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Model Setup

I Filtered probability space: (Ω,F = (Ft)t∈[0,T ], P)

I Finite time horizon: T > 0

I Money market: bond with stochastic interest rates r

dS(0)
t = S(0)

t rt dt , S(0)
0 = 1 , i.e., S(0)

t = exp
“Z t

0
rs ds

”
,

r uniformly bounded and progressively measurable w.r.t. F

I Stock market: n stocks with price process St = (S(1)
t , . . . , S(n)

t )>, return Rt , and

excess return R̃t , where

dSt = Diag(St)(µt dt + σt dWt) , dRt = µt dt + σt dWt , dR̃t = dRt − rt dt .

W n-dimensional standard Brownian motion w.r.t. F and P

drift µt ∈ Rn Ft -adapted and independent of W

volatility σt ∈ Rn×n progressively measurable w.r.t. FS
t ,

σt non-singular, and σ−1
t uniformly bounded.
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Risk Neutral Probability Measure

We introduce the risk neutral probability measure ( → for filtering and optimization).

Definition

I Martingale density process

Zt = exp
„
−

Z t

0
θ>s dWs −

1
2

Z t

0
‖θs‖2 ds

«
with θt = σ−1

t (µt − rt1n) the market price of risk

I Risk neutral probability measure P̃ defined by

dP̃
dP

:= ZT

Ẽ expectation operator under P̃

I Girsanov’s theorem:

W̃t := Wt +

Z t

0
θs ds

defines a P̃-Brownian motion
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Partial Information

Remark

I We consider the case of partial information:

→ we can only observe interest rates and stock prices (F r,S) but not the drift

I The portfolio has to be adapted to F r,S

→ we need the conditional density ζt = Ê Zt |FS
t

˜
→ we need the filter for the drift µ̂t = Ê µt |FS

t
˜

Assumption

I The interest rates r are FS-adapted → F r,S = FS

I Z is a martingale w.r.t. F and P

Lemma

I We have FS = F W̃ = F R̃ → the market is complete w.r.t. FS
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Consumption and Trading Strategy

Definition

I Trading strategy πt : n-dimensional, FS-adapted, measurable

I Initial capital x0 > 0

I Wealth process Xπ satisfies

dXπ
t = π>t (µt dt + σt dWt) + (Xπ

t − 1>n πt)rt dt

Xπ
0 = x0

I A strategy is admissible if Xπ
t ≥ 0 a.s. for all t ∈ [0, T ]

πt represents the wealth invested in the stocks at time t

ηπ
t = πt/Xπ

t denotes the corresponding fraction of wealth
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Utility Functions

Definition

U : [0,∞) → R ∪ {−∞} is a utility function, if U is strictly increasing, strictly concave,

twice continuously differentiable on (0,∞), and satisfies the Inada conditions:

U ′(∞) = lim
x→∞

U ′(x) = 0 , U ′(0+) = lim
x↓0

U ′(x) = ∞ .

I denotes the inverse function of U ′.

Assumption

I(y) ≤ Kya, |I′(y)| ≤ Ky−b for all y ∈ (0,∞) and a, b, K > 0

Example

Logarithmic utility U(x) = log(x) Power utility U(x) = xα/α for α < 1, α 6= 0.
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Optimization Problem

Optimization Problem

We optimize under partial information!

Objective: Maximize the expected utility from terminal wealth, i.e.,

maximize E
ˆ
U(XT )

˜
under (risk) constraints we still have to specify.

The optimization problem consists of two steps:

1. Find the optimal terminal wealth

2. Find the corresponding trading strategy
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Time-Dependent Convex Constraints

I We can write our model under full information with respect to FR as

dRt = µ̂t dt + σt dVt , t ∈ [0, T ] .

where the innovation process V = (Vt)t∈[0,T ] is a P-Brownian motion defined by

Vt = Wt +

Z t

0
σ−1

s (µs − µ̂s) ds =

Z t

0
σ−1

s dRs −
Z t

0
σ−1

s µ̂s ds .

