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Formulation of the Problem

V ∗(x) = sup
τ

Ex

∫ τ

0
e−Λu f (Xu) du (OS)

• dXt = µ(Xt) dt + σ(Xt) dWt , Px(X0 = x) = 1

• Xt ∈ J := (ℓ, r)

• Λt =
∫ t

0 λ(Xu) du

• λ : J → [0,∞)
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Terminology

f (·)

x1ℓ x1r x2ℓ x2rℓ r

In this case we say that f has a two-sided form

Examples:
Graversen, Peskir, and Shiryaev (2000)
Karatzas and Ocone (2002)
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Assumptions on µ, σ, f , and λ

Assumptions on µ and σ:

σ(x) 6= 0 ∀x ∈ J,
1
σ2 ∈ L1

loc(J),
µ

σ2 ∈ L1
loc(J)

Assumptions on f and λ:

f
σ2 ,

λ

σ2 ∈ L1
loc(J) (∗)

Explanation of (∗):

(∗) ⇐⇒ (Ft) and (Λt) are well defined and finite until ζ

Ft =
∫ t

0 f (Xu) du, Λt =
∫ t

0 λ(Xu) du

ζ is the explosion time of X
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Outline

“No-loss” free boundary formulation

Explicit study of a subclass of stopping problems



“No-loss” free boundary formulation Explicit study of a subclass of stopping problems References

Notation

For α, β ∈ J, α < β, we set

τα,β = inf{t ≥ 0 : Xt ≤ α or Xt ≥ β}
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Standard free boundary

(SFB):

σ2(x)

2
V ′′(x) + µ(x)V ′(x) − λ(x)V (x) = −f (x),

x ∈ (α, β)

V (x) = 0, x ∈ J \ (α, β)

V ′

+(α) = V ′

−
(β) = 0

The aim:
If (V , α, β) is a solution, then V = V ∗ and τα,β is optimal in (OS)
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Modifying free boundary

σ2(x)

2
V ′′(x) + µ(x)V ′(x) − λ(x)V (x) = −f (x)

for νL-a.a. x ∈ (α, β)

V (x) = 0, x ∈ J \ (α, β)

V ′

+(α) = V ′

−
(β) = 0

The aim:
If (V , α, β) is a solution, then V = V ∗ and τα,β is optimal in (OS)
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“No-loss” free boundary

V ′ is absolutely continuous on [α, β]

σ2(x)

2
V ′′(x) + µ(x)V ′(x) − λ(x)V (x) = −f (x)

for νL-a.a. x ∈ (α, β)

V (x) = 0, x ∈ J \ (α, β)

V ′

+(α) = V ′

−
(β) = 0

The aim:
If (V , α, β) is a solution, then V = V ∗ and τα,β is optimal in (OS)



“No-loss” free boundary formulation Explicit study of a subclass of stopping problems References

“No-loss” free boundary

(FB):

V ′ is absolutely continuous on [α, β]

σ2(x)

2
V ′′(x) + µ(x)V ′(x) − λ(x)V (x) = −f (x)

for νL-a.a. x ∈ (α, β)

V (x) = 0, x ∈ J \ (α, β)

V ′

+(α) = V ′

−
(β) = 0

The aim:
If (V , α, β) is a solution, then V = V ∗ and τα,β is optimal in (OS)
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Main results

Theorem (Verification Theorem)
Suppose f has a two-sided form.
Let (V , α, β) be a solution of (FB). Then

• it is unique

• V ∗ = V

• τα,β is a unique optimal stopping time in (OS)

Theorem ((FB) is “no-loss”)
If (OS) has an optimal stopping time of the form τα∗,β∗ ,
then (V ∗, α∗, β∗) is a solution of (FB)

Related paper: Lamberton and Zervos (2006)
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The assumption that f has a two-sided form
is essential for the verification theorem

Example

• f does not have a two-sided form

• (V , α, β) is a solution of (FB)

• V 6= V ∗

• τα,β is not optimal in (OS)
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The subclass of stopping problems

In the sequel J = R, µ ≡ 0, λ ≡ 0
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Characteristic conditions

(A1): h(∞) > h(−∞)

(A2): If h(∞) < h(x1ℓ), then
∫
∞

ah(∞)
H(y , h(∞)) dy < 0

(A3): If h(−∞) > h(x2r ), then
∫ bh(−∞)

−∞
H(y , h(−∞)) dy > 0

Here

h(x) := −

∫ x

0

2f (y)

σ2(y)
dy and H(x , c) := h(x) − c
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Classification

Case 0: (A1)–(A3) hold

Case 1: (A1) does not hold

Case 2: (A1) holds and (A2) does not hold

Case 3: (A1) holds and (A3) does not hold
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Case 0

• (FB) has a unique solution

• (OS) has a unique optimal stopping time
and it is two-sided

• The value function and the optimal stopping time
are found explicitly
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Case 1

• (FB) has no solution

• (OS) has no optimal stopping time

• The value function is found explicitly

• It can be either finite or identically infinite
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Case 2

• (FB) has no solution

• (OS) has a unique optimal stopping time, it is one-sided
with the unbounded from below stopping region

• The value function is always finite and is found explicitly,
together with the optimal stopping time
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Case 3

is symmetric to case 2
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Thank you for your attention!
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