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Outline

• The financial problem : credit risk and the modeling of

contagion

• The interacting particle system model

• The main results for the particle system

i) Asymptotics when the number of particles N →∞
ii) Equilibria of the limiting dynamics

iii) Finite volume approximations

• Back to Finance : large portfolio losses in a credit risky

environment with contagion and default clustering.



The financial problem : Credit risk

• Risk faced by a financial institution holding a portfolio

of positions issued by a (large) number of firms that

may default.

i) Default may be contagious

ii) There may be a clustering of defaults (many defaults

happen in a short time)

Losses may therefore be large and we want to address

this problem in the above context (contagion and

clustering).

• Reduced-form or intensity-based approach



Contagion (interacting intensities)

• To describe propagation of financial distress in a network

of firms linked (directly or indirectly) by business

relationships one possibility is via interacting intensities.

→ A natural way to obtain interacting intensities is

to let the default intensities depend on a common

exogenous macroeconomic factor process Xt, i.e. for

the generic j−th firm one postulates

λj
t = λj(Xt)



• Given λj
t = λj(Xt)

i) If Xt is observable and has jumps in common with

the point process counting the defaults → direct

contagion (counterparty risk)

ii) If Xt is unobservable, but its distribution is

successively updated on the basis of the observed

default history → information induced contagion.

→ Interacting intensity models are currently those mostly

investigated and they are motivated by the empirical

observation that default intensities are correlated with

macroeconomic factors.



• However (quoting from Jarrow and Yu (2001)):

“A default intensity that depends linearly on a set of

smoothly varying (exogenous) macroeconomic variables

is unlikely to account for the clustering of defaults

around an economic recession”.

• Furthermore, one might also want to describe the

general health of a network of firms by endogenous

financial indicators thereby viewing a credit crisis as a

microeconomic phenomenon and so possibly also arrive

at explaining default clustering.

→ Interacting particle system models from Statistical

mechanics may allow to adequately address the above

issues.



The interacting particle system model

• A mean-field interacting model of the Curie-Weiss type;

a simple model to describe dynamically the credit quality

of firms.

• The “credit state” of each firm is identified by two

variables (σ, ω) ((σi, ωi) : state of i−th firm i =
1, · · · , N).

→ σ : a “rating class/financial distress indicator” (a

low value reflects a bad rating class, i.e. a higher

probability of not being able to pay back obligations).

→ ω : a more fundamental indicator of the financial

health of the firm; (it represents a local random

environment and is typically not directly observable

from the market).



• At a first level assume (σi, ωi) ∈ {−1,+1}2
(generalization to a generic finite number of possible

values rather straightforward)

• No explicit “default state” (could be σi = −1).

Always need a positive probability that the firm can exit

from the state where σi takes its lowest possible value.



• For the time evolution on a generic interval

[0, T ] of the “state” of the particle system, i.e.

(σi(t), ωi(t))i=1,··· ,N ∈ D2N [0, T ] we need to specify

the stochastic dynamics for the transitions σi →
−σi, ωi → −ωi.

• The mean-field assumption leads to letting the

interaction depend on the global health indicator

(endogenous global factor)

m
σ
N(t) :=

1
N

N∑
i=1

σi(t)

• The vehicle of interaction/contagion is given by

ωi

fundam. indic.

→ σi

rating class

→ mσ
N

global health indic.

→ ωj



Transition intensities for the particle system{
σi → −σi with intensity λi := e−βσiωi , β > 0
ωj → −ωj with intensity µj := e−γωjm

σ
N , γ > 0

β, γ are parameters indicating the strength of the

interaction (This induces a “symmetry” in the model).

→ The resulting transition intensity matrix can be taken

as infinitesimal generator L of a continuous-time

Markov chain with state space {−1,+1}2N that acts

on f : {−1, 1}2N → R as

Lf(σ, ω) =
N∑

i=1

λi∇σ
i f(σ, ω) +

N∑
j=1

µj∇ω
j f(σ, ω)

where ∇σ
i f(σ,ω)=f(σi,ω)−f(σ,ω) ; ∇ω

j f(σ,ω)=f(σ,ωj)−f(σ,ω)

and σi = (σ1, ..., σi−1,−σi, σi+1, ..., σN); analogously

for ωj.



• Unlike many mean field models in Statistical mechanics

our model is non-reversible.

→ An explicit formula for the stationary (in time)

distribution is not available.



→ We shall rather

A. Look for the limit (N →∞) dynamics of the system on

the path space (via a LLN based on a Large Deviations

Principle);

B. Study the equilibria of the limiting dynamics;

C. Describe “finite volume approximations” (for large but

finite N) via a Central Limit type result.

→ Non-standard versions of LLN and CLT



A. Limit for N →∞ (Law of Large Numbers)

• Let (δ{·} denotes the Dirac measure)

ρN =
1
N

N∑
i=1

δ{σi[0,T ],ωi[0,T ]}

be the sequence of empirical (random) measures

on the space M1(D2[0, T ]) endowed with the weak

convergence topology.

