On q-Optimal Signed Martingale Measures in Exponential Lévy Models

Christina Niethammer
(joint work with C.Bender)

University of Giessen/HypoVereinsbank Munich
Christina.Niethammer@math.uni-giessen.de
www.uni-giessen.de/~gc1200

September 20, 2007, Vienna
Outline

1. Overview
2. Market Model
3. Why introducing a signed version of the q-Optimal measure?
 - q-Optimal Equivalent Martingale Measure
 - q-Optimal Signed Martingale Measure
 - Minimal Entropy Martingale Measure and Convergence to MEMM
4. Verification and Portfolio Optimization
5. Conclusion
Dynamic and Static Problem

Dynamic Problem: \(V_\xi(\tilde{x}) = \sup_{Y \in \mathcal{W}_C(\tilde{x})} E[U(Y_T)] \)

\[\uparrow \]

Static: \(\sup_{X \in \Theta^{(2m)}, \tilde{x}} E[U(X)] \leftrightarrow \text{Dual: } \sup_{y \geq 0, Z \in D^q} E[\tilde{U}(y Z_T) + \tilde{x} y] \)

where

- \(\mathcal{W}_C(\tilde{x}) = \{ Y | Y_t = \tilde{x} + \int_0^t N dS - C_t, \ N \in \mathcal{A}^p, \ C \in \mathcal{K}^p \} \)
- \(\Theta^{(p)}, \tilde{x} = \{ X \in L^p(F_T), \forall Z \in D^q \ E(Z_T X) \leq \tilde{x} \}, \ \tilde{x} \in \mathbb{R} \)
Dynamic and Static Problem

Dynamic Problem: \(V_\xi(\tilde{x}) = \sup_{Y \in \mathcal{W}_C(\tilde{x})} E[U(Y_T)] \)

\(\uparrow \quad ? \) \(\downarrow \)

Static: \(\sup_{X \in \Theta^{(2m)}, \tilde{x}} E[U(X)] \Leftrightarrow \) Dual: \(\sup_{y \geq 0, Z \in D_\alpha^q} E[\tilde{U}(yZ_T) + \tilde{x}y] \)

where

\(\mathcal{W}_C(\tilde{x}) = \{ Y | Y_t = \tilde{x} + \int_0^t N dS - C_t, N \in \mathcal{A}^p, C \in \mathcal{K}^p \} \)

\(\Theta^{(p)}, \tilde{x} = \{ X \in L^p(\mathcal{F}_T), \forall Z \in D_\alpha^q E(Z_T X) \leq \tilde{x} \}, \tilde{x} \in \mathbb{R} \).
Finding Optimal Solutions

dynamic optimization problem

\[I(\lambda^*_x) := (U')^{-1}(\lambda^*_x) \quad \text{optimal solution} \]

\[(\lambda^*_x, I(Z_{\mathcal{Y}(\tilde{x})}\mathcal{Y}(\tilde{x})) \quad \text{saddle point} \]

\[\lambda^*_x = Z_{\mathcal{Y}(\tilde{x})}\mathcal{Y}(\tilde{x}) \quad \text{dual problem} \]
Finding Optimal Solutions

dynamic optimization problem

\[I(\lambda^*_\tilde{x}) := (U')^{-1}(\lambda^*_\tilde{x}) \quad \rightarrow \quad \lambda^*_\tilde{x} = Z\mathcal{Y}(\tilde{x})\mathcal{Y}(\tilde{x}) \]
Dual Optimizer via Verification

1. Observe: in many cases, the optimal dual optimizer $\hat{Z}_{\mathcal{Y}(\tilde{x})}$ is independent of \tilde{x} so set $\hat{Z} = \hat{Z}_{\mathcal{Y}(\tilde{x})}$.

2. Propose candidate $\tilde{Z} \in \mathcal{D}$. ($\mathcal{Y}(\tilde{x})$ can be easily derived if $\hat{Z} = \hat{Z}_{\mathcal{Y}(\tilde{x})}$).

