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The financial problem : credit risk and the modeling of
contagion

The interacting particle system model

The main results for the particle system

i) Asymptotics when the number of particles N — oo
ii) Equilibria of the limiting dynamics
iii) Finite volume approximations

Back to Finance : large portfolio losses in a credit risky
environment with contagion and default clustering.



The financial problem : Credit risk

e Risk faced by a financial institution holding a portfolio
of positions issued by a (large) number of firms that
may default.

i) Default may be contagious
ii) There may be a clustering of defaults (many defaults
happen in a short time)

Losses may therefore be large and we want to address
this problem in the above context (contagion and
clustering).

o Reduced-form or intensity-based approach



Contagion (interacting intensities)

e To describe propagation of financial distress in a network
of firms linked (directly or indirectly) by business
relationships one possibility is via interacting intensities.

— A natural way to obtain interacting intensities is
to let the default intensities depend on a common
exogenous macroeconomic factor process X;, i.e. for
the generic j—th firm one postulates

A= N(X)



o Given X = M (X))

i) If X, is observable and has jumps in common with
the point process counting the defaults — direct
contagion (counterparty risk)

i) If X; is unobservable, but its distribution is
successively updated on the basis of the observed
default history — information induced contagion.

— Interacting intensity models are currently those mostly
investigated and they are motivated by the empirical
observation that default intensities are correlated with
macroeconomic factors.



o However (quoting from Jarrow and Yu (2001)):

“A default intensity that depends linearly on a set of
smoothly varying (exogenous) macroeconomic variables
is unlikely to account for the clustering of defaults
around an economic recession”.

e Furthermore, one might also want to describe the
general health of a network of firms by endogenous
financial indicators thereby viewing a credit crisis as a
microeconomic phenomenon and so possibly also arrive
at explaining default clustering.

— Interacting particle system models from Statistical
mechanics may allow to adequately address the above
ISSUES.



The interacting particle system model

o A mean-field interacting model of the Curie-Weiss type;
a simple model to describe dynamically the credit quality

of firms.

The ‘“credit state” of each firm is identified by two
variables (o,w) ((o;,w;) : state of i—th firm i =
1,--,N).

— o : a ‘rating class/financial distress indicator” (a

low value reflects a bad rating class, i.e. a higher

probability of not being able to pay back obligations).
— w : a more fundamental indicator of the financial

health of the firm; (it represents a local random
environment and is typically not directly observable

from the market).



e At a first level assume (oj,w;) € {—1,+1}?
(generalization to a generic finite number of possible
values rather straightforward)

o No explicit “default state” (could be o; = —1).
Always need a positive probability that the firm can exit
from the state where o; takes its lowest possible value.



e For the time evolution on a generic interval
0,T] of the ‘state” of the particle system, i.e.
(oi(t),wi(t))i=1.... n € D?*N[0,T] we need to specify
the stochastic dynamics for the transitions o, —
—0;, W; — —Ws.

e The mean-field assumption leads to letting the

interaction depend on the global health indicator
(endogenous global factor)

m (1) = %Z@(t)

e The vehicle of interaction/contagion is given by

W; — 0 — my — W

fundam. indic. rating class global health indic.



Transition intensities for the particle system

o; — —o;  with intensity \; :=e P 3>
w; — —w; with intensity p; = e~ VWIMN v > 0

(3,7 are parameters indicating the strength of the
interaction ( This induces a “symmetry” in the model).

— The resulting transition intensity matrix can be taken
as infinitesimal generator L of a continuous-time
Markov chain with state space {—1,+1}*" that acts
on f:{-1,1}*"Y — R as

N N
Lf(o,w) = Z ANV flo,w) + Z,ujv;’f(a,w)
i=1 J=1

Where V,?f(O',W):f(O'z,W)—f(O',W) 3 V;)f(O',W):f(O',wJ)—f(O',W)
and o' = (0'1, N O Nl O P O JT [N O'N); analogously
for w?.



e Unlike many mean field models in Statistical mechanics
our model is non-reversible.

— An explicit formula for the stationary (in time)
distribution is not available.



