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Dynamic Portfolio Optimization

Financial market containing risky and risk-free assets

continuously tradable

partial information on the drift

Initial capital x0 > 0

Horizon [0, T ]

Aim maximize expected utility of terminal wealth

constrain the risk of falling short a benchmark

Problem find an optimal investment strategy
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Financial Market Model

(Ω,F = (Ft)t∈[0,T ], P) filtered probability space

Stock market dSt = Diag(St) (µt dt + σt dWt )

with drift µt ∈ Rn and volatility σt ∈ Rn×n

dRt =
(

dS1
t

S1
t

, . . . ,
dSn

t
Sn

t

)τ
return process

Money market risk-free interest rate rt

(for simplicity we set rt ≡ 0 and σt ≡ σ)

Martingale density Zt = exp
(
−

t∫
0

κτ
s dWs − 1

2

t∫
0
||κs||2 ds

)
with κt = σ−1µt market price of risk

Martingale measure P̃(A) = E [ZT 1A] for A ∈ FT

P̃ ∼ P and W̃t = Wt +
t∫

0
κs ds is BM w.r.t. P̃
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Hidden Markov Model

Returns dRt = µ(Yt) dt + σ dWt observations

Drift µ(Yt) = B Yt non-observable (hidden) state
not FS-adapted

with Yt time-continuous homogeneous Markov chain

independent of Wt

states of Yt are unit vectors in Rd : e1, . . . , ed

n × d-matrix B = (b1, . . . , bd), columns are states of µt

switching between the states is controlled by intensity matrix G
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Filter

Given observations of prices Su (returns Ru) for u ∈ [0, t ]

To find filter for state Yt : ηt = E
[
Yt |FS

t
]

⇒ E
[
µt |FS

t
]

= Bηt

martingale density Zt : ζt = E
[
Zt |FS

t
]

Solution Wonham (1965), Elliot (1993)

unnormalized filter for state Yt : Et := Ẽ
[
Z−1

T Yt |FS
t

]
(Et) satisfies d-dimensional linear SDE

dEt = GτEt dt + Diag(Et)Bτ (σστ )−1 dRt︸ ︷︷ ︸
observations

, E0 = E [Y0]

Filter for Zt : ζt = (1τ
d ET )−1 = 1

E1
t +...+Ed

t

for Yt : ηt = ζtEt
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Portfolio

Initial capital X0 = x0 > 0

Wealth at time t Xt = π0
t︸ ︷︷ ︸

bond

+ π1
t︸ ︷︷ ︸

stock 1

+ . . . + πn
t︸ ︷︷ ︸

stock ninvested in

Strategy πt = (π1
t , . . . , πn

t )τ

Self financing condition ⇒

Wealth equation

dXπ
t = πτ

t (σdWt + µt dt)

= πτ
t σdW̃t

Xπ
0 = x0
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Shortfall Risk

Compare terminal wealth XT with benchmark q

e.g. q ∼ x0 initial capital

Shortfall if XT < q

Risk Measure EQ [(XT − q)−] where Q ∼ P

Expected Loss

Special Cases
I Q = P̃ Present Expected Loss (PEL)

Ẽ [(XT − q)−] option price

Basak, Shapiro (2001)

I Q = P Future Expected Loss (FEL)
E [(XT − q)−] average additional capital

Gabih, Grecksch, W. (2005)
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Optimization Problem

Wealth equation dXπ
t = πτ

t ( µt dt + σdWt), Xπ
0 = x0

Strategy π = (πt)t∈[0,T ]

Admissible strategies A(x0) = {(πt) : FS-adapted

integrability conditions,

Xπ
t ≥ 0, ∀t ∈ [0, T ] }

Utility function U : [0,∞) → R ∪ {−∞}
strictly increasing, concave (log-, power utility)

Optimization problem

V (x0) = sup
π∈A(x0)

E
[
U(Xπ

T )
]

risk constraint EQ
[
(Xπ

T − q)−
]
≤ ε
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Decomposition of the OP: Full Information

Dynamic problem V (x0) = sup
π ∈ A(x0)

E
[
U(Xπ

T )
]
, EQ

[
(Xπ

T − q)−
]
≤ ε

Static problem V (x0) = sup
ξ ∈ B(x0)

E [U(ξ)] , EQ [(ξ − q)−] ≤ ε

where B(x0) := {ξ ≥ 0 : ξ is FS
T -measurable, Ẽ [ξ] ≤ x0︸ ︷︷ ︸

budget-constraint

}

terminal wealth generated from initial capital in (0, x0]

→ optimal terminal wealth ξ∗ = f (ZT )

Representation problem

find a strategy π ∈ A(x0) such that ξ∗ = Xπ
T

→ optimal strategy π∗
t
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The Case of Partial Information

Problem martingale density Zt is F- but not FS-adapted

Idea replace Zt by its filter ζt = E
[
Zt |FS

t
]

Optimal terminal wealth X ∗
T = ξ∗ = f (ζT )
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Static Problem

V (x0) = sup
ξ∈B(x0)

E [U(ξ)]

risk constraint EQ
[
(ξ − q)−]

≤ ε

B(x0) := {ξ ≥ 0 : ξ is FS
T -measurable, Ẽ [ξ] ≤ x0}

Choose the bound ε such that the risk constraint

I is binding ε ≤ εmax = EQ
[
(X M

T − q)−
]

risk of the Merton portfolio

(no risk constraint)

I can be fulfilled ε ≥ εmin = . . . Gabih, Sass, W. (2006)
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Optimal Terminal Wealth

Theorem (Q = P̃ Present Expected Loss)

For ε ∈ (εmin, εmax) the PEL-optimal terminal wealth is

ξ∗ = f (ζT ; y∗1 , y∗2 )

where f (z; y1, y2) =


I(y1z) for z ∈ (0, zl ]

q for z ∈ (zl , zu]

I( (y1 − y2)z) for z ∈ (zu,∞).