3. $X_0(\tilde{x}) := I(\mathcal{Y}(\tilde{x})\tilde{Z}_T)$ is optimal solution of $\sup_X E(U(X))$, s.t. $E(\tilde{Z}_T X) \leq \tilde{x}$

4. Find strategy to replicate $X_0(\tilde{x})$
 $\Rightarrow X_0(\tilde{x})$ is optimal terminal value of the dynamic problem
 $\Rightarrow X_0(\tilde{x})$ is optimal solution of $\sup_X E(U(X))$, s.t. $\forall Z \in \mathcal{D} : E(Z_T X) \leq \tilde{x}$
 \Rightarrow By the duality relation $\mathcal{Y}(\tilde{x})\hat{Z}_T := \mathcal{Y}(\tilde{x})\tilde{Z}_T$ is optimal dual solution.
Convergence to the primal and dual solution of the exponential problem

\[\mathcal{Y}_{2m}(\tilde{x})Z_{2m} \xrightarrow{\sim} \mathcal{Y}_{\exp}(\tilde{x})Z_{\min} \]
(convergence of dual solutions)

\[X_{0}^{(2m)}(\tilde{x}) \xrightarrow{\sim} X_{0}^{(\exp)}(\tilde{x}) \]
(convergence of terminal wealths)

\[V_{2m}(\tilde{x}) \xrightarrow{\sim} V_{\exp}(\tilde{x}) \]
(convergence of value functions)

\[\phi_{2m}(\mathcal{Y}_{2m}(\tilde{x})) \xrightarrow{\sim} \phi_{\exp}(\mathcal{Y}_{\exp}(\tilde{x})) \]
(convergence of the dual functions)

\[\vartheta(2m) \xrightarrow{\sim} \vartheta_{\exp} \]
(convergence of portfolios)
Let \((\Omega, \mathcal{F}, P)\) be a probability space, \(T \in (0, \infty)\) a finite time horizon, and \(\mathbb{F} = (\mathcal{F}_t)_{t \in [0, T]}\) a filtration satisfying the usual conditions, i.e. right-continuity and completeness.

We suppose that a discounted market with \(n\) assets is given by

\[
S_t = \text{diag}(S_{0}^{(1)}, \ldots, S_{0}^{(n)})e^{\tilde{X}_t}, \quad t \in [0, T], \; S_{0}^{(i)} > 0,
\]

where \(\tilde{X}\) is supposed to be an \(\mathbb{R}^n\)-valued Lévy process with characteristic triplet \((\sigma\sigma^*, \nu, b)\) on \((\Omega, \mathcal{F}, P)\) and \(N\) a Poisson random measure with intensity measure \(\nu(dx)dt\), and \(\tilde{N}(dx, dt) = N(dx, dt) - \nu(dx)dt\) appearing in the Lévy-Itô-decomposition.
Market Model: Semimartingale Decomposition

We assume that the filtration \mathcal{F} coincides with $\mathcal{F}^{\tilde{X}}$, the completion of the filtration generated by the Lévy process \tilde{X} and $E[|S(t)|] < \infty$ for all $t \in [0, T]$. The second assumption guarantees that S is a special semimartingale with decomposition $S_t = S_0 + M_t + A_t$, where

$$dM_t = S_t - (\sigma dW_t + \int_{\mathbb{R}_0^n} (e^x - 1)\tilde{N}(dx, dt))$$

and

$$dA_t = S_t - (-\beta + \int_{\mathbb{R}_0^n} (e^x - 1 - x1_{\|x\|\leq 1})\nu(dx))dt.$$

Here, $\beta = -(b + \frac{1}{2} \sum_j \sigma_{.j}^2)$ and $S = \text{diag}(S^{(1)}, \ldots, S^{(n)})$. $\mathbf{1}$ denotes the vector in \mathbb{R}^n having all entries equal to one, and expressions such as e^x are to be interpreted componentwise, i.e. $e^x = (e^{x_1}, \ldots, e^{x_n})'$.
Why introducing a signed version of the q-Optimal measure?

