Optimal Investment under Dynamic Risk Constraints and Partial Information

Wolfgang Putschögl

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

www.ricam.oeaw.ac.at

20th September 2007 Joint work with J. Saß (RICAM), Supported by FWF, Project P17947-N12 Workshop and Mid-Term Conference on Advanced Mathematical Methods for Finance

Vienna

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

Model Setup

- Filtered probability space: (Ω, F = (F_t)_{t∈[0,T]}, P)
- ► Finite time horizon: *T* > 0
- Money market: bond with stochastic interest rates r

$$dS_t^{(0)} = S_t^{(0)} r_t dt$$
, $S_0^{(0)} = 1$, i.e., $S_t^{(0)} = \exp\left(\int_0^t r_s ds\right)$,

r uniformly bounded and progressively measurable w.r.t. \mathcal{F}

► Stock market: *n* stocks with price process $S_t = (S_t^{(1)}, \ldots, S_t^{(n)})^\top$, return R_t , and excess return \tilde{R}_t , where

 $dS_t = \text{Diag}(S_t)(\mu_t dt + \sigma_t dW_t), \quad dR_t = \mu_t dt + \sigma_t dW_t, \quad d\tilde{R}_t = dR_t - r_t dt.$

W n-dimensional standard Brownian motion w.r.t. \mathcal{F} and P drift $\mu_t \in \mathbb{R}^n \mathcal{F}_t$ -adapted and independent of *W* volatility $\sigma_t \in \mathbb{R}^{n \times n}$ progressively measurable w.r.t. \mathcal{F}_t^S , σ_t non-singular, and σ_t^{-1} uniformly bounded.

Risk Neutral Probability Measure

We introduce the risk neutral probability measure (\rightarrow for filtering and optimization).

Definition

Martingale density process

$$Z_t = \exp\left(-\int_0^t \theta_s^\top \,\mathrm{d} W_s - \frac{1}{2}\int_0^t \|\theta_s\|^2 \,\mathrm{d} s\right)$$

with $\theta_t = \sigma_t^{-1}(\mu_t - r_t \mathbf{1}_n)$ the market price of risk

$$\frac{\mathrm{d}\tilde{\mathsf{P}}}{\mathrm{d}\mathsf{P}} := Z_7$$

 $\tilde{\mathsf{E}}$ expectation operator under $\tilde{\mathsf{P}}$

Girsanov's theorem:

$$ilde{W}_t := W_t + \int_0^t heta_s \, \mathrm{d}s$$

defines a P-Brownian motion

Partial Information

Remark

- We consider the case of partial information:
 - \rightarrow we can only observe interest rates and stock prices ($\mathcal{F}^{r,S}$) but **not the drift**
- ▶ The portfolio has to be adapted to $\mathcal{F}^{r,S}$
 - \rightarrow we need the conditional density $\zeta_t = \mathsf{E}[Z_t | \mathcal{F}_t^S]$
 - \rightarrow we need the filter for the drift $\hat{\mu}_t = \mathsf{E}[\mu_t | \mathcal{F}_t^S]$

Assumption

- The interest rates *r* are \mathcal{F}^{S} -adapted $\rightarrow \mathcal{F}^{r,S} = \mathcal{F}^{S}$
- Z is a martingale w.r.t. \mathcal{F} and P

Lemma

• We have $\mathcal{F}^{S} = \mathcal{F}^{\tilde{W}} = \mathcal{F}^{\tilde{R}} \rightarrow$ the market is complete w.r.t. \mathcal{F}^{S}

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

Consumption and Trading Strategy

Definition

- Trading strategy π_t : *n*-dimensional, \mathcal{F}^S -adapted, measurable
- ▶ Initial capital x₀ > 0
- Wealth process X^{π} satisfies

$$dX_t^{\pi} = \pi_t^{\top}(\mu_t dt + \sigma_t dW_t) + (X_t^{\pi} - \mathbf{1}_n^{\top} \pi_t)r_t dt$$
$$X_0^{\pi} = x_0$$

