Computing Optimal Investment Strategies Under Partial Information and Bounded Shortfall Risk

Ralf Wunderlich

Zwickau University of Applied Sciences, Germany

Joint work with Jörn Sass (RICAM Linz, Austria)

Workshop and Mid-Term Conference on Advanced Mathematical Methods for Finance Vienna, September, 17 – 22, 2007

Dynamic Portfolio Optimization

Financial market	containing risky and risk-free assets	
	continuously tradable	
	partial information on the drift	
Initial capital	<i>x</i> ₀ > 0	
Horizon	[0, <i>T</i>]	
Aim	maximize expected utility of terminal wealth	
	constrain the risk of falling short a benchmark	
Problem	find an optimal investment strategy	

Financial Market Model

 $(\Omega, \mathcal{F} = (\mathcal{F}_t)_{t \in [0, T]}, P)$ filtered probability space Stock market $dS_t = \text{Diag}(S_t) (\mu_t dt + \sigma_t dW_t)$ with drift $\mu_t \in \mathbb{R}^n$ and volatility $\sigma_t \in \mathbb{R}^{n \times n}$ $dR_t = \left(\frac{dS_t^1}{S_t^1}, \dots, \frac{dS_t^n}{S_t^n}\right)^{ au}$ return process Money market risk-free interest rate r_t (for simplicity we set $r_t \equiv 0$ and $\sigma_t \equiv \sigma$) $Z_t = \exp\left(-\int_0^t \kappa_s^\tau \, dW_s - \frac{1}{2} \int_0^t \|\kappa_s\|^2 \, ds\right)$ Martingale density with $\kappa_t = \sigma^{-1} \mu_t$ market price of risk Martingale measure $\widetilde{P}(A) = E[Z_T 1_A]$ for $A \in \mathcal{F}_T$ $\widetilde{P} \sim P$ and $\widetilde{W}_t = W_t + \int_0^t \kappa_s \, ds$ is BM w.r.t. \widetilde{P}

Hidden Markov Model

with Y_t time-continuous homogeneous Markov chain independent of W_t states of Y_t are unit vectors in \mathbb{R}^d : e_1, \ldots, e_d $n \times d$ -matrix $B = (b^1, \ldots, b^d)$, columns are states of μ_t switching between the states is controlled by intensity matrix G

Filter

- **Given** observations of prices S_u (returns R_u) for $u \in [0, t]$
- **To find** filter for state Y_t : $\eta_t = E\left[Y_t | \mathcal{F}_t^S\right] \Rightarrow E\left[\mu_t | \mathcal{F}_t^S\right] = B\eta_t$ martingale density Z_t : $\zeta_t = E\left[Z_t | \mathcal{F}_t^S\right]$

Solution Wonham (1965), Elliot (1993) unnormalized filter for state Y_t : $\mathcal{E}_t := \widetilde{E} \left[Z_T^{-1} Y_t | \mathcal{F}_t^S \right]$ (\mathcal{E}_t) satisfies *d*-dimensional linear SDE $d\mathcal{E}_t = G^{\tau} \mathcal{E}_t dt + \text{Diag}(\mathcal{E}_t) B^{\tau} (\sigma \sigma^{\tau})^{-1} \underbrace{dR_t}_{\text{observations}}, \quad \mathcal{E}_0 = E \left[Y_0 \right]$ observations

Filter

for
$$Z_t$$
: $\zeta_t = (\mathbf{1}_d^{\tau} \mathcal{E}_T)^{-1} = \frac{1}{\mathcal{E}_t^1 + \ldots + \mathcal{E}_t^d}$
for Y_t : $\eta_t = \zeta_t \mathcal{E}_t$

Portfolio

Initial capital $X_0 = x_0 > 0$ Wealth at time t $X_t = \underbrace{\pi_t^0}_{bond} + \underbrace{\pi_t^1}_{stock 1} + \ldots + \underbrace{\pi_t^n}_{stock n}$ invested in $x_t = (\pi_t^1, \ldots, \pi_t^n)^{\tau}$

Self financing condition \Rightarrow

Wealth equation

$$dX_t^{\pi} = \pi_t^{\tau} (\sigma dW_t + \mu_t dt)$$
$$= \pi_t^{\tau} \sigma d\widetilde{W}_t$$
$$X_0^{\pi} = x_0$$

Shortfall Risk

Compare terminal wealth X_T with benchmark q

e.g. $q \sim x_0$ initial capital

Shortfall if $X_T < q$

Risk Measure $E_Q[(X_T - q)^-]$ where $Q \sim P$ Expected Loss

Special Cases

- ► $Q = \widetilde{P}$ Present Expected Loss (PEL) $\widetilde{E}[(X_T - q)^-]$ option price Basak, Shapiro (2001)
- ► Q = P Future Expected Loss (FEL) $E[(X_T - q)^-]$ average additional capital Gabih, Grecksch, W. (2005)

