MODEL RISK IN VAR CALCULATIONS

Peter Schaller, Bank Austria \sim Creditan
stalt (BA-CA) Wien, peter@ca-risc.co.at

CPeter Schaller, BA-CA, Strategic Riskmanagement

Introductory remarks:

- Risk ⇐ lack of information (We do not know the future)
- Risk depends on
 - portfolio
 - market dynamics

and

- information used by observer

- This has two consequences
 - 1. The less information we have, the higher the risk
 - Risk measures have a subjective component:
 On the same day for the same portfolio different estimates for the same risk measure may be correct
- \Rightarrow Assessment of estimates to be based on a series of forecasts

VAR as risk measure

- Quantile of P/L distribution
- Drawback: not subadditive (\Rightarrow not coherent)
- Still:
 - Widely used in practice
 - Enforced by regulators
- Possible reasons
 - Solely depends on P/L distribution
 - Finite for any portfolio under any distributional assumptions
 - Straightforward assessment of quality of estimates via backtesting
- \bullet Some of the ideas presented here may be applicable to other risk measures based on the P/L distribution

Backtesting

- Back testing methods:
 - 1. Count number of excesses
 - 2. Advanced (E.g. investigate identical distribution of excesses over time)
- If an estimate fails the first test, further tests are superfluous

• Counterexample:

- Very large estimate on 98% of days
- $-\,\mathrm{Very}$ low VAR estimate for 2% of days
- will result in 1% of excesses
- Excluded, if we demand VAR to be function of portfolio and market history only without explicit time dependence

VAR calculation

- Calculate quantile of distribution of profits and losses
- Distribution to be estimated from historical sample
- Straightforward, if there is a large number of identically distributed historical changes of market states

However:

- Sample may be small
 - Recently issued instruments
 - Availability of data
 - Change in market dynamics !!
- Estimation from small sample induces the risk of a misestimation

Model risk

- Estimation of distribution may proceed in two steps
 - 1. Choose family of distributions (model specification)
 - 2. Select distribution within selected family (parameter estimation)
- This may be seen as inducing two types of risk
 - 1. Risk of misspecification of family
 - 2. Uncertainty in parameter estimates

- This differentiation, however, is highly artificial:
 - If there are several candidate families we might choose a more general family comprising them
 - This family will usually be higher dimensional
 - The problem of model specification is partly transformed into the problem of parameter estimation
 - Risk of misspecification is traced back to the risk from parameter misestimation
 - Indeed, uncertainty in parameter estimates will be larger for the higher dimensional family
- So, in practice, choice is not between distinct models, choice is between simple model and complex model containing the simple model

Trade off

- A simple model will not cover all features of the distribution, e.g.
 - time dependent volatility
 - fat tails
- This will result in biased (generally too small) VAR estimates
- In a more sophisticated model we will have a larger uncertainty in the estimation of the distribution
- This introduces another source of risk
- The effect will be seen in the back testing
- So, again, back testing shows an underestimation of VAR

CPeter Schaller, BA-CA, Strategic Riskmanagement

Contents:

- Guiding examples
 - Bias vs. uncertainty
 - Impact of model risk on back testing results
- Incorporating model risk into VAR
 - Classical approaches to handle model risk
 - Consistent inclusion into VAR forecast
 - Applications
- Model risk and expected shortfall
- Comparison to Bayesian approach

Example I: time dependent volatility

- Daily returns are normally distributed, time dependent volatility
- \bullet Volatility varies between 0.55 and 1.3
- average volatility is 1
- e.g.: $\sigma^2 = 1 + 0.7 * \sin(2\pi t)$

Time series of normally distributed returns with varying volatility (4 years)

- With normal distribution assumption and a long term average of the volatility ($\sigma = 1$) we get a VAR_{0.99} of 2.33
- \bullet Back testing will show 1.4% of excess values rahter than 1%
- Note: Excesses not identically distributed over time
- Way out: Calculate volatility from most recent 25 returns to get time dependent volatility
- \bullet Again we will find some 1.4% of excesses
- Note: Excesses now (almost) identically distributed over time

- Estimating time dependent volatility:
 - Long lookback period leads to systematic error (bias)
 - Short lookback period leads to stochastic error (uncertainty)
- Both seen in back testing results