▶ A strategy is admissible if $X_t^{\pi} \ge 0$ a.s. for all $t \in [0, T]$

 π_t represents the wealth invested in the stocks at time t $\eta_t^{\pi} = \pi_t / X_t^{\pi}$ denotes the corresponding fraction of wealth

Utility Functions

Definition

 $U: [0,\infty) \to \mathbb{R} \cup \{-\infty\}$ is a utility function, if U is strictly increasing, strictly concave, twice continuously differentiable on $(0,\infty)$, and satisfies the Inada conditions:

$$U'(\infty) = \lim_{x \to \infty} U'(x) = 0$$
, $U'(0+) = \lim_{x \to 0} U'(x) = \infty$.

I denotes the inverse function of U'.

Assumption

$$|I(y) \leq Ky^a$$
, $|I'(y)| \leq Ky^{-b}$ for all $y \in (0,\infty)$ and $a, b, K > 0$

Example

Logarithmic utility $U(x) = \log(x)$ Power utility $U(x) = x^{\alpha}/\alpha$ for $\alpha < 1, \alpha \neq 0$.

Optimization Problem

Optimization Problem

We optimize under partial information!

Objective: Maximize the expected utility from terminal wealth, i.e.,

maximize $E[U(X_T)]$

under (risk) constraints we still have to specify.

The optimization problem consists of two steps:

- 1. Find the optimal terminal wealth
- 2. Find the corresponding trading strategy

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

• We can write our model under full information with respect to \mathcal{F}^R as

$$\mathrm{d}R_t = \hat{\mu}_t \,\mathrm{d}t + \sigma_t \,\mathrm{d}V_t \;, \quad t \in [0, T] \;.$$

where the innovation process $V = (V_t)_{t \in [0,T]}$ is a P-Brownian motion defined by

$$V_t = W_t + \int_0^t \sigma_s^{-1} (\mu_s - \hat{\mu}_s) \, \mathrm{d}s = \int_0^t \sigma_s^{-1} \, \mathrm{d}R_s - \int_0^t \sigma_s^{-1} \hat{\mu}_s \, \mathrm{d}s \; .$$

- K_t represents the constraints on portfolio proportions at time t → η_t^π ∈ K_t
 K_t is a F_t-progressively measurable closed convex set Ø ≠ K_t ⊆ ℝⁿ that contains 0
- For each *t* we define the support function $\delta_t \colon \mathbb{R}^n \mapsto \mathbb{R} \cup \{+\infty\}$ of $-K_t$ by

$$\delta_t(\mathbf{y}) = \sup_{\mathbf{x}\in\mathcal{K}_t} (-\mathbf{x}^{\top}\mathbf{y}), \quad \mathbf{y}\in\mathbb{R}^n.$$

 $\rightarrow \delta_t(y)$ is \mathcal{F}_t -progressively measurable

→ $y \mapsto \delta_t(y)$ is a lower semicontinuous, proper, convex function on its effective domain $\tilde{K}_t = \{y \in \mathbb{R}^n : \delta_t(y) < \infty\}$

Time-Dependent Convex Constraints

Definition

A trading strategy η^{π} is called K_t -admissible for initial capital $x_0 > 0$ if $X_t^{\pi} \ge 0$ a.s. and $\eta_t^{\pi} \in K_t$ for all $t \in [0, T]$.

We denote the class of admissible trading strategies for initial capital x_0 by $\mathcal{A}_{\mathcal{K}_t}(x_0)$.