Optimization Problem

Wealth equation $dX_t^{\pi} = \pi_t^{\tau} (\mu_t dt + \sigma dW_t), \quad X_0^{\pi} = x_0$ Strategy $\pi = (\pi_t)_{t \in [0, T]}$ Admissible strategies $\mathcal{A}(x_0) = \{(\pi_t) : \mathcal{F}^{S} \text{-adapted}\}$ integrability conditions, $X_t^{\pi} \geq 0, \ \forall t \in [0, T] \}$ Utility function $U: [0,\infty) \to \mathbb{R} \cup \{-\infty\}$ strictly increasing, concave (log-, power utility) **Optimization problem** $V(x_0) = \sup_{\pi \in \mathcal{A}(x_0)} E\left[U(X_T^{\pi})\right]$ risk constraint $E_Q[(X_{\tau}^{\pi}-q)^{-}] \leq \varepsilon$

Decomposition of the OP: Full Information

Dynamic problem
$$V(x_0) = \sup_{\pi \in \mathcal{A}(x_0)} E\left[U(X_T^{\pi})\right], \quad E_Q\left[(X_T^{\pi}-q)^{-}\right] \leq \varepsilon$$

Static problem

$$V(x_0) = \sup_{\boldsymbol{\xi} \in \boldsymbol{\mathcal{B}}(x_0)} E[U(\boldsymbol{\xi})], \qquad E_Q[(\boldsymbol{\xi} - q)^-] \leq \varepsilon$$

where $\mathcal{B}(x_0) := \{ \xi \ge 0 : \xi \text{ is } \mathcal{F}_T^S \text{-measurable}, \underbrace{\widetilde{\mathcal{E}}[\xi] \le x_0}_{\text{budget-constraint}} \}$

terminal wealth generated from initial capital in $(0, x_0]$

 \rightarrow optimal terminal wealth $\xi^* = f(Z_T)$

Representation problem

find a strategy
$$\pi \in \mathcal{A}(\mathit{x}_{0})$$
 such that $\xi^{*} = \mathit{X}_{\mathit{T}}^{\pi}$

ightarrow optimal strategy π_t^*

The Case of Partial Information

Problem martingale density Z_t is \mathcal{F} - but **not** \mathcal{F}^{S} -adapted

Idea replace Z_t by its filter $\zeta_t = E\left[Z_t | \mathcal{F}_t^S\right]$

Optimal terminal wealth $X_T^* = \xi^* = f(\zeta_T)$

$$V(x_0) = \sup_{\xi \in \mathcal{B}(x_0)} E[U(\xi)]$$
risk constraint $E_Q[(\xi - q)^-] \le \varepsilon$

 $\mathcal{B}(x_0) := \{\xi \ge 0 : \xi \text{ is } \mathcal{F}_T^S \text{-measurable}, \widetilde{E}[\xi] \le x_0\}$

Choose the bound ε such that the risk constraint

► is binding
$$\varepsilon \leq \varepsilon_{\max} = E_Q \left[(X_T^M - q)^- \right]$$

risk of the Merton portfolio

(no risk constraint)

► can be fulfilled $\varepsilon \ge \varepsilon_{\min} = \dots$ Gabih, Sass, W. (2006)

Optimal Terminal Wealth

Theorem ($Q = \tilde{P}$ Present Expected Loss)

For $\varepsilon \in (\varepsilon_{min}, \varepsilon_{max})$ the PEL-optimal terminal wealth is

$$\begin{split} \xi^* &= f(\zeta_T; y_1^*, y_2^*) \\ \text{where } f(z; y_1, y_2) &= \begin{cases} I(y_1 z) & \text{for } z \in (0, z_l] \\ q & \text{for } z \in (z_l, z_u] \\ I((y_1 - y_2)z) & \text{for } z \in (z_u, \infty). \end{cases} \\ I &= (U')^{-1}, \ z_l = \frac{U'(q)}{y_1} \quad \text{and} \ z_u = \frac{U'(q)}{y_1 - y_2}. \end{split}$$

The real numbers $y_1^*, y_2^* > 0$ uniquely solve the equations

$$\widetilde{E} \left[f(\zeta_T; y_1, y_2) \right] = x_0$$

$$E_Q \left[\left(f(\zeta_T; y_1, y_2) - q \right)^- \right] = \varepsilon.$$

Optimal Terminal Wealth: The Function $f(z; y_1, y_2)$

Computation of the Lagrange Multipliers y_1 , y_2

System of nonlinear equations

$$\widetilde{E}[f(\zeta_T; y_1, y_2)] = x_0$$
$$E_Q[(f(\zeta_T; y_1, y_2) - q)^-] = \varepsilon$$

Existence & Uniqueness: Gabih, Sass, W. (2006)

Solution requires

- Approximation of the expectation in on the left-hand sides using Monte-Carlo simulation
- Numerical methods for solving nonlinear equations

Example: Parameter of the Financial Market

n = 1 stock with volatility $\sigma = 0.25$

HMM for the drift μ_t with d = 5 states

Ergodic mean $\overline{\mu} \approx 0.054$

Example: Parameter for the Portfolio Optimization

Horizon	T = 1 year	
Utility function	$U(x) = 2x^{1/2} - 2$ (power utility)	
Initial capital	<i>x</i> ₀ = 1	
Benchmark	$q = 1.05$ ($q > x_0$, portfolio insurance impossible)	
Risk measure	Present Expected Loss $\widetilde{E}\left[(X_T-q)^- ight]$	
Bound	arepsilon=0.1	
Minimal Risk	$\varepsilon_{\min} = q - x_0 = 0.05$	
Maximal Risk	$\varepsilon_{\max} \approx 0.248$ (i.e. $\varepsilon \approx 40\%$ of ε_{\max})	