I Kt represents the constraints on portfolio proportions at time t → ηπ
t ∈ Kt

Kt is a Ft -progressively measurable closed convex set ∅ 6= Kt ⊆ Rn that contains 0

I For each t we define the support function δt : Rn 7→ R ∪ {+∞} of −Kt by

δt(y) = sup
x∈Kt

(−x>y) , y ∈ Rn .

→ δt(y) is Ft -progressively measurable

→ y 7→ δt(y) is a lower semicontinuous, proper, convex function on its effective

domain K̃t = {y ∈ Rn : δt(y) < ∞}
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Time-Dependent Convex Constraints

Definition

A trading strategy ηπ is called Kt -admissible for initial capital x0 > 0 if Xπ
t ≥ 0 a.s. and

ηπ
t ∈ Kt for all t ∈ [0, T ].

We denote the class of admissible trading strategies for initial capital x0 by AKt (x0).

We introduce the set H of dual processes νt : [0, T ]× Ω 7→ K̃t which are

FR
t -progressively measurable processes, satisfying E

ˆR T
0

`
‖νt‖2 + δt(νt)

´
dt

˜
< ∞.

For each dual process ν ∈ H we introduce

I a new interest rate process rν
t = rt + δt(νt).

I a new drift process µ̂ν
t = µ̂t + νt + δt(νt)1n.

I a new market price of risk θν
t = σ−1

t (µ̂t − rt + νt)

I a new density process ζν given by dζν
t = −θν

t ζν
t dVt

Then:

Solution under constraints = solution under no constraints with new market coefficients!

Problem:

Find optimal ν!
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Time-Dependent Convex Constraints

Proposition

Suppose x0 > 0 and E[U−(Xη
T )] < ∞ for all ηπ ∈ AK (x0).

I A trading strategy ηπ ∈ AK (x0) is optimal, if for some y∗ > 0, ν∗ ∈ H

Xπ
T = I(y∗ζ̃∗T ) , X ν∗(y∗) = x0 ,

where ζ̃∗T = ζ̃ν∗
T . Further, ηπ and ν∗ have to satisfy the complementary slackness

condition

δt(ν
∗
t ) + (ηπ

t )>ν∗t = 0 , t ∈ [0, T ] .

I y∗, ν∗ solve the dual problem

Ṽ (y) = inf
ν∈H

E
ˆ
Ũ(y ζ̃ν

T )
˜

,

where Ũ(y) = supx>0

˘
U(x)− xy

¯
, y > 0 is the convex dual function of U.

I If FR = FV holds, then an optimal trading strategy exists.

13 / 34



Outline

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

Example

14 / 34



Limited Expected Loss & Limited Expected Shortfall

Suppose we cannot trade in [t , t + ∆t ]. Then

∆Xπ
t = Xπ

t+∆t − Xπ
t = Xπ

t exp
“Z t+∆t

t
rs ds

”
− Xπ

t + exp
“Z t+∆t

t
rs ds

”
(ηπ

t )>Xπ
t

×
“

exp
“
−1

2

Z t+∆t

t
diag(σsσ

>
s ) ds +

Z t+∆t

t
σs dW̃s

”
− 1

”
.

Next, we impose the relative LEL constraint

Ẽ
ˆ
(∆Xπ

t )−|FS
t

˜
< εt ,

with εt = LXπ
t .

Definition

K LEL
t :=

˘
ηπ

t ∈ Rn
˛̨
Ẽ

ˆ
(∆Xπ

t )−|FS
t

˜
< εt

¯
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Limited Expected Loss & Limited Expected Shortfall

We introduce the relative LES constraint as an extension to the LEL constraint

Ẽ
ˆ
(∆Xπ

t + qt)
−|FS

t
˜

< εt ,

with εt = L1Xπ
t and qt = L2Xπ

t .

