MODEL RISK IN VAR CALCULATIONS

Peter Schaller, Bank Austria ~ Creditanstalt (BA-CA) Wien, peter@ca-risc.co.at
Introductory remarks:

- Risk \leq lack of information
 (We do not know the future)

- Risk depends on
 - portfolio
 - market dynamics

and

- information used by observer
• This has two consequences

 1. The less information we have, the higher the risk
 2. Risk measures have a subjective component:
 On the same day for the same portfolio different estimates for the
 same risk measure may be correct

⇒ Assessment of estimates to be based on a series of forecasts
VAR as risk measure

- Quantile of P/L distribution
- Drawback: not subadditive (\Rightarrow not coherent)

Still:
- Widely used in practice
- Enforced by regulators

Possible reasons
- Solely depends on P/L distribution
- Finite for any portfolio under any distributional assumptions
- Straightforward assessment of quality of estimates via backtesting

Some of the ideas presented here maybe applicable to other risk measures based on the P/L distribution
Backtesting

• Back testing methods:
 1. Count number of excesses
 2. Advanced (E.g. investigate identical distribution of excesses over time)

• If an estimate fails the first test, further tests are superfluous
• Counterexample:
 – Very large estimate on 98% of days
 – Very low VAR estimate for 2% of days
 – will result in 1% of excesses

• Excluded, if we demand VAR to be function of portfolio and market history only without explicit time dependence
VAR calculation

• Calculate quantile of distribution of profits and losses
• Distribution to be estimated from historical sample
• Straightforward, if there is a large number of identically distributed historical changes of market states

However:

• Sample may be small
 – Recently issued instruments
 – Availability of data
 – Change in market dynamics !!

• Estimation from small sample induces the risk of a misestimation
Model risk

- Estimation of distribution may proceed in two steps
 1. Choose family of distributions (model specification)
 2. Select distribution within selected family (parameter estimation)

- This may be seen as inducing two types of risk
 1. Risk of misspecification of family
 2. Uncertainty in parameter estimates
• This differentiation, however, is highly artificial:
 – If there are several candidate families we might choose a more
 general family comprising them
 – This family will usually be higher dimensional
 – The problem of model specification is partly transformed into the
 problem of parameter estimation
 – Risk of misspecification is traced back to the risk from parameter
 misestimation
 – Indeed, uncertainty in parameter estimates will be larger for the
 higher dimensional family

• So, in practice, choice is not between distinct models, choice is be-
 tween simple model and complex model containing the simple model
Trade off

• A simple model will not cover all features of the distribution, e.g.
 – time dependent volatility
 – fat tails
• This will result in biased (generally too small) VAR estimates
• In a more sophisticated model we will have a larger uncertainty in
 the estimation of the distribution
• This introduces another source of risk
• The effect will be seen in the back testing
• So, again, back testing shows an underestimation of VAR
Contents:

- Guiding examples
 - Bias vs. uncertainty
 - Impact of model risk on back testing results
- Incorporating model risk into VAR
 - Classical approaches to handle model risk
 - Consistent inclusion into VAR forecast
 - Applications
- Model risk and expected shortfall
- Comparison to Bayesian approach
Example I: time dependent volatility

- Daily returns are normally distributed, time dependent volatility
- Volatility varies between 0.55 and 1.3
- average volatility is 1
- e.g.: $\sigma^2 = 1 + 0.7 \times \sin(2\pi t)$
Time series of normally distributed returns with varying volatility (4 years)
• With normal distribution assumption and a long term average of the volatility \((\sigma = 1)\) we get a \(\text{VAR}_{0.99}\) of 2.33
• Back testing will show 1.4\% of excess values rather than 1\%
• Note: Excesses not identically distributed over time
• Way out: Calculate volatility from most recent 25 returns to get time dependent volatility
• Again we will find some 1.4\% of excesses
• Note: Excesses now (almost) identically distributed over time
Volatility estimate from 25 returns
• Estimating time dependent volatility:
 – Long lookback period leads to systematic error (bias)
 – Short lookback period leads to stochastic error (uncertainty)

• Both seen in back testing results
• Assume returns normally distributed with $\sigma = 1$
• Volatility estimated from n-day lookback period
• 99% quantile calculated from estimated volatility under normal distribution assumption
• The following table shows how average number of excess values depend on n

<table>
<thead>
<tr>
<th>n</th>
<th>excesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.1%</td>
</tr>
<tr>
<td>20</td>
<td>1.5%</td>
</tr>
<tr>
<td>50</td>
<td>1.2%</td>
</tr>
<tr>
<td>100</td>
<td>1.1%</td>
</tr>
</tbody>
</table>
Example II: Fat tailed distribution