I = (U ′)−1, zl =
U ′(q)

y1
and zu =

U ′(q)

y1 − y2
.

The real numbers y∗1 , y∗2 > 0 uniquely solve the equations

Ẽ [f (ζT ; y1, y2)] = x0

EQ
[
(f (ζT ; y1, y2)− q)−

]
= ε.
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Optimal Terminal Wealth: The Function f (z; y1, y2)
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Computation of the Lagrange Multipliers y1, y2

System of nonlinear equations

Ẽ [f (ζT ; y1, y2)] = x0

EQ
[
(f (ζT ; y1, y2)− q)−

]
= ε

Existence & Uniqueness: Gabih, Sass, W. (2006)

Solution requires
I Approximation of the expectation in on the left-hand sides

using Monte-Carlo simulation
I Numerical methods for solving nonlinear equations
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Example: Parameter of the Financial Market

n = 1 stock with volatility σ = 0.25

HMM for the drift µt with d = 5 states

Ergodic mean µ ≈ 0.054
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Example: Parameter for the Portfolio Optimization

Horizon T = 1 year

Utility function U(x) = 2x1/2 − 2 (power utility)

Initial capital x0 = 1

Benchmark q = 1.05 (q > x0, portfolio insurance impossible)

Risk measure Present Expected Loss Ẽ [(XT − q)−]

Bound ε = 0.1

Minimal Risk εmin = q − x0 = 0.05

Maximal Risk εmax ≈ 0.248 (i.e. ε ≈ 40% of εmax)

Monte-Carlo simulation: N = 107 realizations of X ∗
T = f (ζT ; y∗1 , y∗2 )
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Distribution of Terminal Wealth

Expected Utility Risk

Stock 0.040 0.129
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Distribution of Terminal Wealth

Expected Utility Risk

Stock 0.040 0.129

Merton 0.076 0.248 = εmax
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Distribution of Terminal Wealth

Expected Utility Risk

Stock 0.040 0.129

Merton 0.076 0.248 = εmax

PEL-optimal 0.049 0.100 = ε
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Optimal Strategy

Clark formula

Let Dtξ be the Malliavin derivative of the FS
T -measurable r.v. ξ ∈ D1,1,

then it holds

ξ = Ẽ [ξ] +

∫ T

0
Ẽ

[
(Dtξ)

τ |FS
t

]
dW̃t

For the Malliavin derivative of the optimal terminal wealth

ξ = f (ζT ) = f (ζT ; y∗1 , y∗2 ) it holds Dt f (ζT ) = f ′(ζT ) DtζT

Wealth equation ξ = x0 +

∫ T

0
(π∗t )τσ dW̃t

Comparison of coefficients ⇒ optimal strategy is

π∗t = σ−τ Ẽ
[
f ′(ζT ) DtζT | FS

t

]
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Computation of the Optimal Strategy

π∗t = σ−τ Ẽ
[
f ′(ζT ) DtζT | FS

t

]
(∗)

requires

I Numerical solution of SDE’s for the Malliavin Derivative DtζT

I Approximation of the conditional expectation in (∗) using
Monte-Carlo simulation

Generate N = 103 realizations of ζT and DtζT

...
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Trading in Discrete Time

(A) Actual wealth

X ∗
t = x0 +

∫ t

0
(π∗s)τ dRs ≈ x0 +

∑
0≤si<t

(π̂si )
τ ∆Rsi =: X A

t

where π̂si is the Monte-Carlo approximation of π∗si

(B) Theoretical optimal wealth

X ∗
t = Ẽ

[
X ∗

T |FS
t

]
= Ẽ [f (ζT ; y∗1 , y∗2 )|Et ]

Given the unnormalized filter at time t is Et = x we find

X ∗
t = Ẽ

[
f (ζ t ,x

T ; y∗1 , y∗2 )
]
≈ X B

t (by Monte-Carlo approximation)

Can be evaluated without computing the optimal strategy

If X A
t 6= X ∗

t then trading according to π∗ is no longer optimal
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Updating of the Optimal Strategy

If we observe a ”critical deviation” |X A
t − X B

t | > δ

we set up a new optimization problem with

Horizon T − t

Initial capital X A
t (actual wealth)

Risk bound Expected Loss of X ∗
T at time t given FS

t

ε∗t = EQ
[
(X ∗

T − q)−|FS
t

]
(= option price for PEL)

Compute new Lagrange multipliers y t
1, y t

2 by solving

Ẽ
[
f (ζT ; y1, y2)|FS

t

]
= X A

t

EQ

[
(f (ζT ; y1, y2)− q)−|FS

t

]
= ε∗t .
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Conclusion

I Dynamic portfolio optimization under risk constraint

V (x0) = sup
π∈A(x0)

E [U(Xπ
T )] , EQ

[
(Xπ

T − q)−
]
≤ ε

I Partial information on the drift (Hidden Markov Model)

X ∗
T as a function of ζT , the filter for the martingale density ZT

π∗t depends on Malliavin derivative DtX ∗
T

I Optimal strategies can be computed using Monte-Carlo
simulations

I For references see www.fh-zwickau.de/∼raw
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