I LES with L2 = 0 corresponds to LEL with L = L1.

I LEL: any loss in [t , t + ∆t ] can be hedged with L% of the portfolio value.

I LES: any loss greater L2% of the portfolio value in [t , t + ∆t ] can be hedged with

L1% of the portfolio value.

I LEL & LES: For hedging we can use standard European call and put options.

Definition

K LES
t :=

˘
ηπ

t ∈ Rn
˛̨
Ẽ

ˆ
(∆Xπ

t + qt)
−|FS

t
˜

< εt
¯

Lemma

K LEL
t and K LES

t are convex.

For n = 1 we obtain the interval K LES
t = [ηl

t , η
u
t ].
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bounds on ηπ for LEL and LES
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bounds on ηπ for LEL
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Other constraints

Value-at-Risk constraint:

Under the original measure ∆Xπ
t is given by

∆Xπ
t = Xπ

t exp
“Z t+∆t

t
rs ds

”
− Xπ

t + (ηπ
t )>Xπ

t

×
“

exp
“Z t+∆t

t

`
µs −

1
2

diag(σsσ
>
s )

´
ds +

Z t+∆t

t
σs dWs

”
− exp

“Z t+∆t

t
rs ds

””
.

We impose for n = 1 the relative VaR constraint on the loss (∆Xπ
t )−,

P
`
(∆Xπ

t )− > LXπ
t |FS

t , µt = µ̂t
´

< γ .

I VaR is computed under the original measure P.

I Under partial information we need the (unknown) value of the drift

→ use e.g. µt = µ̂t .

I For n = 1 we obtain the interval K VaR = [ηl
t , η

u
t ].

I If n > 2 then K VaR may not be convex!

I Possible to apply a large class of other risk constraints e.g. CVaR.
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Strategy

Corollary (Logarithmic utility)

U(x) = log(x), n = 1, no constraints:

ηo
t := ηπ

t =
1
σ2

t
(µ̂t − rt) .

With constraints:

ηc
t := ηπ

t =

8>>><>>>:
ηu

t if ηo
t > ηu

t ,

ηo
t if ηo

t ∈
ˆ
ηl

t , η
u
t
˜

,

ηl
t if ηo

t < ηl
t .

Hence, we cut off the strategy obtained under no constraints if it exceeds or falls below

a certain threshold.
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Gaussian Dynamics (GD) for the Drift

I Drift: modeled as the solution of the stochastic differential equation (cf. Lakner ’98)

dµt = κ(µ̄− µt) dt + υ dW̄t ,

µ0 ∼ N (µ̂0, ρ0), n-dimensional,

W̄ is a n-dimensional Brownian motion with respect to (F , P),
I We are in the situation of Kalman-filtering with signal µ, observation R, and

filter µ̂t = E
ˆ
µt

˛̨
FS

t
˜
.

I Filter: µ̂t is the unique FS-measurable solution of

dµ̂t =
ˆ`
−κ− ρt(σtσ

>
t )−1´

µ̂t + κµ̄
˜

dt + ρt(σtσ
>
t )−1 dRt ,

ρ̇t = −ρt(σtσ
>
t )−1ρt − κρt − ρtκ

> + υυ> ,

with initial condition (µ̂0, ρ0).
I ζ−1 satisfies dζ−1

t = ζ−1
t (µ̂t − rt1n)

>(σ>t )−1 dW̃t .

Proposition

FS = FR = F W̃ = FV → an optimal trading strategy exists.
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Bayesian case

The Bayesian case is a special case of the Gaussian dynamics for the drift.

I Drift: µt ≡ µ0 = (µ
(1)
0 , . . . , µ

(n)
0 ) is an (unobservable) F0-measurable Gaussian

random variable with known mean vector µ̂0 and covariance matrix ρ0.