We introduce the set \mathcal{H} of dual processes $\nu_t \colon [0, T] \times \Omega \mapsto \tilde{K}_t$ which are \mathcal{F}_t^R -progressively measurable processes, satisfying $\mathsf{E}\left[\int_0^T (\|\nu_t\|^2 + \delta_t(\nu_t)) \, \mathrm{d}t\right] < \infty$. For each dual process $\nu \in \mathcal{H}$ we introduce

- a new interest rate process $r_t^{\nu} = r_t + \delta_t(\nu_t)$.
- a new drift process $\hat{\mu}_t^{\nu} = \hat{\mu}_t + \nu_t + \delta_t(\nu_t) \mathbf{1}_n$.
- a new market price of risk $\theta_t^{\nu} = \sigma_t^{-1}(\hat{\mu}_t r_t + \nu_t)$
- a new density process ζ^ν given by dζ^ν_t = −θ^ν_tζ^ν_t dV_t

Then:

Solution under constraints = solution under no constraints with new market coefficients! **Problem:**

Find optimal $\nu!$

Time-Dependent Convex Constraints

Proposition

Suppose $x_0 > 0$ and $E[U^-(X^{\eta}_T)] < \infty$ for all $\eta^{\pi} \in \mathcal{A}_{\mathcal{K}}(x_0)$.

• A trading strategy $\eta^{\pi} \in \mathcal{A}_{\mathcal{K}}(x_0)$ is optimal, if for some $y^* > 0$, $\nu^* \in \mathcal{H}$

$$X_T^{\pi} = I(y^* \tilde{\zeta}_T^*) , \quad \mathcal{X}^{\nu^*}(y^*) = x_0 ,$$

where $\tilde{\zeta}_T^* = \tilde{\zeta}_T^{\nu^*}$. Further, η^{π} and ν^* have to satisfy the complementary slackness condition

$$\delta_t(\nu_t^*) + (\eta_t^{\pi})^{\top} \nu_t^* = \mathbf{0} , \quad t \in [0, T] .$$

▶ y^{*}, ν^{*} solve the dual problem

$$\tilde{\mathcal{V}}(y) = \inf_{\nu \in \mathcal{H}} \mathsf{E}\big[\tilde{U}(y\tilde{\zeta}_T^{\nu})\big] ,$$

where $\tilde{U}(y) = \sup_{x>0} \{ U(x) - xy \}, y > 0$ is the convex dual function of U.

• If $\mathcal{F}^R = \mathcal{F}^V$ holds, then an optimal trading strategy exists.

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

Limited Expected Loss & Limited Expected Shortfall

Suppose we cannot trade in $[t, t + \Delta t]$. Then

$$\begin{split} \Delta X_t^{\pi} &= X_{t+\Delta t}^{\pi} - X_t^{\pi} = X_t^{\pi} \exp\Bigl(\int_t^{t+\Delta t} r_s \, \mathrm{d}s\Bigr) - X_t^{\pi} + \exp\Bigl(\int_t^{t+\Delta t} r_s \, \mathrm{d}s\Bigr) (\eta_t^{\pi})^{\top} X_t^{\pi} \\ &\times \Bigl(\exp\Bigl(-\frac{1}{2}\int_t^{t+\Delta t} \mathrm{diag}(\sigma_s \sigma_s^{\top}) \, \mathrm{d}s + \int_t^{t+\Delta t} \sigma_s \, \mathrm{d}\tilde{W}_s\Bigr) - 1\Bigr) \;. \end{split}$$

Next, we impose the relative LEL constraint

$$\tilde{\mathsf{E}}\big[(\Delta X_t^{\pi})^- | \mathcal{F}_t^{\mathcal{S}}\big] < \varepsilon_t \; ,$$

with $\varepsilon_t = L X_t^{\pi}$.

Definition

$$\mathcal{K}_t^{LEL} := \left\{ \eta_t^{\pi} \in \mathbb{R}^n \middle| \tilde{\mathsf{E}} \left[(\Delta X_t^{\pi})^- | \mathcal{F}_t^{\mathcal{S}} \right] < \varepsilon_t \right\}$$

Limited Expected Loss & Limited Expected Shortfall

We introduce the relative LES constraint as an extension to the LEL constraint

 $\tilde{\mathsf{E}}\big[(\Delta X_t^{\pi} + q_t)^{-} | \mathcal{F}_t^{\mathcal{S}}\big] < \varepsilon_t ,$

with $\varepsilon_t = L_1 X_t^{\pi}$ and $q_t = L_2 X_t^{\pi}$.