Minimal Entropy Martingale Measure

We set,

$$D^q_s = \{Z \in U^q \mid E(Z_T) = 1, \text{SZ is a local } P\text{-martingale}\},$$

where U^q denotes the set of \mathbb{R}-valued $L^q(\Omega, P)$-uniformly integrable martingales. A subset is $D^q_a = \{Z \in D^q_s \mid Z_T \geq 0 \text{ } P\text{-a.s.}\}$. We recall the definition of the minimal entropy martingale measure:

(Min$_{e, \log}$) Find $Z^{\min} \in D^a_{\log}$ such that

$$E[Z_T^{\min} \log Z_T^{\min}] = \inf_{Z \in D^a_{\log}} E[Z_T \log Z_T].$$

where

$$D^a_{\log} = \{Z \in D^1_a, E(Z_T \log Z_T) < \infty\}.$$

$dQ_{\min} = Z_T^{\min} dP$ is called the *minimal entropy martingale measure* Q_{\min} (MEMM).
Why introducing a signed version of the \(q \)-Optimal measure?

q-Optimal Martingale Measures

We further study the \(q \)-optimal signed martingale measure:

\[\text{Find } Z^{(q)} \in \mathcal{D}_s^q \text{ such that} \]

\[E[|Z^{(q)}_T|^q] = \inf_{Z \in \mathcal{D}_s^q} E[|Z_T|^q]. \]

\[dQ^{(S,q)} = Z^{(q)}_T dP \]

is called the \(q \)-optimal signed martingale measure \(Q^{(S,q)} \) (qSMM).
Why introducing a signed version of the q-Optimal measure?

q-Optimal Martingale Measures

We further study the q-optimal signed martingale measure:

\((\text{Min}_{s,q})\) Find $Z^{(q)} \in \mathcal{D}_s^q$ such that

$$E[|Z_T^{(q)}|^q] = \inf_{Z \in \mathcal{D}_s^q} E[|Z_T|^q].$$

$dQ^{(S,q)} = Z_T^{(q)} dP$ is called the q-optimal signed martingale measure $Q^{(S,q)}$ (qSMM).

Replace, \mathcal{D}_s^q by $\mathcal{D}_e^q = \{Z \in \mathcal{D}_s^q Z_T > 0 \ \text{P-a.s.}\}$, then the solution, provided its existence, defines the q-optimal equivalent martingale measure $Q^{(e,q)}$ (qEMM) with density process $\tilde{Z}^{(q)}$.
Assumptions

Assumption (C_q)

$C_q^- :$ There exists an $\theta_q \in \mathbb{R}^n$ such that

$$
egate{x}_q(x) := ((q - 1)\theta'_q(e^x - 1) + 1)^{\frac{1}{q-1}}$$

defines a real-valued function on the support on ν which satisfies

$$\sigma\sigma'_q + \int_{\mathbb{R}^n_0} (e^x - 1)\negate{x}_q(x) - x1_{\|x\| \leq 1} \nu(dx) = \beta$$

(2)

and

$$\int_{\mathbb{R}^n_0} |(\negate{x}_q(x)) - 1 - q(\negate{x}_q(x) - 1)|\nu(dx) < \infty.$$ (3)

$C_q^+ :$ $(q - 1)\theta'_q(e^y - 1) + 1 > 0, \nu$-a.s.

If C_q^- and C_q^+ are satisfied, we say that C_q holds.
Why introducing a signed version of the \(q \)-Optimal measure?

