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Introductory remarks:

• Risk ⇐ lack of information
(We do not know the future)

• Risk depends on

– portfolio

– market dynamics

and

– information used by observer
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• This has two consequences

1. The less information we have, the higher the risk

2. Risk measures have a subjective component:
On the same day for the same portfolio different estimates for the
same risk measure may be correct

⇒ Assessment of estimates to be based on a series of forecasts
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VAR as risk measure

• Quantile of P/L distribution

• Drawback: not subadditive (⇒ not coherent)

• Still:

– Widely used in practice

– Enforced by regulators

• Possible reasons

– Solely depends on P/L distribution

– Finite for any portfolio under any distributional assumptions

– Straightforward assessment of quality of estimates via backtesting

• Some of the ideas presented here maybe applicable to other risk mea-
sures based on the P/L distribution
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Backtesting

• Back testing methods:

1. Count number of excesses

2. Advanced (E.g. investigate identical distribution of excesses over
time)

• If an estimate fails the first test, further tests are superfluous
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• Counterexample:

– Very large estimate on 98% of days

– Very low VAR estimate for 2% of days

– will result in 1% of excesses

• Excluded, if we demand VAR to be function of portfolio and market
history only without explicit time dependence
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VAR calculation

• Calculate quantile of distribution of profits and losses

• Distribution to be estimated from historical sample

• Straightforward, if there is a large number of identically distributed
historical changes of market states

However:

• Sample may be small

– Recently issued instruments

– Availability of data

– Change in market dynamics !!

• Estimation from small sample induces the risk of a misestimation
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Model risk

• Estimation of distribution may proceed in two steps

1. Choose family of distributions (model specification)

2. Select distribution within selected family (parameter estimation)

• This may be seen as inducing two types of risk

1. Risk of misspecification of family

2. Uncertainty in parameter estimates
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• This differentiation, however, is highly artificial:

– If there are several candidate families we might choose a more
general family comprising them

– This family will usually be higher dimensional

– The problem of model specification is partly transformed into the
problem of parameter estimation

– Risk of misspecification is traced back to the risk from parameter
misestimation

– Indeed, uncertainty in parameter estimates will be larger for the
higher dimensional family

• So, in practice, choice is not between distinct models, choice is bet-
ween simple model and complex model containing the simple model
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Trade off

• A simple model will not cover all features of the distribution, e.g.

– time dependent volatility

– fat tails

• This will result in biased (generally too small) VAR estimates

• In a more sophisticated model we will have a larger uncertainty in
the estimation of the distribution

• This introduces another source of risk

• The effect will be seen in the back testing

• So, again, back testing shows an underestimation of VAR
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Contents:

• Guiding examples

– Bias vs. uncertainty

– Impact of model risk on back testing results

• Incorporating model risk into VAR

– Classical approaches to handle model risk

– Consistent inclusion into VAR forecast

– Applications

• Model risk and expected shortfall

• Comparison to Bayesian approach
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Example I: time dependent volatility

• Daily returns are normally distributed, time dependent volatility

• Volatility varies between 0.55 and 1.3

• average volatility is 1

• e.g.: σ2 = 1 + 0.7 ∗ sin(2πt)
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Time series of normally distributed returns with varying volatility (4
years)
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• With normal distribution assumption and a long term average of the
volatility (σ = 1) we get a VAR0.99 of 2.33

• Back testing will show 1.4% of excess values rahter than 1%

• Note: Excesses not identically distributed over time

• Way out: Calculate volatility from most recent 25 returns to get time
dependent volatility

• Again we will find some 1.4% of excesses

• Note: Excesses now (almost) identically distributed over time
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Volatility estimate from 25 returns
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• Estimating time dependent volatility:

– Long lookback period leads to systematic error (bias)

– Short lookback period leads to stochastic error (uncertainty)

• Both seen in back testing results
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• Assume returns normally distributed with σ = 1

• Volatility estimated from n-day lookback period

• 99% quantile calculated from estimated volatility under normal dis-
tribution assumption

• the following table show, how average number of excess values depend
on n

n excesses
10 2.1%
20 1.5%
50 1.2%

100 1.1%
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Example II: Fat tailed distribution

• Model fat tailed returns as function of normally distributed variable:
e.g.: x = a ∗ sign(y) ∗ |y|b , y normally distributed

• parameter b determines tail behavior:

– normal for b = 1

– fat tailed for b > 1

• volatility depends on scaling parameter a
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Fat tailed distributions for b=1.25:
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• Modeling as normal distribution:

– Assume perfect volatility estimate

– 1.5% excesses of estimated VAR0.99

• Modeling as fat tailed distribution

– Two parameters have to be estimated

– With a lookback period of 50 days we obtain 1.5% of excesses

• Compare normal distribution:
50 days of lookback period ⇒ 1.2% of excesses

• The result does not depend on the actual value of b
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• Interpretation: With the complexity of the model the uncertainty of
the parameter estimates increases