- Assume returns normally distributed with $\sigma=1$
- \bullet Volatility estimated from $n\text{-}\mathrm{day}$ lookback period
- \bullet 99% quantile calculated from estimated volatility under normal distribution assumption
- \bullet the following table show, how average number of excess values depend on n

n	excesses
10	2.1%
20	1.5%
50	1.2%
100	1.1%

Example II: Fat tailed distribution

- Model fat tailed returns as function of normally distributed variable: e.g.: $x = a * sign(y) * |y|^b$, y normally distributed
- \bullet parameter b determines tail behavior:
 - normal for b = 1
 - fat tailed for b > 1
- \bullet volatility depends on scaling parameter a

Fat tailed distributions for b=1.25:

- Modeling as normal distribution:
 - Assume perfect volatility estimate
 - -1.5% excesses of estimated VAR_{0.99}
- Modeling as fat tailed distribution
 - Two parameters have to be estimated
 - With a look back period of 50 days we obtain 1.5% of excesses
- Compare normal distribution: 50 days of lookback period $\Rightarrow 1.2\%$ of excesses
- \bullet The result does not depend on the actual value of b

- Interpretation: With the complexity of the model the uncertainty of the parameter estimates increases
- Again there is a trade off between
 - bias in the simple model
 - uncertainty in the complex model

The general situation

- Distribution $P(\vec{\alpha})$ member of family **P** of distributions labeled by some parameters $\vec{\alpha}$
- For estimation of $\vec{\alpha}$ a (possibly small) sample $<\vec{x}>$ of independent draws from $P(\vec{\alpha})$ available

Estimation of parameters:

- Choose estimator $\hat{\alpha}(\vec{x})$
- Calculate $\hat{\alpha}$ value for given sample
- Identify this value with $\vec{\alpha}$

However:

- $\hat{\alpha}$ is itself a random number
- A value of $\vec{\alpha}$ different from the observed value could have produced sample

Classical approaches:

Statistical testing

- \bullet Use distribution of $\hat{\alpha}$ to formulate conditions on a reasonable choice of $\vec{\alpha}$
- A range of values of $\vec{\alpha}$ will match
- Satisfactory, if admissible range of values is small

Bayesian approach:

- Assume prior distribution for $\vec{\alpha}$
 - \Rightarrow Conditional distribution of $\vec{\alpha}$ depending on observed value of $\hat{\alpha}$
 - \Rightarrow Stochastic mixture of distributions from family ${\bf P}$
- Calculate VAR estimate from the latter
- Some features
 - Assumes, that VAR is quantile of some distribution $P(\vec{\alpha}) \in \mathbf{P}$ Effectively calculates VAR from stochastic mixture of distributions
 - In this way includes risk of misestimation of $\vec{\alpha}$ into VAR
 - However, depends on choice of prior distribution
 - In general, will not lead to a VAR figure behaving well in the back testing

Method

- In http://papers.ssrn.com/sol3/papers.cfm?abstract_id=308082 method was presented, which
 - incorporates the uncertainty in the parameter estimates
 - $-\operatorname{does}$ not depend on the assumption of a prior distribution
 - behaves well in the back testing
- We will shortly review it

Starting point: Given is

- \bullet A family ${\bf P}$ probability distributions parameterized by a set of parameters $\vec{\alpha}$
- A finite sample $\langle x_1, ..., x_n \rangle$ of independent draws from a particular member $P(\vec{\alpha}) \in \mathbf{P}$.
- A priory nothing is known about $\vec{\alpha}$
- VAR estimate should produce correct back testing results

Back testing:

- V_q (VAR for confidence level q): is a function of $\langle x_1, ..., x_n \rangle$
- Repeat experiment k times \rightarrow k samples $< x_1^a, ... x_n^a >$
- \rightarrow k quantile estimates $V_q^a = V_q(x_1^a, ..., x_n^a)$
- No explicit time dependence $(V_q^a \text{ dep. on } a \text{ via sample only})$
- Compare V_q^a with next draw x_{n+1}^a
- x_{n+1}^a should exceed V_q^a in q percent of the cases.