• For a probability measure q ∈M1({−1, 1}2) let

mσ
q :=

∑
σ,ω=+1

σ q(σ, ω)

(expected health under q).



Theorem 1. Let (σ(t), ω(t)) be the Markov process

corresponding to the generator Lf(σ, ω) and with initial

distribution s.t. (σi(0), ωi(0)), i = 1, · · · , N are i.i.d.

with law `.

i) There exists Q∗ ∈ M1(D2[0, T ]) s.t. ρN → Q∗ a.s. in

the weak topology;

ii) if qt ∈ M1({−1, 1}2) is the marginal distribution of

Q∗ at time t, then it is the unique solution of the

McKean-Vlasov equation (MKV){
∂qt
∂t = Lqt , t ∈ [0, T ]
q0 = `

with Lq(σ, ω) = ∇σ
[
e−βσωq(σ, ω)

]
+∇ω

[
e−γωmσ

q q(σ, ω)
]



B. Large time behavior of the limiting (N →∞)
dynamics

• A measure µ on {−1, 1}2 is completely specified by

mσ
µ:=

P
σ,ω=+1 σ µ(σ,ω),mω

µ:=
P

σ,ω=+1 ω µ(σ,ω),mσω
µ :=

P
σ,ω=+1 σω µ(σ,ω)

Write mσ
t = mσ

qt
(analogously for mω

t , m
σω
t )

• (MKV) can be reduced to determining a solution of

(ṁσ
t , ṁ

ω
t ) = V (mσ

t ,m
ω
t ) (mkv) with

V (x, y) := (2 sinh(β)y−2 cosh(β)x, 2 sinh(γx)−2y cosh(γx))

→ To analyze in (MKV) equilibria and their stability it

suffices to analyze (mkv)



Theorem 2.

i) Suppose γ ≤ 1
tanh(β). Then equation (mkv) has (0, 0)

as a unique equilibrium solution, which is globally

asymptotically stable, i.e. for every initial condition

(mσ
0 ,m

ω
0 ), we have

lim
t→+∞

(mσ
t ,m

ω
t ) = (0, 0).

ii) For γ < 1
tanh(β) the equilibrium (0, 0) is linearly stable,

i.e. DV (0, 0) (the Jacobian matrix) has strictly negative

eigenvalues. For γ = 1
tanh(β) the linearized system has a

neutral direction, i.e. DV (0, 0) has one zero eigenvalue.



iii) For γ > 1
tanh(β) the point (0, 0) is still an equilibrium

for (mkv), but it is a saddle point for the linearized

system, i.e. the matrix DV (0, 0) has two nonzero

real eigenvalues of opposite sign. Moreover (mkv) has

two linearly stable solutions (mσ
∗ ,m

ω
∗ ), (−mσ

∗ ,−mω
∗ ),

where mσ
∗ is the unique strictly positive solution of the

equation

x = tanh(β) tanh(γx),

and

mω
∗ =

1
tanh(β)

mσ
∗



iv) For γ > 1
tanh(β), the phase space [−1, 1]2 is bi-

partitioned by a smooth curve Γ containing (0, 0) such

that [−1, 1]2\Γ is the union of two disjoint sets Γ+,Γ−

that are open in the induced topology of [−1, 1]2.
Moreover

lim
t→+∞

(mσ
t ,m

ω
t ) =


(mσ

∗ ,m
ω
∗ ) if (mσ

0 ,m
ω
0 ) ∈ Γ+

(−mσ
∗ ,−mω

∗ ) if (mσ
0 ,m

ω
0 ) ∈ Γ−

(0, 0) if (mσ
0 ,m

ω
0 ) ∈ Γ.



• The fact that the limiting (N → ∞) dynamics may

have multiple stable equilibria implies that our system

exhibits what is called phase transition:.

→ The asymptotic (N → ∞) behavior of the system

changes depending on the values of the parameters

(and of the initial conditions).

→ The effects of phase transition for the system with

finite N can be seen on different time scales in

different ways.



• On regular time-scales (of order O(1)) the following

occurs: for certain values of the initial condition the

system is driven towards the asymptotic symmetric

equilibrium state (0, 0) where half of the firms are in

good financial health.

After a certain time (depending on the initial condition)

the system is captured by an unstable direction of

this neutral equilibrium and moves towards a stable

asymmetric equilibrium. During this transition the

volatility of the system (will be defined below) increases

sharply before decaying to a stationary value.

→ This phenomenon can be interpreted as a credit crisis

and may account for default clustering.
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Figure 1: β=1, γ=2.3, γc=1/tanh(β)≈1.313
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Figure 2: β=1.5, γ=2.1, γc=1/tanh(β)≈1.105
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Figure 3: γc≈1.105; γc≈1.396
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C. Analysis of the fluctuations

• Concerns the asymptotic distribution of (ρN −Q∗).