—  We shall rather

A. Look for the limit (N — oo) dynamics of the system on
the path space (via a LLN based on a Large Deviations
Principle);

B. Study the equilibria of the limiting dynamics;

C. Describe “finite volume approximations” (for large but
finite N ) via a Central Limit type result.

— Non-standard versions of LLN and CLT



A. Limit for N — oo (Law of Large Numbers)

e Let (Jy. denotes the Dirac measure)

1 N
pN = Zl 04 os[0,T) 500,11}

be the sequence of empirical (random) measures
on the space M(D?[0,T]) endowed with the weak
convergence topology.

e For a probability measure ¢ € M1({—1,1}?) let

mg 1= Z oq(o,w)

o,w=+1

(expected health under q).



Theorem 1. Let (0(t),w(t)) be the Markov process

corresponding to the generator Lf(o,w) and with initial
distribution s.t. (0;(0),w;(0)), i =1,---, N are i.i.d.
with law 2.

i) There exists Q* € M{(D?[0,T]) s.t.pxy — Q* a.s. in
the weak topology;

i) if ¢ € M;({—1,1}?) is the marginal distribution of
QQ* at time t, then it is the unique solution of the
McKean-Vlasov equation (MKV)

% = Lq, te€][0,T]
o — 14

with Lq(o,w) = V7 [e”P7¥¢(0,w)|+V* [e_wmgq(a,w)



B. Large time behavior of the limiting (N — o)
dynamics

e A measure ;1 on {—1,1}? is completely specified by
M= g1 0 (0w M= g @ (@) =5 g 0w plow)
Write m{ = mg, (analogously for my, m7“)
o (MKV) can be reduced to determining a solution of
(my,my) =V (m7, my) (mkv) with

V(z,y) := (2sinh(8)y—2 cosh(3)x, 2 sinh(yx)—2y cosh(yx))

— To analyze in (MKV) equilibria and their stability it
suffices to analyze (mkv)



Theorem 2.

i) Suppose v < - h(ﬁ) Then equation (mkv) has (0,0)
as a unique eqU|I|br|um solution, which is globally
asymptotically stable, i.e. for every initial condition
(mg, mg), we have

lim (mg,my) = (0,0).

t——+o0

ii) For v < - ( 7 the equilibrium (0, 0) is linearly stable,
i.e. DV(O O) (the Jacobian matrix) has strictly negative
eigenvalues. For v = m the linearized system has a
neutral direction, i.e. DV (0,0) has one zero eigenvalue.



iii) For v > - ( ) the point (0,0) is still an equilibrium
for (mkv), but it is a saddle point for the linearized
system, i.e. the matrix DV (0,0) has two nonzero
real eigenvalues of opposite sign. Moreover (mkv) has
two linearly stable solutions (mZ, m?¥), (—mZ,—m%),
where m? is the unique strictly positive solution of the
equation

r = tanh(/3) tanh(~yx),

and
1 (o2
me = m.,

tanh(()

* &




iv) For v > m the phase space [—1,1]% is bi-
partitioned by a smooth curve I' containing (0,0) such
that [—1,1]%\ T is the union of two disjoint sets I'", '~

that are open in the induced topology of [—1,1]%
Moreover

( (m7Z, m®) if (mg,my) el

dim (mf.mg) = 4 (—mZ,—m2) i (mf.m§) € T-
(0,0) if (mg,my) eT.




e The fact that the limiting (N — oo) dynamics may
have multiple stable equilibria implies that our system
exhibits what is called phase transition:.

—  The asymptotic (N — oo) behavior of the system
changes depending on the values of the parameters
(and of the initial conditions).

— The effects of phase transition for the system with
finite N can be seen on different time scales in
different ways.



e On regular time-scales (of order O(1)) the following
occurs: for certain values of the initial condition the
system is driven towards the asymptotic symmetric
equilibrium state (0,0) where half of the firms are in
good financial health.

After a certain time (depending on the initial condition)
the system is captured by an unstable direction of
this neutral equilibrium and moves towards a stable
asymmetric equilibrium.  During this transition the
volatility of the system (will be defined below) increases
sharply before decaying to a stationary value.

— This phenomenon can be interpreted as a credit crisis
and may account for default clustering.