Note:

• Different functions of sample may be correct quantile estimates

Different point of view

- Effectively we have a n + 1-dimensional sample of i.i.d. variables
- $P(\alpha) \in \mathbf{P}$ induces multivariate distr. $P_{mult}(\alpha)$ of samples
- Assume function $\Phi(x_1, ..., x_n; x_{n+1})$ such that
 - distribution of Φ does not depend on $\vec{\alpha}$
 - $-\Phi_0(x_{n+1}) := \Phi(x_1^0, ..., x_n^0; x_{n+1})$ is strictly monotonic in x_{n+1}
- Given q and historical sample $\langle x_1^0, ..., x_n^0 \rangle$
 - calculate q-quantile for distribution of Φ
 - calculate corresponding value of x_{n+1} from inverse of Φ_0

Eventually we have

$$V_q(x_1^{(0)}, ..., x_n^{(0)}) = \Phi_0^{-1}(Q_q^{\Phi})$$

Result:

• Obviously the above construction will produce a VAR estimate behaving correctly under the back testing described above

Remarks:

- Different choices of Φ lead to different (albeit correct) VAR estimates
- Distribution of Φ depends neither on historical sample nor on $\vec{\alpha}$ \Rightarrow Determination of Q_q^{Φ} has to be done once only \Rightarrow Possible even if it needs expensive simulation
- Though inspired by a problem from financial risk management, the method may be well applicable in other fields.

Construction of Φ

- Assume **P** generated by the action of some Lie group G on \mathbb{R} , i.e.:
 - Fix distribution P_0
 - $-X P_g$ -distributed for X = g Y with $Y P_0$ -distributed and $g \in G$
- Assume that only identity acts trivial on P_0
- Assume some estimator $\hat{g}(\vec{x})$ for the group element g corresponding to the distribution the sample \vec{x} was taken from
- Let the estimator be G-homogeneous: $\hat{g}(g(\vec{x})) = g \hat{g}(x)$
- Let $\Phi = \hat{g}^{-1}(x_1, ..., x_n) x_{n+1}$
- Distribution on Φ does not depend on distribution of $\langle x_1, ..., x_{n+1} \rangle$

Proof:

- $\hat{g}(x)$ solves the equation $\hat{g}(g^{-1}(x)) = id$ w.r.t. g
- $\hat{g}(\langle y_1, ..., y_n \rangle) = id$ generates (n + 1 d)-dimensional surface in \mathbb{R}^{n+1} $(d = \dim(G))$
- Action of G forms d-dim G-invariant orbits in \mathbb{R}^{n+1}
- These orbits are invariant under group transformations
- $\hat{g}^{-1} x_{n+1}$ is (n+1)-th coordinate of intersection point between this surface and orbit through $\langle x_1, ..., x_{n+1} \rangle$
- \bullet Change of distribution induced by G transformation
- \bullet $G\mbox{-invariance}$ of Φ immediately follows from $G\mbox{-invariance}$ of orbits
- q.e.d.

G-homogeneous estimators

- Assume r.v. $X g_1 P_0$ distributed
- Consider $Y = g_2 X$ as different variable on same probability space
- Estimate for probability space should not depend on parametrization of event space
- From this point of view homogeneity of \hat{g} appears as natural condition

G-homogeneous estimators, examples

- Most likelihood estimator
- Construction used in the cited paper
 - Denote by $f \in \mathbb{R}^d$ -valued functional on \mathbf{P} $(d = \dim(g))$ with $f(Y) = 0 \iff Y P_0$ -distributed
 - Denote by $\hat{f}(x_1, ..., x_n)$ an estimator of f for the sample $\langle x_1, ..., x_n \rangle$ of size n
 - $\, \hat{f}(\hat{g}^{-1}(\vec{x}))$ defines homogeneous estimator \hat{g} for g

d = 1

- Consider scale transformation $X \to \alpha X$ ($G = (\mathbb{R}_+, \times)$)
- \bullet Generates family of distributions characterized by scale parameter α
- Any reasonable estimator $\tilde{\alpha}$ for α will be homogeneous ($\hat{\alpha}(\lambda \vec{x}) = \lambda \hat{\alpha}(x)$)
- Choose $\Phi = x_{n+1}/\hat{\alpha}(x_1, ..., x_n)$

• Result:

$$p_{\Phi} = E_{P_0^n}[\hat{\alpha}p_0(\hat{\alpha}\Phi)]$$

with p_0 ... density of P_0 and P_0^n ... dist. of n independent draws from P_0

Example: Normal distribution

- \bullet Standard deviation σ as scale parameter
- As an estimator choose weighted sum $\hat{\sigma} = \sqrt{\sum w_i x_i^2}$ with $\sum w_i = 1$
- Sample may be infinite, but recent returns have higher weights than past returns. This has a similar effect as a finite sample.
- Result (N denotes normalization constant:)

1

$$p(\Phi) = N \prod_{i=1}^{n} \frac{1}{\sqrt{1 + w_i \Phi^2}} E[\sqrt{\mu(x_i)}]$$

with

$$u(x_i) = \sum_{i=1}^n \frac{w_i x_i^2}{1 + w_i \Phi^2}$$

and E[.] denoting the expectation value w.r.t. standard normal dist.