\(q \)-Optimal Equivalent Martingale Measure: Existence

Theorem (Jeanblanc et al., Theorem 2.9)

Suppose \(C_q \) holds. Then the \(q \)EMM exists and is given by

\[
\mathcal{E}(\theta'_q \sigma, eg_q - 1),
\]

where \(\mathcal{E}(f, g) \) denotes the stochastic exponential with Girsanov parameters \(f, g \), i.e.

\[
\mathcal{E}_t(f, g) = e^{\int_0^t f(s) dW_s - \frac{1}{2} \int_0^t \|f(s)\|^2 ds + \int_0^t \int \mathbb{R}^n g(s,x) \tilde{N}(dx,ds) \\
\times \prod_{s \leq t} (1 + g(s, \Delta \tilde{X}(s))) e^{-g(s, \Delta \tilde{X}(s))}.
\]

However, \(C_q^+ \) is very restrictive!
Why introducing a signed version of the \(q \)-Optimal measure?

q-Optimal Equivalent Martingale Measure: Problems

Proposition

Suppose \(n = 1 \) and \(P \) is not a martingale measure. Then:

(i) If \(C_q \) holds for some \(q > 1 \), then

\[
\int_{x \geq 1} e^{\theta x} \nu(dx) < \infty
\]

for some \(\theta > 0 \) or the minimal entropy martingale measure does not exist.

(ii) If \(C_q \) holds for some \(q > 1 \), then

\[
\int_{\mathbb{R}_0} (e^x - 1) - x 1_{|x| \leq 1} \nu(dx) + (b + \frac{1}{2} \sigma^2) < 0
\]

or upward jumps are bounded, i.e. \(\nu([L, \infty)) = 0 \) for some \(L > 0 \).
Why introducing a signed version of the q-Optimal measure?

q-Optimal Equivalent Martingale Measure: Problems

Proposition

Suppose $n = 1$ and P is not a martingale measure. Then:

(i) If C_q holds for some $q > 1$, then

$$\int_{x \geq 1} e^{\theta x} \nu(dx) < \infty$$

for some $\theta > 0$ or the minimal entropy martingale measure does not exist.

(ii) If C_q holds for some $q > 1$, then

$$\int_{\mathbb{R}_0} (e^x - 1) - x1_{|x| \leq 1} \nu(dx) + (b + \frac{1}{2} \sigma^2) < 0$$

or upward jumps are bounded, i.e. $\nu([L, \infty)) = 0$ for some $L > 0$.

In particular, in a Kou or a Merton model C_q and the existence of the minimal entropy martingale measure cannot hold simultaneously. Condition (5) is rather unlikely (a negative optimal portfolio is induced).
Why introducing a signed version of the q-Optimal measure?

q-Optimal Signed Martingale Measure: Existence

Theorem

Suppose that $q = \frac{2m}{2m-1}$ for some $m \in \mathbb{N}$ and that C^+_{q} holds. Then,

$$Z(q) = \mathcal{E}(\theta'_q \sigma, \epsilon q - 1)$$

is the density process of qSMM.

Proposition

Suppose $n = 1$, $q(m) = \frac{2m}{2m-1}$, P is not a martingale measure, and the set of equivalent martingale measures is nonempty. Then, $C^+_{q(m)}$ holds for $m \in \mathbb{N}$, if and only if

$$\int_{x \geq 1} e^{2mx} \nu(dx) < \infty. \quad (6)$$
Example

Suppose \(n = 1 \).

(i) If \(\nu(dx) \) behaves (up to a slowly varying function) as \(e^{-\lambda + x} \, dx \) for \(x \to \infty \), then \(C_{q(m)}^- \) holds for \(m < \lambda_+/2 \) and fails for \(m > \lambda_+/2 \). However, \(C_q \) fails for all \(q \), if \(\int_{\mathbb{R}_0} (e^x - 1) - x1_{|x| \leq 1} \nu(dx) + (b + \frac{1}{2} \sigma^2) > 0 \). This tail behavior is inherent in generalized hyperbolic models and the Kou model.