Phase diagram of a trajectory of (m°,m®)
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Figure 1: g=1,v=2.3, v.=1/tanh(3)~1.313



Phase diagram of a trajectory of (m m®)

N T T

0.6

0.2

-0.2-

-0.6-

Phase diagram of (m°,m®)

-0.8 -0.6 -0.4 -0.2

0.2




Figure 2: g=1.5, v=2.1, v.=1/tanh(8)~1.105

Trajectory of n{’ and V(1)
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Figure 3: ~.~1.105; ~.~1.396

Trajectories of nf and V(t) varying the parameters
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C. Analysis of the fluctuations

o Concerns the asymptotic distribution of (pny — Q*).
— Recall that pn(t), being a measure on {—1,1}2, is

characterized by

m? (t), m% (t), mJ¥(t)

PN

o With A(t), D(t) appropriate matrices depending on 3,y
and m7, my, m7“ one has the following



Theorem 3. Let

< 8
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Then (zn(t), yw (1), 2n(8) 5 (a(t),y(t), =(1)) in
the sense of weak convergence of stochastic processes,
where (x(t),y(t), 2(t)) is a centered Gaussian process,
unique solution of the linear SDE

dz(t) 2 (t) dB(t)
dyt) | =A"@)| y(@) |di+D(t) | dBa(t)
dz(t) 2(t) dBs(t)

where B, By, B3 are independent Brownian motions and
(2(0),4(0),2(0)) is a centered Gaussian.



— The asymptotic, for N — oo, distribution of
(xn(t),yn(t), zn(t)) is thus, for each fixed t, a centered
Gaussian with covariance matrix >; - the volatility
referred to earlier - satisfying (asymptotics in t depend

upon -y)

az, _
dt

(®(-) cumulative standard Gaussian).



Portfolio losses

e A bank holds a portfolio of financial positions issued by
the NV firms.

e Random loss for the ¢ — th position at time ¢:

Li(t) eRT: i=1,..,N

o Aggregated losses are LY (t) = Ziil L;(t)



e More specifically, let
Ge(u):=P{L;(t) <u | o3(t) =2}, ze&{-1,+1}
(homogeneity with respect to i and t) and
01 := E{L;(t) | o;(t) =1} < E{L;(t) | 0;(t) = =1} :=40_4
— one expects to loose more when in financial distress.

Furthermore,

vy = Var{L;(t) | o;(t) =1};v_1 :=Var{L;(t) | o;,(t) = —1}



Example 1

e Portfolio consisting of NV positions of 1 unit due at time
T (defaultable bonds).

Li(T) = L(0i(T)) = { (1) g Zig; i 1_1

N LN(T) = Zfll 1—02¢(T) _ N(l—T;LJ—V(TD

—  P{LYT) 2o} =P{mx(T) <1-%F

apply Corollary 1



A further result

o Let / ¢ / /
L(t) =& — 1) e 4 1+2 =
Vi) — (61— £-1)%%F Ldtmio (1 —mf)vo

4 2 2

Theorem 4: When the distribution of L;(t) depends on
O'Z'(t),

VN (L]jv(t) - L(t)) = N(0,V(#))

Corollary 2: In the setting of Theorem 4 it follows

N NL(T) — «
P{L (T)za}~®<\/N\/V(T)>




Example 2 (Bernoulli mixture model)

e As before but with

(1 with prob  P(o;(T); V)

0 with prob 1 - P(o;,(T); V)
where W is an exogenous random factor.

— {1 =P(1;¥), vy = P(1;¥)(1—P(1;W¥))(analogously
for 5_1, U_l)

e A possible specification is
P(lo;U) =1—exp{—k1V — ko (1 —0)/2 — k3}

withk; > 0and ¥V ~ I'(«a; k). (The prob. for L;(T) =1
is bigger for o;(T") = —1 than for o;(T) =1).



o Herelq,¢_1,v1,v_1 and thus also L(t) and V (t) depend
on the value 1 taken by the Gamma-type r.v. W.
Denote the latter by L(t;), V(t,).

— by Corollary 2

N(T NL(T;Y) —«
P{LN(T) > a} ~ / <\/N\/VT¢>df\lj(w)

with fg(-) the Gamma-density of W.



Figure 4: g=1.5, v=2.1, v.=1/tanh(8)~1.105
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Figure 5: y.=1/tanh(1.5)~1.105; v.=1/tanh(0.9)~1.396

Trajectory of n{’ and V(t)
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