On the Wealth Dynamics of Self-financing Portfolios under Endogenous Prices

Jan Palczewski

Faculty of Mathematics
University of Warsaw
and
School of Mathematics
University of Leeds

Vienna, September 2007

Joint work with Jesper Pedersen and Klaus Schenk-Hoppé.
Motivation

Mathematical Finance
- Classical continuous time theory
- Price process given
- Option pricing
- Optimal investment

Economics
- Supply and demand
- Prices by market clearing
- Interaction of investors

- Evolution of investors’ wealth
- Price formation
- Optimal strategies
Classical continuous-time finance

- Investors are **price-takers**
- Trades have **no impact** on the market
- Dynamics of asset prices are given by a stochastic process, e.g.
 \[S_t = S_0 \exp(\mu t + \sigma B_t). \]
- There is **infinite supply** of financial assets
- There is **infinite divisibility** of financial assets

Standing assumption

Small investors!!!

- **Infinite divisibility** of financial assets \(\Rightarrow \) **big investors**
Large trader and large trades

1. Option hedging has **significant impact** on stock prices
 - Empirical “proofs”

2. Large trades cannot be performed without being noticed
 - **splitting** large trades into smaller to lower market impact – algorithmic trading
 - using strategies based on econometric and mathematical reasoning: Keym and Madhavan (1996), He and Mamaysky (2005)
 - strategies based on analysis of limit order books

Limitations
- only one large trader
- trader’s impact on the market is ad-hoc specified
Equilibrium with heterogeneous agents

- many investors, heterogeneous beliefs
- dividends
- investors are utility maximizers
- prices determined to clear the market
- one-period models and overlapping generations (De Long, Shleifer, Summers, Waldmann)
- **dynamic models** are very complicated and often unsolvable (Hommes)
The Market

<table>
<thead>
<tr>
<th>Asset k</th>
<th>$k = 1, 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price $S_k(t)$</td>
<td></td>
</tr>
<tr>
<td>Cumulative dividends $D_k(t)$</td>
<td></td>
</tr>
</tbody>
</table>

$$D_k(t) = \int_0^t \delta_k(s) ds$$

Assets in net supply of 1.
The Market

Asset k

- **$k = 1, 2$**
- **Price $S_k(t)$**
- **Cumulative dividends $D_k(t)$**

\[D_k(t) = \int_0^t \delta_k(s) ds \]

Investor i

- **$i = 1, 2$**
- **Wealth $V^i(t)$**
- **Consumption rate $cV^i(t)$**
- **Constant proportions trading strategy $(\lambda^i_1, \lambda^i_2)$**

Assets in net supply of 1.

Portfolio number of shares of asset k:

\[\frac{\lambda^i_k V^i(t)}{S_k(t)} \]
Wealth dynamics

\[dV^i(t) = \text{capital gains} + \text{dividends} - \text{consumption} \]
Wealth dynamics

\[dV_i(t) = \text{capital gains} + \text{dividends} - \text{consumption} \]

Capital gains

\[\sum_{k=1}^{2} \lambda_k \frac{V_i(t)}{S_k(t)} dS_k(t) \]
Wealth dynamics

\[dV^i(t) = \text{capital gains} + \text{dividends} - \text{consumption} \]

Capital gains

\[\sum_{k=1}^{2} \frac{\lambda_k^i V^i(t)}{S_k(t)} dS_k(t) \]

Dividends

\[\sum_{k=1}^{2} \frac{\lambda_k^i V^i(t)}{S_k(t)} dD_k(t) \]
Wealth dynamics

\[dV^i(t) = \text{capital gains} + \text{dividends} - \text{consumption} \]

Capital gains

\[\sum_{k=1}^{2} \frac{\lambda_k}{S_k(t)} V^i(t) dS_k(t) \]

Dividends

\[\sum_{k=1}^{2} \frac{\lambda_k}{S_k(t)} V^i(t) dD_k(t) \]

Consumption

\[cV^i(t) dt \]
Wealth dynamics

\[dV^i(t) = \text{capital gains} + \text{dividends} - \text{consumption} \]

\[dV^i(t) = \sum_{k=1}^{2} \frac{\lambda_k^i V^i(t)}{S_k(t)} \left(dS_k(t) + dD_k(t) \right) - cV^i(t)dt \]
Market clearing condition

\[\frac{\lambda_1^1 V^i(t)}{S_k(t)} + \frac{\lambda_2^2 V^i(t)}{S_k(t)} = 1, \quad k = 1, 2. \]