(ii) If there are constants \(\eta_0, \eta_1 > 0 \) such that

\[
\int_{x \geq 1} e^{\eta_0 x^{1+\eta_1}} \nu(dx) < \infty,
\]

then \(C_{q(m)}^- \) holds for all \(m \in \mathbb{N} \). However \(C_q \) fails for all \(q \), if the upward jumps are not bounded and \(\int_{\mathbb{R}_0} (e^x - 1) - x1_{|x| \leq 1} \nu(dx) + (b + \frac{1}{2} \sigma^2) > 0 \). A popular model, which satisfies (7) and has unbounded upward jumps is the Merton model.
Minimal Entropy Martingale Measure

Assumption (C)

There exists a vector $\theta_e \in \mathbb{R}^n$ satisfying

$$\int_{\mathbb{R}^n_0} \| (e^x - 1)e^{\theta_e(e^x-1)} - x 1_{\|x\| \leq 1} \| \nu(dx) < \infty$$

and $\theta'_e \sigma \sigma' + \int_{\mathbb{R}^n_0} (e^x - 1)e^{\theta'_e(e^x-1)} - x 1_{\|x\| \leq 1} \nu(dx) = \beta$.

Theorem (Fujiwara/Miyahara or Esche/Schweizer and Hubalek/Sgarra)

(i) If condition C is satisfied, then the entropy minimal martingale measure is given by

$$\mathcal{E}(\theta'_e \sigma, e^{\theta_e(e^x-1)} - 1).$$

(ii) If $n = 1$ and there is no θ_e satisfying C, then the entropy minimal martingale measure does not exist.
Convergence to the Minimal Entropy Martingale Measure

Theorem (MEMM)

Suppose $n = 1$, the minimal entropy martingale measure exists, and there is a $\delta > 0$ such that θ_e, specified by condition C, satisfies

$$\int_{x \geq 1} e^{\max\{\theta_e, -0.28 \theta_e\} + \delta} e^{x} \nu(dx) < \infty. \quad (9)$$

Then:

(i) If $\theta_e > 0$ or upwards jumps are bounded, then C_q is satisfied for sufficiently small $q > 1$ and the q-optimal equivalent martingale measures converge to the minimal entropy martingale measure in $L^r(P)$, for some $r > 1$, as $q \downarrow 1$ (in the sense that the densities converge).

(ii) Suppose $q(m) = \frac{2m}{2m-1}$. If $\theta_e < 0$, then $C_{q(m)}^-$ is satisfied for all $m \in \mathbb{N}$ and the $q(m)$-optimal signed martingale measures converge to the minimal entropy martingale measure in $L^r(P)$, for some $r > 1$, as $m \uparrow \infty$.
Verification in a General Semimartingale Model

Theorem

Suppose $\hat{Z} \in D_q^q$, $q = \frac{2m}{2m-1}$ and, for some $\tilde{x} < 2m$, the contingent claim

$$X^{(2m)}(\hat{Z}) := 2m - 2m\hat{Z}_T^{\frac{1}{2m-1}} \left(\frac{2m - \tilde{x}}{2mE(\hat{Z}^{\frac{2m}{2m-1}})} \right)$$

(10)

is replicable with a predictable strategy ϑ (#shares held) and $\vartheta \in A^{2m}$, i.e.

$$\|\vartheta\|_{L^{2m}(\mathcal{M})} := \| (\int_0^T \vartheta d[M]_t \vartheta')^{\frac{1}{2}} \|_{L^{2m}(\Omega, P)} < \infty,$$

(11)

$$\|\vartheta\|_{L^{2m}(A)} := \| \int_0^T |\vartheta dA_t| \|_{L^{2m}(\Omega, P)} < \infty.$$

(12)

Then \hat{Z} is the density process of the q-optimal signed martingale measure.
Replicating Strategy in the above Lévy Setting

Lemma

Suppose that $q = \frac{2m}{2m-1}$ for some $m \in \mathbb{N}$ and that C_q holds. Define

$$\vartheta_t^{(2m)} = -\frac{2m - \tilde{x}}{2m-1} \mathcal{E}_t((q - 1)\theta_q'\sigma, (q - 1)\theta_q'(e^\cdot - 1))$$

$$\times \theta_q^t \mathbf{S}_{t-1}^{-1} e^{t(q-1)\theta_q'(\beta + \int_{\mathbb{R}_0^n} (e^x - 1 - x1_{\|x\| \leq 1})\nu(dx))}.$$