- For constant weight over sample of size n we obtain StudentT distribution with n degrees of freedom (Note that $\hat{\sigma}$ is square root of χ^2 distr. variable
- For general choice of weights:
 - Expand $\sqrt{\mu}$ into Taylor series at $\mu_0 = E[\mu]$
 - Allows approximation of result in terms of moments of normal distr. to arbitrary order in $\mu \mu_0$
- Popular:
 - EWMA: $w_i = \lambda^{n-i} / \sum \lambda^{n-i}$
 - GARCH(1,1): $w_i = p/n + (1-p) \lambda^{n-i} / \sum \lambda^{n-i}$

Note on GARCH(1,1)

- volatility estimate for GARCH(1,1) may be written as wighted average of long term estimate and EWMA estimate: $\hat{\sigma}_{GARCH}^2 = p \, \sigma_0^2 + (1-p) \, \hat{\sigma}_{EWMA}^2(\lambda)$
- σ_0 is the long term average of the volatility weight p, and decay factor λ depend on parameters α , β , and γ of GARCH process

d=2 example

- \bullet Characterization of ${\bf P}$
 - $-P_0$... standard normal distribution
 - Variable from $P(a, b) \in \mathbf{P}$ is generated by transformation $x = g(a, b) \cdot y := a \operatorname{sgn}(y) |y|^b$, a, b > 0
- Straightforward to prove that this transformations form a group
- Note: P(a, b) fat tailed if b > 1
- Standard normal distr. may e.g. be characterized by variance and kurtosis
- Standard estimators for these quantities may be used (e.g. empirical values of the sample)
- Distr. of Φ may be generated by simulation (Once only even in the case of daily estimates!!)

Coherent extension of VAR (CVAR)

- In contrast to quantile the conditional mean of the events beyond the quantile is coherent (i.p. sub additive) risk measure
- Can we calculate this quantity from Φ (E.g. By multiplying volatility estimate with conditional mean of Φ in case of one parameter family of distributions)?

Gedanken experiment

- \bullet For normally distr. losses choose size of historical sample n=1 \Downarrow
 - absolute value of most recent return is estimate for std. dev.
 - Φ is StudentT distr. with one degree of freedom
- 75% quantile of the latter equals 1
 - \Rightarrow Abs. value of most recent loss is VAR for confidence level of 75%

Compare

- Cond. mean of StudentT distr. with one deg. of freedom is infinite
- Naive back testing would produce a finite result for the CVAR:

$$CVAR_{back-testing} = \frac{1}{0.25} \hat{E}_{normal-distr}[(x_t)\theta(x_t - |x_{t-1}|)]$$

However

- This back testing assumes constant size of portfolio
- Assume
 - Family of distributions related by scale transformations
 - Portfolio with constant VAR limit l: Whenever VAR estimate deviates from l portfolio will be resized by a factor $l/{\rm VAR}$
- Apply back testing with this regularly resized portfolio
- \bullet Product of cond. mean of Φ and limit l is CVAR result compatible with back testing

Comparison with Bayesian approach

Setting

- Consider one parameter family of distributions:
 - $-P_1$... arbitrary distr. with standard deviation of 1
 - $-P_{\alpha}$... distr. generated from P_1 by transformation $x \to \alpha \cdot x$
- Choose homogeneous estimator ϕ for stand. dev.: $\Phi = x_{n+1}/\phi$ (*)
- Is there a prior distr. for stand. dev. such that Bayesian approach generates correct result?

Note:

- In the Bayesian approach VAR is calculated from a stochastic mixture of distributions
- In view of (*) distr. of Φ may be interpreted as stochastic mixture of P_{σ} distributions where σ has distr. of quantity $1/\phi$ (calculated with $\alpha=1$)

Result:

• After some calculations using

- Homogeneity of
$$\phi$$

- $p_{az}(x) = \frac{1}{a}p_z(x/a)$
- $p_{1/z}(x) = \frac{1}{x^2}p_z(1/x)$
we find:

• Bayesian approach gives same result as our method, if density of prior distribution for std. dev. is chosen according to $p_{prior}(\sigma) = 1/\sigma$