→ Recall that ρN(t), being a measure on {−1, 1}2, is

characterized by

mσ
ρN

(t), mω
ρN

(t), mσω
ρN

(t)

• With A(t), D(t) appropriate matrices depending on β, γ

and mσ
t ,m

ω
t ,m

σω
t one has the following



Theorem 3. Let
xN(t) =

√
N
(
mσ

ρN
(t)−mσ

t

)
yN(t) =

√
N
(
mω

ρN
(t)−mω

t

)
zN(t) =

√
N
(
mσω

ρN
(t)−mσω

t

)
Then (xN(t), yN(t), zN(t)) N→∞−→ (x(t), y(t), z(t)) in

the sense of weak convergence of stochastic processes,

where (x(t), y(t), z(t)) is a centered Gaussian process,

unique solution of the linear SDE dx(t)
dy(t)
dz(t)

 = A∗(t)

 x(t)
y(t)
z(t)

 dt+D(t)

 dB1(t)
dB2(t)
dB3(t)


where B1, B2, B3 are independent Brownian motions and

(x(0), y(0), z(0)) is a centered Gaussian.



→ The asymptotic, for N → ∞, distribution of

(xN(t), yN(t), zN(t)) is thus, for each fixed t, a centered

Gaussian with covariance matrix Σt - the volatility

referred to earlier - satisfying (asymptotics in t depend

upon γ)

dΣt

dt
= A(t) Σt + ΣtA

∗(t) +DD∗(t)

Corollary 1:
√
N
[
mσ

ρN
(t)−mσ

t

] D−→ N (0,Σx
t ) so

that (notice that m
σ
N(t) = mσ

ρN
(t))

P (mσ
N(t) ≥ α) ≈ Φ

(√
Nmσ

t −
√
Nα√

Σx
t

)

(Φ(·) cumulative standard Gaussian).



Portfolio losses

• A bank holds a portfolio of financial positions issued by

the N firms.

• Random loss for the i− th position at time t:

Li(t) ∈ R+ ; i = 1, ..., N

• Aggregated losses are LN(t) =
∑N

i=1Li(t)



• More specifically, let

Gx(u) := P{Li(t) ≤ u | σi(t) = x} , x ∈ {−1,+1}

(homogeneity with respect to i and t) and

`1 := E{Li(t) | σi(t) = 1} < E{Li(t) | σi(t) = −1} := `−1

→ one expects to loose more when in financial distress.

Furthermore,

v1 := V ar{Li(t) | σi(t) = 1}; v−1 := V ar{Li(t) | σi(t) = −1}



Example 1

• Portfolio consisting of N positions of 1 unit due at time

T (defaultable bonds).

Li(T ) = L(σi(T )) =
{

1 if σi(T ) = −1
0 if σi(T ) = 1

−→ LN(T ) =
∑N

i=1
1−σi(T )

2 = N(1−m
σ
N

(T ))

2

−→ P{LN(T ) ≥ α} = P
{
m

σ
N(T ) ≤ 1− 2α

N

}
apply Corollary 1



A further result

• Let

L(t) :=
(`1 − `−1)

2
mσ

t +
(`1 + `−1)

2

V (t) :=
(`1 − `−1)2Σx

t

4
+

(1 +mσ
t ) v1

2
+

(1−mσ
t ) v−1

2

Theorem 4: When the distribution of Li(t) depends on

σi(t),

√
N

(
LN(t)
N

− L(t)
)

D−→ N (0, V (t))

Corollary 2: In the setting of Theorem 4 it follows

P
{
LN(T ) ≥ α

}
∼ Φ

(
NL(T )− α√
N
√
V (T )

)



Example 2 (Bernoulli mixture model)

• As before but with

Li(T ) = L(σi(T );Ψ) =


1 with prob P (σi(T );Ψ)

0 with prob 1− P (σi(T );Ψ)

where Ψ is an exogenous random factor.

→ `1 = P (1;Ψ), v1 = P (1;Ψ)(1−P (1;Ψ))(analogously

for `−1, v−1)

• A possible specification is

P (σ; Ψ) = 1− exp{−k1Ψ− k2 (1− σ)/2− k3}

with ki ≥ 0 and Ψ ∼ Γ(α;κ).(The prob. for Li(T ) = 1
is bigger for σi(T ) = −1 than for σi(T ) = 1).



• Here `1, `−1, v1, v−1 and thus also L(t) and V (t) depend

on the value ψ taken by the Gamma-type r.v. Ψ.

Denote the latter by L(t;ψ), V (t, ψ).

→ by Corollary 2

P
{
LN(T ) ≥ α

}
∼
∫

Φ

(
N L(T ;ψ)− α√
N
√
V (T ;ψ)

)
dfΨ(ψ)

with fΨ(·) the Gamma-density of Ψ.



Figure 4: β=1.5, γ=2.1, γc=1/tanh(β)≈1.105
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Figure 5: γc=1/tanh(1.5)≈1.105; γc=1/tanh(0.9)≈1.396
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