• Again there is a trade off between

– bias in the simple model

– uncertainty in the complex model
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The general situation

• Distribution P (~α) member of family P of distributions labeled by
some parameters ~α

• For estimation of ~α a (possibly small) sample < ~x > of independent
draws from P (~α) available

Estimation of parameters:

• Choose estimator α̂(~x)

• Calculate α̂ value for given sample

• Identify this value with ~α

However:

• α̂ is itself a random number

• A value of ~α different from the observed value could have produced
sample
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Classical approaches:

Statistical testing

• Use distribution of α̂ to formulate conditions on a reasonable choice
of ~α

• A range of values of ~α will match

• Satisfactory, if admissible range of values is small
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Bayesian approach:

• Assume prior distribution for ~α
⇒ Conditional distribution of ~α depending on observed value of α̂
⇒ Stochastic mixture of distributions from family P

• Calculate VAR estimate from the latter

• Some features

– Assumes, that VAR is quantile of some distribution P (~α) ∈ P
Effectively calculates VAR from stochastic mixture of distributions

– In this way includes risk of misestimation of ~α into VAR

– However, depends on choice of prior distribution

– In general, will not lead to a VAR figure behaving well in the back
testing
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Method

• In http://papers.ssrn.com/sol3/papers.cfm?abstract id=308082
method was presented, which

– incorporates the uncertainty in the parameter estimates

– does not depend on the assumption of a prior distribution

– behaves well in the back testing

• We will shortly review it
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Starting point: Given is

• A family P probability distributions parameterized by a set of para-
meters ~α

• A finite sample < x1, ...xn > of independent draws from a particular
member P (~α) ∈ P.

• A priory nothing is known about ~α

• VAR estimate should produce correct back testing results
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Back testing:

• Vq (VAR for confidence level q): is a function of < x1, ...xn >

• Repeat experiment k times → k samples < xa
1, ...x

a
n >

• → k quantile estimates V a
q = Vq(x

a
1, ..., x

a
n)

• No explicit time dependence (V a
q dep. on a via sample only)

• Compare V a
q with next draw xa

n+1

• xa
n+1 should exceed V a

q in q percent of the cases.

Note:

• Different functions of sample may be correct quantile estimates
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Different point of view

• Effectively we have a n + 1-dimensional sample of i.i.d. variables

• P (α) ∈ P induces multivariate distr. Pmult(α) of samples

• Assume function Φ(x1, ..., xn; xn+1) such that

– distribution of Φ does not depend on ~α

– Φ0(xn+1) := Φ(x0
1, ..., x

0
n; xn+1) is strictly monotonic in xn+1

• Given q and historical sample < x0
1, ..., x

0
n >

– calculate q-quantile for distribution of Φ

– calculate corresponding value of xn+1 from inverse of Φ0

Eventually we have

Vq(x
(0)
1 , ..., x(0)

n ) = Φ0
−1(QΦ

q )
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Result:

• Obviously the above construction will produce a VAR estimate be-
having correctly under the back testing described above

Remarks:

• Different choices of Φ lead to different (albeit correct) VAR estimates

• Distribution of Φ depends neither on historical sample nor on ~α
⇒ Determination of QΦ

q has to be done once only
⇒ Possible even if it needs expensive simulation

• Though inspired by a problem from financial risk management, the
method may be well applicable in other fields.
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Construction of Φ

• Assume P generated by the action of some Lie group G on R, i.e.:

– Fix distribution P0

– X Pg-distributed for X = g Y with Y P0-distributed and g ∈ G

• Assume that only identity acts trivial on P0

• Assume some estimator ĝ(~x) for the group element g corresponding
to the distribution the sample ~x was taken from

• Let the estimator be G-homogeneous: ĝ(g(~x)) = g ĝ(x)

• Let Φ = ĝ−1(x1, ..., xn) xn+1

• Distribution on Φ does not depend on distribution of < x1, ...xn+1 >
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Proof:

• ĝ(x) solves the equation ĝ(g−1(x)) = id w.r.t. g

• ĝ(< y1, ...yn >) = id generates (n + 1− d)–dimensional surface
in Rn+1 (d = dim(G))

• Action of G forms d-dim G-invariant orbits in Rn+1

• These orbits are invariant under group transformations

• ĝ−1 xn+1 is (n+1)-th coordinate of intersection point
between this surface and orbit through < x1, ...xn+1 >

• Change of distribution induced by G transformation

• G-invariance of Φ immediately follows from G-invariance of orbits

• q.e.d.
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G-homogeneous estimators

• Assume r.v. X g1P0 distributed

• Consider Y = g2X as different variable on same probability space

• Estimate for probability space should not depend on parametrization
of event space

• From this point of view homogeneity of ĝ appears as natural condition
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G-homogeneous estimators, examples

• Most likelihood estimator

• Construction used in the cited paper

– Denote by f a Rd-valued functional on P (d = dim(g)) with
f (Y ) = 0 ⇔ Y P0-distributed