Then for $\tilde{x} \leq 2m$ and $\hat{Z} = \mathcal{E}(\theta_q'\sigma, eg_q - 1)$ the contingent claim

$$X^{(2m)}(\hat{Z}) := 2m - 2mZ_q^{\frac{1}{2m-1}} \left(\frac{2m - \tilde{x}}{2mE(\hat{Z}_T^{\frac{2m}{2m-1}})} \right)$$

is replicable with initial wealth \tilde{x} and the predictable strategy $\vartheta^{(2m)} \in \mathcal{A}^{2m}$.
Consequences for Portfolio Management

The replicating strategy $\vartheta^{(2m)}$ is the solution of

$$\arg\max\{E(u_{2m}(X)); \ X \in \Theta^{(2m)}, \tilde{x}\} \tag{13}$$

with respect to the utility function $u_{2m}(x) = -(1 - \frac{x}{2m})^{2m}$, where

$$\Theta^{(2m)}, \tilde{x} = \left\{ X \in L^{2m}(\Omega, \mathcal{F}_T, P): \exists \vartheta \in \mathcal{A}^{(2m)} \text{ s.t. } X = \tilde{x} + \int_0^T \vartheta_u dS_u \right\}.$$

Moreover under the assumptions of Theorem MEMM, $\vartheta^{(2m)}$ converges uniformly in probability to the optimal portfolio of the exponential problem, $U(x) = -e^{-x}$, $\vartheta^{(\infty)}$ and

$$\lim_{m \to \infty} \sup_{0 \leq t \leq T} \left| (x + \int_0^t \vartheta_u^{(2m)} dS_u) - (x + \int_0^t \vartheta_u^{(\infty)} dS_u) \right|$$

Note, if S is a one-dimensional (non-compensated) exponential Poisson process with jump height 2, there will be arbitrage but the portfolio problem (13) has a solution with $\theta_q(m) = -(2m - 1)!$.
Conclusion

1. In the presence of jumps the q-optimal measure may fail to be equivalent, but belongs to the larger class of signed martingale measures.

2. An analogous representation for the densities of equivalent martingale measures as stochastic exponentials is not available \Rightarrow techniques for the equivalent case cannot be generalized.

3. A verification procedure based on a hedging problem yields an explicit representation of the q-optimal signed martingale measure.

4. Restrictive conditions for the equivalent case can be dropped \Rightarrow in many practically relevant models qMMM is signed.

5. Necessary and sufficient conditions for the existence of the q-optimal signed and equivalent measure are presented.

6. Convergence of the q-optimal measures to the minimal entropy martingale measure is established.

7. Consequences for the exponential utility problem are discussed.
Some References (incomplete)

(i) Note that most of the concrete models discussed in the literature, such as generalized hyperbolic models or the popular jump-diffusion models by Merton or Kou satisfy \(\int_{x \geq 1} e^{\theta x} \nu(dx) = \infty \) for all \(\theta > 0 \). Hence, \(C_q \) and the existence of the MEMM cannot hold simultaneously for these models.

(ii) In condition (5) upward jumps are exponentially weighted and downward jumps are exponentially damped. Hence,

\[
\int (e^x - 1) - x1_{|x| \leq 1} \nu(dx)
\]

can become negative only, if the Lévy measure gives much more weight to negative jumps than to positive jumps, leading to an extreme gain-loss asymmetry in the jumps. In such situation we expect that the deterministic trend \(b \) is large to compensate for the risk of downward jumps. So condition (5) may be rather unlikely to occur.
Let $q = 2m/(2m - 1)$. We consider the following maximization problems with utility function $u_{2m}(x) = -(1 - \frac{x}{2m})^{2m}$:

Max$_1$: $X^{(1)} := \arg \max \{ E(u_{2m}(X)) ; X \text{ s.t. } E(\hat{Z}_T X) \leq \tilde{x} \}$