- LES with $L_2 = 0$ corresponds to LEL with $L = L_1$.
- ► LEL: any loss in $[t, t + \Delta t]$ can be hedged with *L*% of the portfolio value.
- ► LES: any loss greater L_2 % of the portfolio value in $[t, t + \Delta t]$ can be hedged with L_1 % of the portfolio value.
- LEL & LES: For hedging we can use standard European call and put options.

Definition

$$\mathsf{K}^{\mathsf{LES}}_t := \left\{ \eta^{\pi}_t \in \mathbb{R}^n \big| \tilde{\mathsf{E}} \big[(\Delta \mathsf{X}^{\pi}_t + \mathsf{q}_t)^- | \mathcal{F}^{\mathcal{S}}_t \big] < \varepsilon_t \right\}$$

Lemma

 K_t^{LEL} and K_t^{LES} are convex.

For n = 1 we obtain the interval $K_t^{LES} = [\eta_t^{\prime}, \eta_t^{\upsilon}]$.

bounds on η^{π} for LEL and LES

bounds on η^{π} for LEL

Other constraints

Value-at-Risk constraint:

Under the original measure ΔX_t^{π} is given by

$$\begin{split} \Delta X_t^{\pi} &= X_t^{\pi} \exp \Bigl(\int_t^{t+\Delta t} r_s \, \mathrm{d}s \Bigr) - X_t^{\pi} + (\eta_t^{\pi})^{\top} X_t^{\pi} \\ &\times \Bigl(\exp \Bigl(\int_t^{t+\Delta t} \bigl(\mu_s - \frac{1}{2} \operatorname{diag}(\sigma_s \sigma_s^{\top}) \bigr) \, \mathrm{d}s + \int_t^{t+\Delta t} \sigma_s \, \mathrm{d}W_s \Bigr) - \exp \Bigl(\int_t^{t+\Delta t} r_s \, \mathrm{d}s \Bigr) \Bigr) \; . \end{split}$$

We impose for n = 1 the relative VaR constraint on the loss $(\Delta X_t^{\pi})^-$,

$$\mathsf{P}ig((\Delta X^{\pi}_t)^- > L X^{\pi}_t | \mathcal{F}^{\mathcal{S}}_t, \mu_t = \hat{\mu}_tig) < \gamma \;.$$

- VaR is computed under the original measure P.
- ► Under partial information we need the (unknown) value of the drift → use e.g. µ_t = µ̂_t.
- For n = 1 we obtain the interval $K^{VaR} = [\eta_t^{\prime}, \eta_t^{\prime}]$.
- If n > 2 then K^{VaR} may not be convex!
- Possible to apply a large class of other risk constraints e.g. CVaR.

Strategy

Corollary (Logarithmic utility)

 $U(x) = \log(x)$, n = 1, no constraints:

$$\eta_t^o := \eta_t^\pi = \frac{1}{\sigma_t^2} (\hat{\mu}_t - r_t) \ .$$

With constraints:

$$\eta_t^{\mathsf{o}} := \eta_t^{\pi} = \begin{cases} \eta_t^{\mathsf{u}} & \text{if } \eta_t^{\mathsf{o}} > \eta_t^{\mathsf{u}} \ ,\\ \eta_t^{\mathsf{o}} & \text{if } \eta_t^{\mathsf{o}} \in \left[\eta_t^{\mathsf{l}}, \eta_t^{\mathsf{u}}\right] \ ,\\ \eta_t^{\mathsf{l}} & \text{if } \eta_t^{\mathsf{o}} < \eta_t^{\mathsf{l}} \ . \end{cases}$$

Hence, we cut off the strategy obtained under no constraints if it exceeds or falls below a certain threshold.