Equivalent to the net clearing condition:

\[d\theta^1_k(t) + d\theta^2_k(t) = 0, \quad k = 1, 2. \]
Price formation

Dividend intensities $\delta_k(t)$

+

Investment strategies $(\lambda_1^i, \lambda_2^i)$

+

Investor’s wealth dynamics

+

Market clearing condition

⇓

Asset prices $S_k(t), \ k = 1, 2$
Theorem

1. For any feasible \((V^1(0), V^2(0))\) there exists a unique \((V^1(t), V^2(t))\) satisfying wealth dynamics and market clearing condition.

2. Asset price dynamics are given by

\[
S_k(t) = \lambda^1_k V^1(t) + \lambda^2_k V^2(t), \quad k = 1, 2.
\]
Markovian dividend intensities

Relative dividend intensity

\[\rho(t) = \frac{\delta_1(t)}{\delta_1(t) + \delta_2(t)} \in [0, 1] \]

Assumptions

1. \(\rho(t) \) is a positively recurrent Markov process
2. Its state space is countable
3. Its initial distribution is stationary (stationary economy)

Theorem

Relative dividend intensity process is ergodic:

\[\lim_{t \to \infty} \frac{1}{t} \int_0^t \rho(s) \, ds = E\rho(0). \]
Theorem

If investor 1 follows strategy

\[\Pi^* = (\lambda_1^1, \lambda_2^1) = (\mathbb{E}\rho(0), 1 - \mathbb{E}\rho(0)) \]

and investor 2 follows a strategy \((\lambda_1^2, \lambda_2^2) \neq \Pi^*\) then

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t \frac{V^1(s)}{V^1(s) + V^2(s)} \, ds = 1.
\]

Remarks

1. \(\Pi^*\) is based on fundamental valuation.
2. Relative wealth of investor 2 converges to zero.
3. At odds with findings in discrete-time evolutionary models (Evstigneev, Hens, Schenk-Hoppé).
Price dynamics

If one of the investors follows trading strategy Π^* then asset prices converge:

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \frac{S_1(s)}{S_1(s) + S_2(s)} ds = \mathbb{E}\rho(0).$$
Price dynamics

If one of the investors follows trading strategy Π^* then asset prices converge:

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \frac{S_1(s)}{S_1(s) + S_2(s)} ds = E\rho(0).$$

Fundamental valuation

$$\frac{E\delta_1(0)}{E\delta_1(0) + E\delta_2(0)}$$

Our valuation

$$E\left(\frac{\delta_1(0)}{\delta_1(0) + \delta_2(0)}\right)$$

Remarks

1. Fundamental valuation comes as a result of computing average historical payoffs.
2. Our valuation is a fundamentally different benchmark.
Almost sure convergence

Assumption
For every state x
\[\mathbb{E}^x(\tau_x)^2 < \infty. \]

Theorem
1. *If investor 1 follows strategy Π^* and investor 2 follows a strategy $(\lambda_1^2, \lambda_2^2) \neq \Pi^*$ then*

\[
\lim_{t \to \infty} \frac{V_1(t)}{V_1(t) + V_2(t)} = 1 \quad \text{a.s.}
\]

2. *If one of the investors follows strategy Π^* then asset prices converge to our benchmark value:*

\[
\lim_{t \to \infty} \frac{S_1(t)}{S_1(t) + S_2(t)} = \mathbb{E}\rho(0) \quad \text{a.s.}
\]
Proof

What we hoped to do

- Linearization and Lagrange multipliers
- Multiplicative Ergodic Theorem

Why? It works fine in discrete-time.

- Continuous-time setting *suprised us*. Lagrange multiplier at the steady state is *zero!*

What we have done

- Domination by a Ricatti-type equation with random coefficients.
- One coefficient depending on the solution of the original problem.
- Arcsine law.
Summary

- Heterogeneous investors in continuous time model
- Wealth dynamics
- Optimal investment strategies
- Asset pricing - new valuation benchmark

Open problems
- Time varying investment strategies
- More agents