Max$_2$: $X^{(2)} := \arg \max \{ E(u_{2m}(X)) ; X \text{ s.t. } \forall Z \in \mathcal{D}_q^s : E(Z_T X) \leq \tilde{x} \}$

Max$_3$: $X^{(3)} := \arg \max \{ E(u_{2m}(X)) ; X \in \Theta^{(2m)}, \tilde{x} \}$

where

$$\Theta^{(2m)}, \tilde{x} = \left\{ X \in L^{2m}(\Omega, \mathcal{F}_T, P) : \exists \vartheta \in \mathcal{A}^{(2m)} \text{ s.t. } X = \tilde{x} + \int_0^T \vartheta_u dS_u \right\}.$$
We have

\[E(u_{2m}(X^{(1)})) \geq E(u_{2m}(X^{(2)})) \geq E(u_{2m}(X^{(3)})) \geq E(u_{2m}(X^{(2m)}(\hat{Z}))). \]

A straightforward calculation shows that the convex dual of \(u_{2m} \) is given by

\[\check{u}_{2m}(y) = (2m - 1)y^{2m/(2m-1)} - 2my. \]

Standard duality theory can be applied to verify that \(X^{(2m)}(\hat{Z}) \) is the maximizer of problem Max_1. All inequalities turn into identities. Moreover,

\[
E(u_{2m}(X(\hat{Z}))) = E(u_{2m}(X^{(2)})) \leq \inf_{Z \in \mathcal{D}_s^q, y \geq 0} (E(\check{u}_{2m}(y \cdot Z_T)) + \check{\tilde{x}}y)
\]

\[= \inf_{y \geq 0} \left((2m - 1)y^{2m/(2m-1)} \left(\inf_{Z \in \mathcal{D}_s^q} E[Z_T^{2m/(2m-1)}] \right) - (2m - \check{\tilde{x}})y\right) \]
The information in this publication is based on carefully selected sources believed to be reliable but we do not make any representation as to its accuracy or completeness. Any opinions herein reflect our judgement at the date hereof and are subject to change without notice. Any investments discussed or recommended in this report may be unsuitable for investors depending on their specific investment objectives and financial position. Any reports provided herein are for general information purposes only and cannot substitute the obtaining of independent financial advice. Private investors should obtain the advice of their banker/broker about any investments concerned prior to making them. Nothing in this publication is intended to create contractual obligations or to impose duties on the entities composing UniCredit Markets & Investment Banking Division which is composed of the respective divisions of Bayerische Hypo- und Vereinsbank AG, Munich; Bank Austria Creditanstalt AG, Vienna; UniCredit Banca Mobiliare S.p.A., Milan and certain of their subsidiaries. Bayerische Hypo- und Vereinsbank AG is regulated by the German Financial Supervisory Authority (BaFin), Bank Austria Creditanstalt AG is regulated by the Austrian Financial Market Authority (FMA) and UniCredit Banca Mobiliare S.p.A. is regulated by Commissione Nazionale per le Società e la Borsa (CONSOB).

Note to UK Residents:
In the United Kingdom, this publication is being communicated on a confidential basis only to clients of UniCredit Markets & Investment Banking Division (acting through Bayerische Hypo- und Vereinsbank, London Branch (“HVB London”) and/or CA IB International Markets Limited and/or CAIB Corporate Finance Limited) who (i) have professional experience in matters relating to investments being investment professionals as defined in Article 19(5) of the Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 (“FPO”); and/or (ii) are falling within Article 49(2)(a) to (d) of the FPO (high net worth companies, unincorporated associations etc.) of the FPO (or, to the extent that this publication relates to an unregulated collective scheme, to professional investors as defined in Article 1(1)(b) of the Financial Services and Markets Act 2000 (Promotion of Collective Investment Schemes) (Exemptions) Order 2001 and/or (iii) whom it may be lawful to communicate it, other than private investors (all such persons being referred to as “Relevant Persons”). This publication is only directed at Relevant Persons and any investment or investment activity to which this publication relates is only available to Relevant Persons or will be engaged in only with Relevant Persons. Solicitations resulting from this publication will only be responded to if the person concerned is a Relevant Person. Other persons should not rely or act upon this publication or any of its contents.