Monte-Carlo simulation: $N = 10^7$ realizations of $X_T^* = f(\zeta_T; y_1^*, y_2^*)$

Distribution of Terminal Wealth

	Expected Utility	Risk
Stock	0.040	0.129

Distribution of Terminal Wealth

	Expected Utility	Risk
Stock	0.040	0.129
Merton	0.076	$0.248 = \varepsilon_{max}$

Distribution of Terminal Wealth

	Expected Utility	Risk
Stock	0.040	0.129
Merton	0.076	$0.248 = \varepsilon_{max}$
PEL-optimal	0.049	$0.100 = \varepsilon$

Optimal Strategy

Clark formula

Let $D_t \xi$ be the Malliavin derivative of the \mathcal{F}_T^S -measurable r.v. $\xi \in D_{1,1}$, then it holds

$$\xi = \widetilde{E}\left[\xi\right] + \int_0^T \widetilde{E}\left[(D_t\xi)^\tau | \mathcal{F}_t^S\right] \ d\widetilde{W}_t$$

For the Malliavin derivative of the optimal terminal wealth

 $\xi = f(\zeta_T) = f(\zeta_T; y_1^*, y_2^*) \quad \text{it holds} \quad D_t f(\zeta_T) = f'(\zeta_T) D_t \zeta_T$ Wealth equation $\xi = x_0 + \int_0^T (\pi_t^*)^\tau \sigma \ d\widetilde{W}_t$

Comparison of coefficients \Rightarrow optimal strategy is

$$\pi_t^* = \sigma^{-\tau} \, \widetilde{E} \left[f'(\zeta_T) \, \mathcal{D}_t \zeta_T \, | \, \mathcal{F}_t^S \right]$$

Computation of the Optimal Strategy

$$\pi_t^* = \sigma^{-\tau} \widetilde{E} \left[f'(\zeta_T) D_t \zeta_T | \mathcal{F}_t^S \right]$$
(*)

requires

► Numerical solution of SDE's for the Malliavin Derivative $D_t \zeta_T$

:

 Approximation of the conditional expectation in (*) using Monte-Carlo simulation

Generate $N = 10^3$ realizations of ζ_T and $D_t \zeta_T$

Trading in Discrete Time

(A) Actual wealth

$$X_t^* = x_0 + \int_0^t (\pi_s^*)^\tau \, dR_s \approx x_0 + \sum_{0 \le s_i < t} (\widehat{\pi}_{s_i})^\tau \, \Delta R_{s_i} =: X_t^A$$

where $\widehat{\pi}_{\mathcal{S}_i}$ is the Monte-Carlo approximation of $\pi^*_{\mathcal{S}_i}$

(B) Theoretical optimal wealth

$$X_t^* = \widetilde{E}\left[X_T^* | \mathcal{F}_t^S\right] = \widetilde{E}\left[f(\zeta_T; y_1^*, y_2^*) | \mathcal{E}_t\right]$$

Given the unnormalized filter at time *t* is $\mathcal{E}_t = x$ we find

$$X_t^* = \widetilde{E}\left[f(\zeta_T^{t,x}; y_1^*, y_2^*)\right] \approx X_t^B$$
 (by Monte-Carlo approximation)

Can be evaluated without computing the optimal strategy If $X_t^A \neq X_t^*$ then trading according to π^* is no longer optimal

Updating of the Optimal Strategy

If we observe a "critical deviation" $|X_t^A - X_t^B| > \delta$ we set up a new optimization problem with Horizon T - tInitial capital X_t^A (actual wealth) Risk bound Expected Loss of X_T^* at time t given \mathcal{F}_t^S $\varepsilon_t^* = E_Q \left[(X_T^* - q)^- |\mathcal{F}_t^S \right]$ (= option price for PEL)

Compute new Lagrange multipliers y_1^t , y_2^t by solving

$$\widetilde{E}\left[f(\zeta_T; y_1, y_2)|\mathcal{F}_t^S\right] = X_t^A$$
$$E_Q\left[(f(\zeta_T; y_1, y_2) - q)^-|\mathcal{F}_t^S\right] = \varepsilon_t^*.$$

Conclusion

Dynamic portfolio optimization under risk constraint

$$V(x_0) = \sup_{\pi \in \mathcal{A}(x_0)} E\left[U(X_T^{\pi})\right], \qquad E_Q\left[(X_T^{\pi} - q)^{-}\right] \leq \varepsilon$$

Partial information on the drift (Hidden Markov Model)

 X_T^* as a function of ζ_T , the filter for the martingale density Z_T

$$\pi_t^*$$
 depends on Malliavin derivative $D_t X_T^*$

- Optimal strategies can be computed using Monte-Carlo simulations
- ► For references see www.fh-zwickau.de/~raw