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

Gaussian Dynamics (GD) for the Drift

Drift: modeled as the solution of the stochastic differential equation (cf. Lakner '98)

 $\mathrm{d}\mu_t = \kappa(\bar{\mu} - \mu_t)\,\mathrm{d}t + \upsilon\,\mathrm{d}\bar{W}_t\,,$

 $\mu_0 \sim \mathcal{N}(\hat{\mu}_0, \rho_0),$ *n*-dimensional,

 \overline{W} is a *n*-dimensional Brownian motion with respect to $(\mathcal{F}, \mathsf{P})$,

- We are in the situation of Kalman-filtering with signal μ , observation R, and filter $\hat{\mu}_t = \mathsf{E}[\mu_t | \mathcal{F}_t^S]$.
- Filter: $\hat{\mu}_t$ is the unique \mathcal{F}^S -measurable solution of

$$\begin{aligned} \mathsf{d}\hat{\mu}_t &= \left[\left(-\kappa - \rho_t (\sigma_t \sigma_t^\top)^{-1} \right) \hat{\mu}_t + \kappa \bar{\mu} \right] \mathsf{d}t + \rho_t (\sigma_t \sigma_t^\top)^{-1} \mathsf{d}R_t ,\\ \dot{\rho}_t &= -\rho_t (\sigma_t \sigma_t^\top)^{-1} \rho_t - \kappa \rho_t - \rho_t \kappa^\top + \upsilon \upsilon^\top , \end{aligned}$$

with initial condition $(\hat{\mu}_0, \rho_0)$.

•
$$\zeta^{-1}$$
 satisfies $d\zeta_t^{-1} = \zeta_t^{-1} (\hat{\mu}_t - r_t \mathbf{1}_n)^\top (\sigma_t^\top)^{-1} d\tilde{W}_t$.

Proposition

1

$$\mathcal{F}^{S} = \mathcal{F}^{R} = \mathcal{F}^{\tilde{W}} = \mathcal{F}^{V} \rightarrow an optimal trading strategy exists.$$

The Bayesian case is a special case of the Gaussian dynamics for the drift.

- Drift: $\mu_t \equiv \mu_0 = (\mu_0^{(1)}, \dots, \mu_0^{(n)})$ is an (unobservable) \mathcal{F}_0 -measurable Gaussian random variable with known mean vector $\hat{\mu}_0$ and covariance matrix ρ_0 .
- Filter: Explicit solution:

$$\hat{\mu}_t = \left(\mathbf{1}_{n \times n} + \rho_0 \int_0^t (\sigma_s \sigma_s^{\top})^{-1} \, \mathrm{d}s\right)^{-1} \left(\hat{\mu}_0 + \rho_0 \int_0^t (\sigma_s \sigma_s^{\top})^{-1} \, \mathrm{d}R_s\right),$$

$$\rho_t = \left(\mathbf{1}_{n \times n} + \rho_0 \int_0^t (\sigma_s \sigma_s^{\top})^{-1} \, \mathrm{d}s\right)^{-1} \rho_0.$$

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

HMM: The Drift

The drift process μ of the return, is a continuous time Markov chain given by

 $\mu_t = BY_t , \qquad B \in \mathbb{R}^{n \times d} ,$

where Y is a continuous time Markov chain with

- ▶ state space the standard unit vectors $\{e_1, \ldots, e_d\}$ in \mathbb{R}^d , and
- rate matrix $Q \in \mathbb{R}^{d \times d}$, where
 - Q_{kl} is the jump rate or transition rate from e_k to e_l ,
 - $\lambda_k = -Q_{kk} = \sum_{l=1, l \neq k}^d Q_{kl}$ is the rate of leaving e_k ,
 - ► the waiting time for the next jump is exponentially distributed with parameter λ_k and Q_{kl}/λ_k is the probability that the chain jumps to e_l when leaving e_k for $l \neq k$.

The different states of the drift are the columns of *B*.

We can write the market price of risk as

$$\theta_t = \sigma_t^{-1}(\mu_t - r_t \mathbf{1}_n) = \Theta_t^\top Y_t$$
, where $\Theta_t := \sigma_t^{-1}(B - r_t \mathbf{1}_{n \times d})$.