The information provided herein (including any report set out herein) does not constitute a solicitation to buy or an offer to sell any securities. The information in this publication is based on carefully selected sources believed to be reliable but we do not make any representation as to its accuracy or completeness. Any opinions herein reflect our judgement at the date hereof and are subject to change without notice.

We and/or any other entity of the UniCredit Markets & Investment Banking Division may from time to time with respect to securities mentioned in this publication (i) take a long or short position and buy or sell such securities; (ii) act as investment bankers and/or commercial bankers for issuers of such securities; (iii) be represented on the board of any issuers of such securities; (iv) engage in “market-making” of such securities; (v) have a consulting relationship with any issuer. Any investments discussed or recommended in any report provided herein may be unsuitable for investors depending on their specific investment objectives and financial position. Any information provided herein is provided for general information purposes only and cannot substitute the obtaining of independent financial advice.

HVB London is regulated by the Financial Services Authority for the conduct of investment business in the UK. CA IB International Markets Limited, London, and CA IB Corporate Finance Limited, London, two subsidiaries of Bank Austria Creditanstalt AG, are authorised and regulated by the Financial Services Authority.

Note to US Residents:
The information provided herein or contained in any report provided herein is intended solely for institutional clients of UniCredit Markets & Investment Banking Division acting through Bayerische Hypo- und Vereinsbank AG, New York Branch and HVB Capital Markets, Inc. (together “HVB”) in the United States, and may not be used or relied upon by any other person for any purpose. It does not constitute a solicitation to buy or an offer to sell any securities under the Securities Act of 1933, as amended, or under any other US federal or state securities laws, rules or regulations. Investments in securities discussed herein may be unsuitable for investors, depending on their specific investment objectives, risk tolerance and financial position.

In jurisdictions where HVB is not registered or licensed to trade in securities, commodities or other financial products, any transaction may be effected only in accordance with applicable laws and legislation, which may vary from jurisdiction to jurisdiction and may require that a transaction be made in accordance with applicable exemptions from registration or licensing requirements. All information contained herein is based on carefully selected sources believed to be reliable, but HVB makes no representations as to its accuracy or completeness. Any opinions contained herein reflect HVB’s judgement as of the original date of publication, without regard to the date on which you may receive such information, and are subject to change without notice.

HVB may have issued other reports that are inconsistent with, and reach different conclusions from, the information presented in any report provided herein. Those reports reflect the different assumptions, views and analytical methods of the analysts who prepared them. Past performance should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is made regarding future performance. HVB and/or any other entity of UniCredit Markets & Investment Banking Division may from time to time, with respect to any securities discussed herein (i) take a long or short position and buy or sell such securities; (ii) act as an investment and/or commercial bankers for issuers of such securities; (iii) be represented on the board of such issuers; (iv) engage in “market-making” of such securities; and (v) act as a paid consultant or adviser to any issuer.

The information contained in any report provided herein may include forward-looking statements within the meaning of US federal securities laws that are subject to risks and uncertainties. Factors that could cause a company’s actual results and financial condition to differ from its expectations include, without limitation: Political uncertainty, changes in economic conditions that adversely affect the level of demand for the company’s products or services, changes in foreign exchange markets, changes in international and domestic financial markets, competitive environments and other factors relating to the foregoing. All forward-looking statements contained in this report are qualified in their entirety by this cautionary statement.

UniCredit Markets & Investment Banking Division
Bayerische Hypo- und Vereinsbank AG, Munich; Bank Austria Creditanstalt AG, Vienna; UniCredit Banca Mobiliare S.p.A., Milan

Christina Niethammer (Uni Gießen/HVB)

q-Optimal Signed Martingale Measures