- Model fat tailed returns as function of normally distributed variable:
 e.g.: $x = a \times \text{sign}(y) \times |y|^b$, y normally distributed

- parameter b determines tail behavior:
 - normal for $b = 1$
 - fat tailed for $b > 1$

- volatility depends on scaling parameter a
Fat tailed distributions for $b=1.25$:

\[\text{fat tailed \hspace{1cm} normal} \]
• Modeling as normal distribution:
 – Assume perfect volatility estimate
 – 1.5% excesses of estimated $\text{VAR}_{0.99}$

• Modeling as fat tailed distribution
 – Two parameters have to be estimated
 – With a lookback period of 50 days we obtain 1.5% of excesses

• Compare normal distribution:
 50 days of lookback period \Rightarrow 1.2% of excesses

• The result does not depend on the actual value of b
• Interpretation: With the complexity of the model the uncertainty of the parameter estimates increases

• Again there is a trade off between
 – bias in the simple model
 – uncertainty in the complex model
The general situation

• Distribution $P(\vec{\alpha})$ member of family \mathbf{P} of distributions labeled by some parameters $\vec{\alpha}$

• For estimation of $\vec{\alpha}$ a (possibly small) sample $<\vec{x}>$ of independent draws from $P(\vec{\alpha})$ available

Estimation of parameters:

• Choose estimator $\hat{\alpha}(\vec{x})$

• Calculate $\hat{\alpha}$ value for given sample

• Identify this value with $\vec{\alpha}$

However:

• $\hat{\alpha}$ is itself a random number

• A value of $\vec{\alpha}$ different from the observed value could have produced sample
Classical approaches:

Statistical testing

- Use distribution of $\hat{\alpha}$ to formulate conditions on a reasonable choice of $\bar{\alpha}$
- A range of values of $\bar{\alpha}$ will match
- Satisfactory, if admissible range of values is small
Bayesian approach:

- Assume prior distribution for α
 \[\Rightarrow \text{Conditional distribution of } \alpha \text{ depending on observed value of } \hat{\alpha} \]
 \[\Rightarrow \text{Stochastic mixture of distributions from family } P\]
- Calculate VAR estimate from the latter
- Some features
 - Assumes, that VAR is quantile of some distribution $P(\alpha) \in P$
 Effectively calculates VAR from stochastic mixture of distributions
 - In this way includes risk of misestimation of α into VAR
 - However, depends on choice of prior distribution
 - In general, will not lead to a VAR figure behaving well in the back testing
Method

• In http://papers.ssrn.com/sol3/papers.cfm?abstract_id=308082 method was presented, which
 – incorporates the uncertainty in the parameter estimates
 – does not depend on the assumption of a prior distribution
 – behaves well in the back testing

• We will shortly review it
Starting point: Given is

- A family \mathbf{P} probability distributions parameterized by a set of parameters $\vec{\alpha}$
- A finite sample $< x_1, ... x_n >$ of independent draws from a particular member $P(\vec{\alpha}) \in \mathbf{P}$.
- A priori nothing is known about $\vec{\alpha}$
- VAR estimate should produce correct back testing results
Back testing:

- V_q (VAR for confidence level q): is a function of $< x_1, ... x_n >$
- Repeat experiment k times \rightarrow k samples $< x_1^a, ... x_n^a >$
- \rightarrow k quantile estimates $V_q^a = V_q(x_1^a, ..., x_n^a)$
- No explicit time dependence (V_q^a dep. on a via sample only)
- Compare V_q^a with next draw x_{n+1}^a
- x_{n+1}^a should exceed V_q^a in q percent of the cases.

Note:

- Different functions of sample may be correct quantile estimates
Different point of view

• Effectively we have a $n + 1$-dimensional sample of i.i.d. variables

• $P(\alpha) \in \mathbf{P}$ induces multivariate distr. $P_{mult}(\alpha)$ of samples

• Assume function $\Phi(x_1, \ldots, x_n; x_{n+1})$ such that
 – distribution of Φ does not depend on $\vec{\alpha}$
 – $\Phi_0(x_{n+1}) := \Phi(x_1^0, \ldots, x_n^0; x_{n+1})$ is strictly monotonic in x_{n+1}

• Given q and historical sample $< x_1^0, \ldots, x_n^0 >$
 – calculate q-quantile for distribution of Φ
 – calculate corresponding value of x_{n+1} from inverse of Φ_0

Eventually we have

$$V_q(x_1^{(0)}, \ldots, x_n^{(0)}) = \Phi_0^{-1}(Q_q^\Phi)$$
Result:

- Obviously the above construction will produce a VAR estimate behaving correctly under the back testing described above.