HMM: Filtering

We are in the situation of HMM filtering since $R_t = \int_0^t BY_s ds + \int_0^t \sigma_s dW_s$. We need

- ► the conditional density $\zeta = (\zeta_t)_{t \in [0,T]} = \mathsf{E}[Z_t | \mathcal{F}_t^S] = \frac{1}{\mathbf{1}_t^\top \mathcal{E}_t}$,
- ► the unnormalized filter $\mathcal{E} = (\mathcal{E}_t)_{t \in [0,T]} = \tilde{\mathsf{E}} \left[Z_T^{-1} Y_t | \mathcal{F}_t^S \right]$,
- the normalized filter $\hat{Y} = (\hat{Y}_t)_{t \in [0, T]} = \mathsf{E}[Y_t | \mathcal{F}_t^S] = \frac{\mathcal{E}_t}{\mathbf{1}_d^\top \mathcal{E}_t} = \zeta_t \mathcal{E}_t.$

Theorem (Wonham/Elliott)

$$\mathcal{E}_t = \mathsf{E}[Y_0] + \int_0^t Q^\top \mathcal{E}_s \, \mathrm{d}s + \int_0^t \mathsf{Diag}(\mathcal{E}_s) \Theta_s^\top \, \mathrm{d}\tilde{W}_s$$

Proposition

 $\mathcal{F}^{S} = \mathcal{F}^{R} = \mathcal{F}^{\tilde{W}} = \mathcal{F}^{V} \rightarrow$ an optimal trading strategy exists.

Model Setup

Problem formulation

Time-Dependent Convex Constraints

Dynamic Risk Constraints

Gaussian Dynamics for the Drift

A hidden Markov Model (HMM) for the Drift

Example (1/3)

We consider the HMM for the drift.

Example ct'd (2/3)

For the volatility we consider the Hobson-Rogers model.

Example ct'd (3/3)

- We consider 20 stocks of the Dow Jones Industrial Index
- We use daily prices (adjusted for dividends and splits) for 30 years, 1972–2001
- Parameter estimates are based on five years with starting year 1972, 1973,..., 1996 using a Markov Chain Monte Carlo algorithm.
- We apply the strategy in the subsequent year
 - \rightarrow we perform 500 experiments whose outcomes we average.
- ▶ We consider LEL- and LES-constraint.

Numerical Results ct'd (2/2)

$U(\hat{X}_T)$	mean	median	st.dev.	aborted
unconstrained				
b&h	0.1188	0.1195	0.2297	0
Merton	0.0248	0.0826	0.4815	2
GD	-1.2002	-1.0000	0.9580	79
Bayes	0.0143	0.0824	0.5071	2
HMM	-0.0346	0.0277	0.9247	13
LEL risk constraint (L=0.5%)				
GD	0.0252	0.0294	0.1767	0
Bayes	0.1002	0.0988	0.1595	0
HMM	0.1285	0.1242	0.2004	0
LES risk constraint (L1=0.1%,L2=5%)				
GD	-0.0395	-0.0350	0.3086	0
Bayes	0.0950	0.0968	0.2752	0
HMM	0.1505	0.1402	0.3434	0

- LEL and LES improve the performance of all models.
- With LEL and LES we don't go bankrupt anymore.
- The HMM strategy with risk constraints outperforms all other strategies.

Conclusion & Outlook

Conclusion

- We show how to apply dynamic risk constraints using time-dependent convex constraints.
- We derive explicit trading strategies with dynamic risk constraints under partial information.
- The numerical results indicate that dynamic risk constraints can reduce the risk and improve the performance.

Outlook

- Allow for consumption.
- More detailed analysis of the multidimensional case.
- Explicit strategies for general utility.

Further Reading

- D. Cuoco, H. He, and S. Issaenko, Optimal Dynamic Trading Strategies with Risk Limits, FAME, International Center for Financial Asset Management and Engineering, 2002.
- K. F. C. Yiu, Optimal portfolios under a value-at-risk constraint, J. Econom. Dynam. Control 28 (2004), no. 7, 1317–1334, Mathematical programming.
 - W. Putschögl and J. Sass, Optimal Investment under Dynamic Risk Constraints and Partial Information, (2007), working paper.