), X" (¥y)=x,

where (3 = (%" . Further, n”™ and v* have to satisfy the complementary slackness
condition
Si(vi) + (i) 'vi =0, telo,T].

> y*,v" solve the dual problem
V(y) = inf E[0(yEF)],
where U(y) = sup,.,{U(x) — xy},y > 0 is the convex dual function of U.

» If F7 = FY holds, then an optimal trading strategy exists.
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Suppose we cannot trade in [t, { + At]. Then

At

t+At
Ax;':x,’;A,—X,":X,"exp</ rsds)—X,"—I—exp(/
t t

1 t+At
X (exp(—E/ diag(asa;)ds—i—/
t t

Next, we impose the relative LEL constraint

rds) (n7) " X7

At

ades) - 1) .

E[(ax™) " |F] < e,

with e = LX7.

K= {nf € RTE[(AXT)IFP] < et}
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Limited Expected Loss & Limited Expected Shortfall

We introduce the relative LES constraint as an extension to the LEL constraint
E[(AXT +q) | 7] < e,
with e; = L1 X{" and g: = Lo X{".
» LES with L, = 0 corresponds to LEL with L = L.

» LEL: any loss in [t, t + At] can be hedged with L% of the portfolio value.

» LES: any loss greater L% of the portfolio value in [t, t + Af] can be hedged with
L1% of the portfolio value.

» LEL & LES: For hedging we can use standard European call and put options.
Definition
K = {nf € Rn|E[(AXtTr +q) 7| FP] <et}
Lemma

KFEE and K5 are convex.

For n = 1 we obtain the interval K'5% = [}, n¢].
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Other constraints

Value-at-Risk constraint:
Under the original measure AX;" is given by

AL T
AXT = X7 exp(/ rsds> =X+ (i) X"
Jt

1AL

. (exp (/;HN(MS B % diag(asag)) ds+ /t os dWS> — exp <‘/I.[+m . ds>> |

We impose for n = 1 the relative VaR constraint on the loss (AX{") ™,

P((AXT)™ > LXT|FS e = fie) <.

v

VaR is computed under the original measure P.

v

Under partial information we need the (unknown) value of the drift
— use e.g. ut = [it.

» For n =1 we obtain the interval K"#" = [}, n{].

v

If n > 2 then K% may not be convex!

v

Possible to apply a large class of other risk constraints e.g. CVaR.
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U(x) = log(x), n =1, no constraints:

ne = = (:—tg(ﬂt —n).
With constraints:
ni ifnf >t
n=ng =0 ifnd € i),
neifnf <np.
Hence, we cut off the strategy obtained under no constraints if it exceeds or falls below

a certain threshold.
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Gaussian Dynamics (GD) for the Drift

» Drift: modeled as the solution of the stochastic differential equation (cf. Lakner *98)
dut = k(i — ) dt + v d W,

1o ~ N (fio, po), n-dimensional,
W is a n-dimensional Brownian motion with respect to (F, P),
» We are in the situation of Kalman-filtering with signal ., observation R, and
filter fue = E [t | 7).
» Filter: i is the unique F°-measurable solution of
dfie = [(—r — pe(owol ) ") fu + wja] dt + pi(owod ) dRy
pr=—pilowod ) pr—rpe— pir” + v’
with initial condition ({0, po).

» (' satisfies d¢; ' = ¢ (fie — r1n) (o) AW
Proposition

FS = FR = FW — FV _ an optimal trading strategy exists.
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The Bayesian case is a special case of the Gaussian dynamics for the drift.

> Drift: 1 = po = (1, ..., i) is an (unobservable) F;-measurable Gaussian
random variable with known mean vector /i and covariance matrix po.