Remarks:

- Different choices of Φ lead to different (albeit correct) VAR estimates.
- Distribution of Φ depends neither on historical sample nor on $\tilde{\alpha}$.
 \[\Rightarrow\] Determination of Q^Φ_q has to be done once only.
 \[\Rightarrow\] Possible even if it needs expensive simulation.
- Though inspired by a problem from financial risk management, the method may be well applicable in other fields.
Construction of Φ

- Assume \(\mathbf{P} \) generated by the action of some Lie group \(G \) on \(\mathbb{R} \), i.e.:
 - Fix distribution \(P_0 \)
 - \(X \) \(P_g \)-distributed for \(X = gY \) with \(Y \) \(P_0 \)-distributed and \(g \in G \)

- Assume that only identity acts trivial on \(P_0 \)

- Assume some estimator \(\hat{g}(\vec{x}) \) for the group element \(g \) corresponding to the distribution the sample \(\vec{x} \) was taken from

- Let the estimator be \(G \)-homogeneous: \(\hat{g}(g(\vec{x})) = g \hat{g}(x) \)

- Let \(\Phi = \hat{g}^{-1}(x_1, \ldots, x_n) x_{n+1} \)

- Distribution on \(\Phi \) does not depend on distribution of \(<x_1, \ldots x_{n+1}> \)
Proof:

- $\hat{g}(x)$ solves the equation $\hat{g}(g^{-1}(x)) = id$ w.r.t. g
- $\hat{g}(< y_1, \ldots y_n >) = id$ generates $(n + 1 - d)$-dimensional surface in \mathbb{R}^{n+1} ($d = \dim(G)$)
- Action of G forms d-dim G-invariant orbits in \mathbb{R}^{n+1}
- These orbits are invariant under group transformations
- $\hat{g}^{-1}x_{n+1}$ is $(n+1)$-th coordinate of intersection point between this surface and orbit through $< x_1, \ldots x_{n+1} >$
- Change of distribution induced by G transformation
- G-invariance of Φ immediately follows from G-invariance of orbits
- q.e.d.
G-homogeneous estimators

- Assume r.v. $X \sim g_1P_0$ distributed
- Consider $Y = g_2X$ as different variable on same probability space
- Estimate for probability space should not depend on parametrization of event space
- From this point of view homogeneity of \hat{g} appears as natural condition
G-homogeneous estimators, examples

- Most likelihood estimator
- Construction used in the cited paper
 - Denote by f a \mathbb{R}^d-valued functional on \mathbf{P} ($d = \dim(g)$) with $f(Y) = 0 \iff Y \overset{P}{\sim} P_0$-distributed
 - Denote by $\hat{f}(x_1, \ldots, x_n)$ an estimator of f for the sample $< x_1, \ldots, x_n >$ of size n
 - $\hat{f}(\hat{g}^{-1}(\vec{x}))$ defines homogeneous estimator \hat{g} for g
$$d = 1$$

- Consider scale transformation $$X \rightarrow \alpha X$$

 ($$G = (\mathbb{R}_+, \times)$$)

- Generates family of distributions characterized by scale parameter $$\alpha$$

- Any reasonable estimator $$\hat{\alpha}$$ for $$\alpha$$ will be homogeneous

 ($$\hat{\alpha}(\lambda \vec{x}) = \lambda \hat{\alpha}(x)$$)

- Choose $$\Phi = x_{n+1}/\hat{\alpha}(x_1, \ldots, x_n)$$

- Result:

 $$p_\Phi = E_{P_0^n}[\hat{\alpha}p_0(\hat{\alpha}\Phi)]$$

 with $$p_0$$... density of $$P_0$$

 and $$P_0^n$$... dist. of $$n$$ independent draws from $$P_0$$
Example: Normal distribution

- Standard deviation σ as scale parameter
- As an estimator choose weighted sum $\hat{\sigma} = \sqrt{\sum w_i x_i^2}$ with $\sum w_i = 1$
- Sample may be infinite, but recent returns have higher weights than past returns. This has a similar effect as a finite sample.
- Result (N denotes normalization constant:)

$$p(\Phi) = N \prod_{i=1}^{n} \frac{1}{\sqrt{1 + w_i \Phi^2}} E[\sqrt{\mu(x_i)}]$$

with

$$\mu(x_i) = \sum_{i=1}^{n} \frac{w_i x_i^2}{1 + w_i \Phi^2}$$

and $E[.]$ denoting the expectation value w.r.t. standard normal dist.
For constant weight over sample of size \(n \) we obtain StudentT distribution with \(n \) degrees of freedom
(Note that \(\hat{\sigma} \) is square root of \(\chi^2 \) distr. variable)