– Denote by f̂ (x1, ..., xn) an estimator of f for the sample < x1, ...xn >
of size n

– f̂ (ĝ−1(~x)) defines homogeneous estimator ĝ for g
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d = 1

• Consider scale transformation X → αX
( G = (R+,×) )

• Generates family of distributions characterized by scale parameter α

• Any reasonable estimator α̃ for α will be homogeneous
( α̂(λ~x) = λα̂(x) )

• Choose Φ = xn+1/α̂(x1, ..., xn)

• Result:
pΦ = EPn

0
[α̂p0(α̂Φ)]

with p0 ... density of P0

and P n
0 ... dist. of n independent draws from P0



c© Peter Schaller, BA-CA, Strategic Riskmanagement 34

Example: Normal distribution

• Standard deviation σ as scale parameter

• As an estimator choose weighted sum σ̂ =
√∑

wix2
i

with
∑

wi=1

• Sample may be infinite, but recent returns have higher weights than
past returns. This has a similar effect as a finite sample.

• Result (N denotes normalization constant:)

p(Φ) = N
n∏

i=1

1√
1 + wiΦ2

E[
√

µ(xi)]

with

µ(xi) =

n∑
i=1

wix
2
i

1 + wiΦ2

and E[.] denoting the expectation value w.r.t. standard normal dist.
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• For constant weight over sample of size n we obtain StudentT distri-
bution with n degrees of freedom
(Note that σ̂ is square root of χ2 distr. variable

• For general choice of weights:

– Expand
√

µ into Taylor series at µ0 = E[µ]

– Allows approximation of result in terms of moments of normal
distr. to arbitrary order in µ− µ0

• Popular:

– EWMA: wi = λn−i/
∑

λn−i

– GARCH(1,1): wi = p/n + (1− p) λn−i/
∑

λn−i
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Note on GARCH(1,1)

• volatility estimate for GARCH(1,1) may be written as wighted ave-
rage of long term estimate and EWMA estimate:
σ̂2

GARCH = p σ2
0 + (1− p) σ̂2

EWMA(λ)

• σ0 is the long term average of the volatility
weight p, and decay factor λ depend on parameters α, β, and γ of
GARCH process
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d=2 example

• Characterization of P

– P0 ... standard normal distribution

– Variable from P (a, b) ∈ P is generated by transformation
x = g(a, b) · y := a sgn(y) |y|b , a, b > 0

• Straightforward to prove that this transformations form a group

• Note: P (a, b) fat tailed if b > 1

• Standard normal distr. may e.g. be characterized by variance and
kurtosis

• Standard estimators for these quantities may be used (e.g. empirical
values of the sample)

• Distr. of Φ may be generated by simulation (Once only even in the
case of daily estimates!!)
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Coherent extension of VAR (CVAR)

• In contrast to quantile the conditional mean of the events beyond the
quantile is coherent (i.p. sub additive) risk measure

• Can we calculate this quantity from Φ (E.g. By multiplying volatility
estimate with conditional mean of Φ in case of one parameter family
of distributions)?

Gedanken experiment

• For normally distr. losses choose size of historical sample n = 1
⇓

– absolute value of most recent return is estimate for std. dev.

– Φ is StudentT distr. with one degree of freedom

• 75% quantile of the latter equals 1
⇒ Abs. value of most recent loss is VAR for confidence level of 75%
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Compare

• Cond. mean of StudentT distr. with one deg. of freedom is infinite

• Naive back testing would produce a finite result for the CVAR:

CVARback−testing =
1

0.25
Ênormal−distr[(xt)θ(xt − |xt−1|)]

However

• This back testing assumes constant size of portfolio

• Assume

– Family of distributions related by scale transformations

– Portfolio with constant VAR limit l: Whenever VAR estimate de-
viates from l portfolio will be resized by a factor l/VAR

• Apply back testing with this regularly resized portfolio

• Product of cond. mean of Φ and limit l is CVAR result compatible
with back testing
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Comparison with Bayesian approach

Setting

• Consider one parameter family of distributions:

– P1 ... arbitrary distr. with standard deviation of 1

– Pα ... distr. generated from P1 by transformation x → α · x
• Choose homogeneous estimator φ for stand. dev.: Φ = xn+1/φ (∗)
• Is there a prior distr. for stand. dev. such that Bayesian approach

generates correct result?

Note:

• In the Bayesian approach VAR is calculated from a stochastic mixture
of distributions

• In view of (*) distr. of Φ may be interpreted as stochastic mixture of
Pσ distributions where σ has distr. of quantity 1/φ (calculated with
α=1)
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Result:

• After some calculations using

– Homogeneity of φ

– paz(x) = 1
apz(x/a)

– p1/z(x) = 1
x2pz(1/x)

we find:

• Bayesian approach gives same result as our method, if density of prior
distribution for std. dev. is chosen according to pprior(σ) = 1/σ