» Filter: Explicit solution:
t _1 t
fie= (1nen+ o0 [ (20l )" 88) " (o4 o [ (s0d) " ORs)
0 0

! Ty—1 -1
Pt = (1n><n+P0/ (UsUs )_ dS) Po -
0
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HMM: The Drift

The drift process . of the return, is a continuous time Markov chain given by
w = BY;, BeR™7,

where Y is a continuous time Markov chain with

» state space the standard unit vectors {e, ..., es} in RY, and
» rate matrix Q € R?*?, where

> Q is the jump rate or transition rate from e, to e/,

> M= —Qu = Z,d:”#k Qy is the rate of leaving e,

» the waiting time for the next jump is exponentially distributed with parameter A\, and
Qu/ Mk is the probability that the chain jumps to e, when leaving e for | # k.

The different states of the drift are the columns of B.

We can write the market price of risk as

0r=o0; (ue—r1n)=©; Yy, where ©O;:=0; " (B-rlxa).
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We are in the situation of HMM filtering since R; = [, BYsds + [, osdWs.
We need
» the conditional density ¢ = (¢i)iep,n = E[Z|F] =

1
» the unnormalized filter € = (&)icpo,r = E[Z; ' V1| F ]
> the normalized filter ¥ = (V))icjo,n = E[Vi|F7] = f = G&.

t t .
£ = E[Yo] + / Q" &sds + / Diag(£5)07 dWs
0 0

FS = FR = FW = £V _ an optimal trading strategy exists.
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We consider the HMM for the drift.
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For the volatility we consider the Hobson-Rogers model.
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Numerical Results (1/2)

» We consider 20 stocks of the Dow Jones Industrial Index
» We use daily prices (adjusted for dividends and splits) for 30 years, 1972—2001

» Parameter estimates are based on five years with starting year 1972, 1973,...,
1996 using a Markov Chain Monte Carlo algorithm.

» We apply the strategy in the subsequent year
— we perform 500 experiments whose outcomes we average.

» We consider LEL- and LES-constraint.
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Numerical Results ct'd (2/2)

[ UXr) | mean | median [ stdev. | aborted
unconstrained
b&h 0.1188 0.1195 | 0.2297 0
Merton 0.0248 0.0826 | 0.4815 2
GD -1.2002 -1.0000 0.9580 79
Bayes 0.0143 0.0824 0.5071 2
HMM -0.0346 0.0277 0.9247 13
LEL risk constraint (L=0.5%)
GD 0.0252 0.0294 0.1767 0
Bayes 0.1002 0.0988 0.1595 0
HMM 0.1285 0.1242 0.2004 0
LES risk constraint (L1=0.1%,L.2=5%)
GD -0.0395 -0.0350 | 0.3086 0
Bayes 0.0950 0.0968 | 0.2752 0
HMM 0.1505 0.1402 0.3434 0

» LEL and LES improve the performance of all models.
» With LEL and LES we don’t go bankrupt anymore.
» The HMM strategy with risk constraints outperforms all other strategies.
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Conclusion & Outlook

Conclusion

» We show how to apply dynamic risk constraints using time-dependent convex
constraints.

» We derive explicit trading strategies with dynamic risk constraints under partial
information.

» The numerical results indicate that dynamic risk constraints can reduce the risk
and improve the performance.

Outlook

» Allow for consumption.
» More detailed analysis of the multidimensional case.

» Explicit strategies for general utility.



1| D. Cuoco, H. He, and S. Issaenko, Optimal Dynamic Trading Strategies with Risk
Limits, FAME, International Center for Financial Asset Management and

Engineering, 2002.

1| K. F C. Yiu, Optimal portfolios under a value-at-risk constraint, J. Econom.
Dynam. Control 28 (2004), no. 7, 1317—1334, Mathematical programming.

n| W. Putschégl and J. Sass, Optimal Investment under Dynamic Risk Constraints
and Partial Information, (2007), working paper.

34/34



	Model Setup
	Basic Model Setup
	Risk Neutral Probability Measure

	Problem formulation
	Time-Dependent Convex Constraints
	Dynamic Risk Constraints
	Gaussian Dynamics for the Drift
	A hidden Markov Model (HMM) for the Drift
	Example
	Bibliography