- For general choice of weights:
 - Expand \(\sqrt{\mu} \) into Taylor series at \(\mu_0 = E[\mu] \)
 - Allows approximation of result in terms of moments of normal distr. to arbitrary order in \(\mu - \mu_0 \)

- Popular:
 - EWMA: \(w_i = \lambda^{n-i} / \sum \lambda^{n-i} \)
 - GARCH(1,1): \(w_i = p/n + (1 - p) \lambda^{n-i} / \sum \lambda^{n-i} \)
Note on GARCH(1,1)

- volatility estimate for GARCH(1,1) may be written as weighted average of long term estimate and EWMA estimate:
 \[\hat{\sigma}_{GARCH}^2 = p \sigma_0^2 + (1 - p) \hat{\sigma}_{EWMA}^2(\lambda) \]
- \(\sigma_0 \) is the long term average of the volatility
- weight \(p \), and decay factor \(\lambda \) depend on parameters \(\alpha \), \(\beta \), and \(\gamma \) of GARCH process
d=2 example

- Characterization of \(P \)
 - \(P_0 \) ... standard normal distribution
 - Variable from \(P(a, b) \in P \) is generated by transformation
 \[x = g(a, b) \cdot y := a \text{sgn}(y) |y|^b, \quad a, b > 0 \]

- Straightforward to prove that this transformations form a group

- Note: \(P(a, b) \) fat tailed if \(b > 1 \)

- Standard normal distr. may e.g. be characterized by variance and kurtosis

- Standard estimators for these quantities may be used (e.g. empirical values of the sample)

- Distr. of \(\Phi \) may be generated by simulation (Once only even in the case of daily estimates!!)
Coherent extension of VAR (CVAR)

• In contrast to quantile the conditional mean of the events beyond the quantile is coherent (i.p. sub additive) risk measure

• Can we calculate this quantity from Φ (E.g. By multiplying volatility estimate with conditional mean of Φ in case of one parameter family of distributions)?

Gedanken experiment

• For normally distr. losses choose size of historical sample $n = 1$
 ↓
 – absolute value of most recent return is estimate for std. dev.
 – Φ is StudentT distr. with one degree of freedom

• 75% quantile of the latter equals 1
 ⇒ Abs. value of most recent loss is VAR for confidence level of 75%
Compare

- Cond. mean of StudentT distr. with one deg. of freedom is infinite
- Naive back testing would produce a finite result for the CVAR:

$$\text{CVAR}_{\text{back-testing}} = \frac{1}{0.25} \hat{E}_{\text{normal-distr}}[(x_t)\theta(x_t - |x_{t-1}|)]$$

However

- This back testing assumes constant size of portfolio
- Assume
 - Family of distributions related by scale transformations
 - Portfolio with constant VAR limit l: Whenever VAR estimate deviates from l portfolio will be resized by a factor l/VAR
- Apply back testing with this regularly resized portfolio
- Product of cond. mean of Φ and limit l is CVAR result compatible with back testing
Comparison with Bayesian approach

Setting

- Consider one parameter family of distributions:
 - P_1 ... arbitrary distr. with standard deviation of 1
 - P_α ... distr. generated from P_1 by transformation $x \rightarrow \alpha \cdot x$
- Choose homogeneous estimator ϕ for stand. dev.: $\Phi = x_{n+1}/\phi$ (*)
- Is there a prior distr. for stand. dev. such that Bayesian approach generates correct result?

Note:

- In the Bayesian approach VAR is calculated from a stochastic mixture of distributions
- In view of (*) distr. of Φ may be interpreted as stochastic mixture of P_σ distributions where σ has distr. of quantity $1/\phi$ (calculated with $\alpha=1$)
Result:

- After some calculations using
 - Homogeneity of ϕ
 - $p_{az}(x) = \frac{1}{a} p_z(x/a)$
 - $p_{1/z}(x) = \frac{1}{x^2} p_z(1/x)$

we find:

- Bayesian approach gives same result as our method, if density of prior distribution for std. dev. is chosen according to $p_{prior}(\sigma) = 1/\sigma$