I Filter: Explicit solution:

µ̂t =
“

1n×n + ρ0

Z t

0
(σsσ

>
s )−1 ds

”−1“
µ̂0 + ρ0

Z t

0
(σsσ

>
s )−1 dRs

”
,

ρt =
“

1n×n + ρ0

Z t

0
(σsσ

>
s )−1 ds

”−1
ρ0 .

23 / 34



Outline

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

Example

24 / 34



HMM: The Drift

The drift process µ of the return, is a continuous time Markov chain given by

µt = BYt , B ∈ Rn×d ,

where Y is a continuous time Markov chain with

I state space the standard unit vectors {e1, . . . , ed} in Rd , and
I rate matrix Q ∈ Rd×d , where

I Qkl is the jump rate or transition rate from ek to el ,
I λk = −Qkk =

Pd
l=1,l 6=k Qkl is the rate of leaving ek ,

I the waiting time for the next jump is exponentially distributed with parameter λk and
Qkl/λk is the probability that the chain jumps to el when leaving ek for l 6= k .

The different states of the drift are the columns of B.

We can write the market price of risk as

θt = σ−1
t (µt − rt1n) = Θ>t Yt , where Θt := σ−1

t (B − rt1n×d) .
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HMM: Filtering

We are in the situation of HMM filtering since Rt =
R t

0 BYs ds +
R t

0 σs dWs.

We need
I the conditional density ζ = (ζt)t∈[0,T ] = E

ˆ
Zt |FS

t
˜

= 1
1>d Et

,

I the unnormalized filter E = (Et)t∈[0,T ] = Ẽ
ˆ
Z−1

T Yt |FS
t

˜
,

I the normalized filter Ŷ = (Ŷt)t∈[0,T ] = E
ˆ
Yt |FS

t
˜

= Et
1>d Et

= ζtEt .

Theorem (Wonham/Elliott)

Et = E[Y0] +

Z t

0
Q>Es ds +

Z t

0
Diag(Es)Θ

>
s dW̃s

Proposition

FS = FR = F W̃ = FV → an optimal trading strategy exists.
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Example (1/3)
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We consider the HMM for the drift.
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Example ct’d (2/3)
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For the volatility we consider the Hobson-Rogers model.
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Example ct’d (3/3)
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Numerical Results (1/2)

I We consider 20 stocks of the Dow Jones Industrial Index

I We use daily prices (adjusted for dividends and splits) for 30 years, 1972–2001

I Parameter estimates are based on five years with starting year 1972, 1973,...,

1996 using a Markov Chain Monte Carlo algorithm.

I We apply the strategy in the subsequent year

→ we perform 500 experiments whose outcomes we average.

I We consider LEL- and LES-constraint.
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Numerical Results ct’d (2/2)

U(X̂T ) mean median st.dev. aborted

unconstrained
b&h 0.1188 0.1195 0.2297 0
Merton 0.0248 0.0826 0.4815 2
GD -1.2002 -1.0000 0.9580 79
Bayes 0.0143 0.0824 0.5071 2
HMM -0.0346 0.0277 0.9247 13

LEL risk constraint (L=0.5%)
GD 0.0252 0.0294 0.1767 0
Bayes 0.1002 0.0988 0.1595 0
HMM 0.1285 0.1242 0.2004 0

LES risk constraint (L1=0.1%,L2=5%)
GD -0.0395 -0.0350 0.3086 0
Bayes 0.0950 0.0968 0.2752 0
HMM 0.1505 0.1402 0.3434 0

I LEL and LES improve the performance of all models.

I With LEL and LES we don’t go bankrupt anymore.

I The HMM strategy with risk constraints outperforms all other strategies.
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Conclusion & Outlook

Conclusion

I We show how to apply dynamic risk constraints using time-dependent convex

constraints.

I We derive explicit trading strategies with dynamic risk constraints under partial

information.

I The numerical results indicate that dynamic risk constraints can reduce the risk

and improve the performance.

Outlook

I Allow for consumption.

I More detailed analysis of the multidimensional case.

I Explicit strategies for general utility.
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